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Triangulations of cosmological polytopes

Martina Juhnke, Liam Solus & Lorenzo Venturello

Abstract A cosmological polytope is defined for a given Feynman diagram, and its canonical
form may be used to compute the contribution of the Feynman diagram to the wavefunction of
certain cosmological models. Given a subdivision of a polytope, its canonical form is obtained
as a sum of the canonical forms of the facets of the subdivision. In this paper, we identify
such formulas for the canonical form via algebraic techniques. It is shown that the toric ideal
of every cosmological polytope admits a Gröbner basis with a squarefree initial ideal, yielding
a regular unimodular triangulation of the polytope. In specific instances, including trees and
cycles, we recover graphical characterizations of the facets of such triangulations that may be
used to compute the desired canonical form. For paths and cycles, these characterizations admit
simple enumeration. Hence, we obtain formulas for the normalized volume of these polytopes,
extending previous observations of Kühne and Monin.

1. Introduction
Arkani-Hamed, Benincasa and Postnikov [2] introduced the cosmological polytope CG

of an undirected, connected graph G = (V, E), where V is the finite set of vertices
(or nodes) of G and E is its finite collection of edges, i.e. pairs ij for some i, j ∈ V .
When we would like to emphasize that V and E are, respectively, the vertex and edge
set of G, we may write V (G) and E(G), respectively. We will use ij to denote an
undirected edge between i and j, and (i, j) to denote a directed edge i→ j when edge
directions are needed.

We work in the finite real-Euclidean space R∣V ∣+∣E∣ with standard basis vectors xi

and xe for all i ∈ V , e ∈ E. The cosmological polytope CG of G is
CG = conv{xi + xj − xe, xi − xj + xe,−xi + xj + xe ∶ e = ij ∈ E},

where conv(S) denotes the convex hull of S ⊂ Rn. This is a polytope of dimension
∣V ∣ + ∣E∣ − 1. It is only required that the graph G is connected and undirected with
a finite set of vertices and edges. For instance, G need not be simple. In [13], the
authors work with a slight generalization of the definition of CG that allows for G
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to be disconnected. For the purposes of this paper, however, we will consider only
connected G.

In the physical context, the graph G can be interpreted as a Feynman diagram,
in which case the cosmological polytope provides a geometric model for the compu-
tation of the contribution of the Feynman diagram represented by G to the so-called
wavefunction of the universe [2]. Recent works study the physics of scattering am-
plitudes via a generalization of convex polytopes called positive geometries [1]. This
connection arises via a unique differential form of the positive geometry that has only
logarithmic singularities along its boundary. This form is termed its canonical form
[1]. In the case of a cosmological polytope CG, the canonical form provides a formula
for computing the contribution of the Feynman diagram G to certain wavefunctions
of interest.

One way to compute the canonical form ΩP of a polytope P is as a sum of the
canonical forms of the facets S1, . . . , Sm of a subdivision of P [14], i.e.

(1) ΩP = ΩS1 +⋯ +ΩSm .

This technique has been applied successfully in several situations [5, 8, 9, 12, 17].
In the case of cosmological polytopes, it was observed in [2] for specific examples

of G that special subdivisions of the cosmological polytope correspond to classical
physical theories for the computation of the contribution of a Feynman diagram to a
wavefunction. This observation suggests that subdivisions of the cosmological poly-
tope may correspond to physical theories for the computation of wavefunctions, and
hence motivates a search for nice subdivisions of cosmological polytopes that hold for
any graph G. Such subdivisions have the potential to provide new physical theories
for wavefunction computations. The investigation of subdivisions that hold for any
graph G was left as future work in [2]. In this paper, we provide such subdivisions by
way of algebraic techniques.

The cosmological polytope is a lattice polytope, i.e. the convex hull of a finite
collection of points in Z∣V ∣+∣E∣. From this perspective, it is perhaps most natural to
investigate its subdivisions into unimodular simplices, i.e. lattice simplices of minimum
Euclidean volume. Such subdivisions have the advantage that each summand in (1)
has the relatively simple form of a rational function

(2) ω

f1⋯fr
,

where f1, . . . , fr are the facet-defining equations of the simplex and ω is a regular
form on the associated positive geometry [3]. Hence, it is desirable to observe not
only the existence of unimodular triangulations of CG but also to provide a complete
description of their facets.

In this paper, we initiate the study of this problem via algebraic techniques. We
compute a family of Gröbner bases of the toric ideal for the cosmological polytope
CG for any connected, undirected graph G, each of which has a squarefree initial
ideal. It is known that the initial terms of such a Gröbner basis correspond to the
minimal non-faces of a regular unimodular triangulation of CG [19]. Hence, we obtain
the following main result:

Theorem A. (Corollary 2.11) The cosmological polytope CG of any undirected, con-
nected graph G has a regular unimodular triangulation.

An analogous result holds for another family of lattice polytopes associated to
graphs; namely symmetric edge polytopes [11, 16]. Interestingly, these are related to
cosmological polytopes, as the symmetric edge polytope of a graph appears as a
projection of a facet of the cosmological polytope of the same graph. Specifically, the
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symmetric edge polytope of G = (V, E) is recovered by intersecting CG ⊂ R∣V ∣∪∣E∣ with
the hyperplane ∑e∈E xe = 1 and then projecting onto R∣V ∣.

The identified Gröbner bases provide the minimal non-faces of triangulations, from
which achieving a facet description is a non-trivial task. One of the contributions of
this article is to obtain such a characterization for the cosmological polytope of notable
families of graphs.

Theorem B. For specific choices of a term order we obtain a facet description of a
regular unimodular triangulation of the cosmological polytope CG, when G is:

- a path (Theorem 3.2);
- a cycle (Theorem 4.1);
- a tree (Theorem 5.12).

In the case of paths and cycles these characterizations are of a relatively simple
form that allows for enumeration. We thereby obtain formulas for the normalized
volume of CG in these two cases. While, for paths, we recover the formula identified
in [13], for the cycle, the normalized volume of CG was previously unknown. Indeed,
our methods enable us to show the following simple formula:

Theorem C. (Theorem 4.2) The cosmological polytope CCn of the n-cycle Cn has
normalized volume

Vol(CCn) = 4n − 2n.

While the normalized volume of these polytopes provides us with information on
the number of summands in the formula (1) for computing ΩCG

, the explicit descrip-
tion of the facets that we obtain for trees and cycles given in Theorems 3.2, 4.1,
and 5.12 allows for the exact computation of this canonical form. Theorem A sug-
gests that such characterizations should be feasible for more general graphs via further
analysis of the Gröbner bases identified in this paper.

In Section 2 we define a family of term orders associated to the cosmological poly-
tope CG, called good term orders (Definition 2.5) and give a Gröbner basis for the
toric ideal of CG with respect to a good term order. The initial terms of these Gröb-
ner bases are all squarefree, and hence they index the minimal nonfaces of a regular
unimodular triangulation of CG. In the subsequent sections we apply these results to
derive explicit characterizations of the facets of regular unimodular triangulations of
CG arising from good term orders for special instances of G. In Section 3, we char-
acterize the facets of this triangulation for a specific good term order when G is the
path graph. In Section 4, we show that the techniques in Section 3 can be extended
to yield an analogous characterization of the facets of a triangulation for the cycle.
Finally, in Section 5, we extend the characterization of the facets of the triangulation
for paths to general trees.

2. Gröbner bases for the toric ideal of CG

In this section, we describe a family of Gröbner bases for the toric ideal of a cosmo-
logical polytope with the property that the corresponding initial ideals are squarefree.
First we observe that, other than the 3∣E∣ many points which define CG, the standard
basis vectors xi and xe are lattice points in CG. This follows from the convex combina-
tions xi = 1

2((xi+xi−xe)+(xi−xj+xe)). It is not hard to see that no other lattice point
is contained in CG. Indeed, any such point p would be an element of {−1, 0, 1}V ∪E

with coordinates summing up to 1. The linear inequalities xi + xj ≤ 1 and xi + xe ≤ 1
hold for each of the defining points of CG, whenever i and j are not connected in a
graph and i ∉ e. This implies that either p has only one coordinate equal to 1 (i.e. it
is a standard basis vector and a lattice point of CG) or it has exactly two coordinates
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equal to 1 which correspond either to pair of vertices joined by an edge, or a vertex
and an edge containing it. In this case, since the inequality xi+xj +∑i,j∈e xe ≤ 1 holds
for each of the defining points and for each pair of vertices i and j, p is one of the
defining points.

For any undirected graph G with vertex set V and edge set E, we define a poly-
nomial ring in ∣V ∣ + 4∣E∣ variables, each corresponding to a lattice point of CG. More
precisely, we introduce three families of variables:

- A variable zk, for every k ∈ V ∪E. We refer to these as z-variables.
- Variables yije and yjie, for every edge e = ij ∈ E. We refer to these as y-

variables.
- A variable te for every edge e ∈ E. We refer to these as t-variables.

Let RG be the polynomial ring in these ∣V ∣ + 4∣E∣ many variables, with coefficients in
a field K, and consider the surjective homomorphism of K-algebras defined by

φG ∶ RG →K[wp ∶ p ∈ CG ∩ZV ∪E]
zk ↦ wk

yije ↦ wiw
−1
j we

yjie ↦ w−1
i wjwe

te ↦ wiwjw−1
e .

The ideal ICG
∶= ker(φG) is the toric ideal of CG. Observe that variables in RG corre-

spond to lattice points of CG. Moreover, it is well known that toric ideals are binomial,
i.e. they have a set of generators in which every element is the difference of two mono-
mials (see for instance [10, Theorem 3.2]). When the graph G is understood from the
context, we may simply write φ for φG. We now define some distinguished binomials
in ICG

, which will be elements of a Gröbner basis for this ideal.

Definition 2.1. We define two types of pairs of directed subgraphs of G.
(i) Let P be a path in G with at least two edges, with edge set E(P ) =
{i1i2, i2i3, . . . , ik−1ik}. For any partition (P1, P2) of E(P ) into two nonempty
blocks we consider E1 = {ij → ij+1 ∶ ijij+1 ∈ E(P1)}, and E2 = {ij+1 →
ij ∶ ijij+1 ∈ E(P2)}. The pair (E1, E2) is called a zig-zag pair of G.
Moreover, we define the terminal vertices of (E1, E2) to be v1 = ik and
v2 = i1.

(ii) Let C be a cycle in G, with E(C) = {i1i2, i2i3, . . . , ik−1ik, iki1}. For any parti-
tion (C1, C2) of E(C) into two blocks (with one possibly empty) we consider
E1 = {ij → ij+1 ∶ ijij+1 ∈ E(C1)} and E2 = {ij+1 → ij ∶ ijij+1 ∈ E(C2)},
where the indices are considered mod k. The pair (E1, E2) is called a cyclic
pair of G.

Definition 2.2. For every zig-zag pair (E1, E2) we define the zig-zag binomial

bE1,E2 = zv1 ∏
e=i→j∈E1

yije ∏
e=i→j∈E2

ze − zv2 ∏
e=i→j∈E2

yije ∏
e=i→j∈E1

ze ∈ ICG
.

For every cyclic pair (E1, E2) we define the cyclic binomial

bE1,E2 = ∏
e=i→j∈E1

yije ∏
e=i→j∈E2

ze − ∏
e=i→j∈E2

yije ∏
e=i→j∈E1

ze ∈ ICG
.

In the case that either E1 = ∅ or E2 = ∅, we call the resulting cyclic binomial a cycle
binomial. In particular, cycle binomials consist of one monomial containing only y-
variables and one containing only z-variables.
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i1 ik i1

ik

Figure 1. A zig-zag pair and a cyclic pair (E1, E2). The edges in
E1 are drawn in red.

Definition 2.3. We define the following collection of binomials in ICG
.

BG = {yijeyjie − z2
e , yijete − z2

i , yjiete − z2
j ,

yijezj − zize, yjiezi − zjze, teze − zizj ∶ e = ij ∈ E(G)}∪
{bE1,E2 ∶ (E1, E2) is a zig-zag pair or a cyclic pair of G}.

We call the 6∣E∣ many binomials contained in the first set the fundamental binomials.

Example 2.4. Let G be the complete graph on the vertices V = {1, 2, 3}. We observe
that there are precisely 3 zig-zag pairs for G, namely ({(1 → 2)},{(3 → 2)}), ({(1 →
3)},{(2 → 3)}) and ({(2 → 1)},{(3 → 1)}). These give rise to the zig-zag binomials
z3z23y12(12) − z1z12y32(23), z2z23y13(13) − z1z13y23(23) and z3z13y21(12) − z2z12y31(13).
Moreover, there are 8 ways to partition the 3 edges of G in two ordered blocks, which
give rise to 8 cyclic binomials. Examples of these binomials are y12(12)y23(23)z13 −
y13(13)z12z23 and the cycle binomial y12(12)y23(23)y31(13) − z12z23z13.

Definition 2.5. A term order on RG is called a good term order if the leading terms
of fundamental binomials in BG are the elements underlined in Definition 2.3, and
the leading terms of cycle binomials are the monomials containing only y-variables.

We observe that good term orders exist. For instance we can consider any lexico-
graphic term order for which y-variables and t-variables are larger than any z-variable.
We will now show that, for any undirected, connected graph G, the set BG is a Gröb-
ner basis for ICG

with respect to any good term order. To do so, we require a few
lemmas.

Lemma 2.6. Let b = m1 −m2 be a binomial in ICG
, and assume that no variable

divides both m1 and m2. If te∣m1, for some edge e = ij of G, then m1 is divisible
by the leading term of a fundamental binomial in BG with respect to any good term
order.

Proof. Assume te∣m1 and recall that φ(te) = wiwjw−1
e . Since b ∈ ICG

, we have that
φ(m1) = φ(m2). In particular, the variable we either appears in the Laurent monomial
φ(m2) with a negative exponent, or it appears in φ(m1/te) with positive exponent.
The first case contradicts the fact that b is not the multiple of a variable: indeed,
since te is the only variable for which the variable we appears in φ(te) with a negative
exponent, this would imply that te∣m2.
In the second case we have that one of the variables v for which we appears in φ(v)
with a positive exponent must divide m1. These are either ze, yjie or yije. This
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concludes the proof, since the monomials teze, yjiete and yijete are leading terms of
some binomial in BG with respect to the chosen term order. □

We now associate to any binomial m1 −m2 a pair of directed graphs (Ð→G1,
Ð→
G2) of

G in the following way: For any variable yije which divides m1 (respectively m2) the
graph Ð→G1 (respectively Ð→G2) contains the vertices i and j and a number of directed
edges from i to j equal to the degree of yije in m1 (respectively m2).

Definition 2.7. For a directed graph Ð→G and a vertex i ∈ V (Ð→G) we define
degÐ→

G
(i) = outdegÐ→

G
(i) − indegÐ→

G
(i), where outdegÐ→

G
(i) = ∣{j ∈ V (Ð→G) ∶ (i, j) ∈ E(Ð→G)}∣

and indegÐ→
G
(i) = ∣{j ∈ V (Ð→G) ∶ (j, i) ∈ E(Ð→G)}∣. If degÐ→

G
(i) > 0, we call i is positive

vertex of Ð→G . If degÐ→
G
(i) < 0, we call i a negative vertex of Ð→G .

Lemma 2.8. Let b =m1−m2 be a binomial in ICG
, and assume that no variable divides

both m1 and m2. Let (Ð→G1,
Ð→
G2) be the associated pair of directed graphs. Assume that

no leading term of a fundamental binomial in BG with respect to a good term order
divides m1 or m2. Then:

(1) If degÐ→
G1
(i) < 0, then i ∈ V (Ð→G1) ∩ V (Ð→G2). Moreover, if i ∈ V (Ð→G1) ∩ V (Ð→G2),

then degÐ→
G1
(i) = degÐ→

G2
(i).

(2) If i ∈ V (Ð→G1) ∖ V (Ð→G2) and degÐ→
G1
(i) > 0 (i ∈ V (Ð→G2) ∖ V (Ð→G1) and degÐ→

G2
(i) > 0,

respectively), then zi∣m2 (zi∣m1, respectively).
(3) If e ∈ E(Ð→G1) ∖ E(Ð→G2) (e ∈ E(Ð→G2) ∖ E(Ð→G1) respectively), then ze∣m2 (ze∣m1

respectively).

Proof. (1) If degÐ→
G1
(i) < 0, then the degree of wi in φ(m1) is negative. Since b ∈ ICG

,
the degree of wi in φ(m2) is also negative. As the only variables v such that wi has
negative exponent in φ(v) are of the form yjie for some vertex j and edge e, the claim
follows. Since i ∈ V (Ð→G1) there is at least one edge incident to i in Ð→G1. Since the degree
of wi in φ(m1) is negative, we have then that m1 is divisible by a variable of the form
yjie, for some vertex j and edge e. In particular, we conclude that zi does not divide
m1 as we assumed that yjiezi does not divide m1. By symmetry zi does not divide
m2. It follows that degÐ→

G1
(i) equals the degree of the variable wi in φ(m1) and that

degÐ→
G2
(i) equals the degree of the variable wi in φ(m2). Since b ∈ ICG

, we conclude
that degÐ→

G1
(i) = degÐ→

G2
(i).

(2) As in the previous case, the number degÐ→
G1
(i) is smaller or equal to the degrees

of the variable wi in φ(m1) and φ(m2). Since i ∉ V (Ð→G2), the only variable in m2
which contributes to a positive degree in φ(m2) is zi.

(3) Again, since b ∈ ICG
, the degrees of we in φ(m1) and φ(m2) coincide. By

Lemma 2.6 the variable te does not divide neither m1 nor m2, and this is the only
variable v such that we has a negative degree in φ(v). Hence we has positive degree
in both φ(m1) and φ(m2). Since e ∉ E(Ð→G2), the only variable which contributes to a
positive degree of we in φ(m2) is ze. □

The following lemma collects some simple properties of directed acyclic graphs that
will be of use.

Lemma 2.9. Let H be a directed acyclic graph, with at least one edge and no isolated
vertices. Then H has at least a positive and a negative vertex. Moreover, for every
positive vertex i ∈ V (H) there exists a negative vertex j ∈ V (H) such that H contains
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a directed path from i to j, and for every negative vertex j ∈ V (H) there exists a
positive vertex i ∈ V (H) such that H contains a directed path from i to j.

Proof. Every directed acyclic graph with at least one edge has at least one sink and
at least one source node. Since sinks are positive vertices and sources are negative
vertices the first claim holds. The second claim follows from the fact that every vertex
in the directed acyclic graph has at least one descendant that is a sink and every
vertex has at least one source node as an ancestor. □

We are now ready to prove the main result of the section.

Theorem 2.10. The set BG is a Gröbner basis of ICG
with respect to every good term

order.

Proof. Recall that toric ideals can be generated by binomials which are the difference
of two monomials [10, Theorem 3.2]. In order to show that BG is a Gröbner basis of
ICG

it is then sufficient to show that for any binomial b = m1 −m2 be in ICG
there

exists a binomial f ∈ BG such that lt(f)∣m1 or lt(f)∣m2. This shows that any bino-
mial in ICG

can be reduced by an element of BG. Since this reduction step produces
another binomial and the sequence of reduction w.r.t. a term order terminates, it
must terminate with the zero polynomial. In particular, all S-polynomials obtained
from a generating set of binomials of ICG

reduce to zero, which implies that BG is
a Gröbner basis. Since toric ideals are prime we can assume that no variable divides
both m1 and m2. If the leading term of a fundamental binomial in BG divides either
m1 or m2, then we conclude.

Assume that no leading term of a fundamental binomial in BG divides either m1
or m2. In particular, by Lemma 2.6, no variable of the form te divides either m1 or
m2. Consider the pair (Ð→G1,

Ð→
G2) of directed subgraphs of G associated with m1 and

m2.
If Ð→G1 (Ð→G2 respectively) has a directed cycle C, which is supported on a cycle

of G, then by construction m1 (m2 respectively) is divisible by the monomial
∏→e=(i,j)∈E(C) yije which is the leading term of a cycle binomial by definition of good
term order and so we conclude.
If Ð→G1 (Ð→G2 respectively) has a directed cycle C which is not supported on a cycle of
G, then it must be a cycle on 2 vertices i and j. In this case the monomial yijeyjie,
which is the leading term of a fundamental binomial, divides m1 (m2 respectively).

Assume that both Ð→G1 and Ð→G2 are directed acyclic. Since no variable divides both
m1 and m2, Ð→G1 and Ð→G2 do not have any common directed edge, as those would
correspond to y-variables which divide both m1 and m2.

Suppose there is a positive vertex i in Ð→G1 such that i ∈ V (Ð→G1) ∖ V (Ð→G2). Observe
that by Lemma 2.8 (2) this implies that zi∣m2. We let i1 = i and j1 be a negative
vertex of Ð→G1 such that there is a directed path from i1 to j1. By Lemma 2.8 (1), j1

is a negative vertex of Ð→G2 as well. By Lemma 2.9, there exists a positive vertex i2 ofÐ→
G2 such that there is a directed path in Ð→G2 from i2 to j1. If i2 ∈ V (Ð→G1), by Lemma
2.8 (1), we have degÐ→

G1
(i2) = degÐ→

G2
(i2) > 0. Otherwise we can find a path from i2 to a

negative vertex j2, and we can keep looking for negative then iterate this procedure
until one of the following possibilities occurs:

Case 1: ik ∉ V (Ð→G1). In this case, let E1 be the union of the directed edges of the
directed paths from it to jt, for t = 1, . . . , k − 1 and E2 be the union of the directed
edges of the directed paths from it+1 to jt, for t = 1, . . . , k−1. Hence (E1, E2) is a zig-
zag pair. By definition of the graphs (Ð→G1,

Ð→
G2) we have that ∏→e=(i,j)∈E1

yije divides m1

Algebraic Combinatorics, Vol. 8 #4 (2025) 1147
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and∏→e=(i,j)∈E2
yije divides m2. Moreover, by Lemma 2.8 (2), we have that zik

∣m1 and
that zi1 ∣m2. Finally, by Lemma 2.8 (3), ∏→e=(i,j)∈E2

ze divides m1 and ∏→e=(i,j)∈E1
ze

divides m2. In particular, m1 and m2 are divisible by the two monomials of bE1,E2 ,
the binomial corresponding to the zig-zag pair (E1, E2).

Case 2: ik = iℓ, for some ℓ < k. In this case, let E1 be the union of the directed
edges of the directed paths from it to jt, for t = ℓ, . . . , k−1 and E2 be the union of the
directed edges of the directed paths from it+1 to jt, for t = ℓ, . . . , k − 1 together with
the directed edges from ik to jℓ. The pair (E1, E2) is a cyclic pair. Again by definition
of the graphs (Ð→G1,

Ð→
G2), we have that ∏→e=(i,j)∈E1

yije divides m1 and ∏→e=(i,j)∈E2
yije

divides m2. Moreover, by Lemma 2.8 (3), ∏→e=(i,j)∈E2
ze divides m1 and ∏→e=(i,j)∈E1

ze

divides m2. In particular, m1 and m1 are divisible by the two monomials of bE1,E2 ,
the binomial corresponding to the cyclic pair (E1, E2). This finishes Case 2.

If there is a positive vertex i in Ð→G2 such that i ∈ V (Ð→G2) ∖ V (Ð→G1), we can conclude
by the same argument as above.

Suppose now that for all vertices i with degÐ→
G1
(i) > 0 we have that i ∈ V (Ð→G2) and

for all vertices i with degÐ→
G2
(i) > 0 we have that i ∈ V (Ð→G1). We initialize i1 to be any

of the vertices with degÐ→
G1
(i) > 0 and, as in the previous case, we start constructing

disjoint directed paths from it to jt in Ð→G1 and from it+1 to jt in Ð→G2. Since the graphsÐ→
G1 and Ð→G2 are finite there exists k such that ik = iℓ for some ℓ < k. Let E1 be the
union of the directed edges of the directed paths from it to jt, for t = ℓ, . . . , k − 1
and E2 be the union of the directed edges of the directed paths from it+1 to jt, for
t = ℓ, . . . , k − 1 together with the directed edges from ik to jℓ. The pair (E1, E2) is
a cyclic pair. Following verbatim Case 2 we obtain that m1 and m2 are divisible by
the two monomials of bE1,E2 , the binomial corresponding to the cyclic pair (E1, E2).
This completes the proof. □

2.1. Regular unimodular triangulations. Given a sufficiently generic vector
h ∈ Rn and a finite collection of lattice points A = {a1, . . . , an} ∈ Zd, the vector h
defines a regular triangulation Th of A as follows: {ai1 , . . . , aik

} ∈ Th if there exists
c ∈ Rd such that

⟨aj , c⟩ = hj if j ∈ {i1, . . . , ik}, and
⟨aj , c⟩ < hj if j ∉ {i1, . . . , ik}

The triangulation Th is called unimodular if the maximal dimensional faces (i.e. the
facets) of Th have smallest possible volume over all lattice simplices in the lattice
spanned by A. (When this lattice is Zd this volume is 1/d!.)

The initial ideal of a toric ideal IA ⊂ k[w1, . . . , wd] with respect to the term order ≺
is the ideal generated by the leading terms of all f ∈ IA with respect to ≺. By definition,
the leading terms of the elements of a Gröbner basis of IA with respect to ≺ forms a
finite generating set for this initial ideal. In the ring RG, the variables correspond to
the lattice points in CG∩Z∣V ∣+∣E∣, and hence each element of this generating set indexes
a subset of the lattice points in CG. When the leading terms of the polynomials in the
Gröbner basis are all squarefree then these subsets form the set of minimal nonfaces
of a regular unimodular triangulation of CG (see [19, Theorem 8.3] or [7, Section 9.4]).
Since by Theorem 2.10 the set BG is a Gröbner basis of ICG

with respect to any good
term order with only squarefree leading terms, we obtain the following corollary.

Corollary 2.11. Let G be any graph. The cosmological polytope CG has a regular
unimodular triangulation.
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Corollary 2.11 provides the existence of the desired subdivisions of CG for any G.
While the result is constructive, the presentation of the resulting triangulations is in
the form of their minimal non-faces. In order to apply the formula in (1) to compute
the canonical forms ΩCG

, we require a description of the triangulations in terms of
their facets. In the coming sections, we give such characterizations for families of G.
To derive these results we will use some observations that can be seen to hold for all
regular unimodular triangulations derived from good term orders for any graph G. In
this subsection, we collect these results and the relevant notation that will be used
throughout the remaining sections.

We start by introducing some notation. In the following, let us assume that we have
a graph G = (V, E) and a good term order. By Theorem 2.10 a Gröbner basis with
squarefree initial ideal is given by the fundamental binomials, the zig-zag binomials
and the cyclic binomials. Since the cosmological polytope CG has dimension ∣V ∣ +
∣E∣ − 1, the corresponding regular unimodular triangulation has facets given by all
(∣V ∣ + ∣E∣)-subsets of the variables yije, yjie, te, ze, zi that do not contain any leading
term of the binomials in this Gröbner basis. Recall that every variable corresponds
to a distinguished lattice point in CG and as such to a vertex of the considered facet.

The fundamental binomials imply that certain 2-subsets of variables cannot be
contained in the facets. These 2-subsets to be avoided for each edge e = ij ∈ E
correspond to the edges of the following graph:

zi te zj

yije yjie

ze

To represent the facets of the triangulation, we introduce a symbol corresponding
to each variable: Let i ∈ V and e = ij ∈ E:

● the variable zi is represented by the symbol ○. The vertex i is instead repre-
sented by ● if zi is not present.
● the variable ze is represented by the edge type −,
● the variable te is represented by the edge type :::,
● the variable yije is represented by the edge type → pointing from i to j, and
● the variable yjie is represented by the edge type ← pointing from j to i.

Given a subset S of the generators of RG, we let GS denote the graph drawn with
the symbols above according to the elements in S. We also let Z ∶= {zi ∶ i ∈ V },
ZS ∶= S ∩Z and ZS ∶= {i ∈ V ∶ zi ∈ ZS}. For example, if G is a path on 3 vertices, we
represent the set of variables S = {z1, z3, y12(12), z12, t23} via the graph GS :

1 2 3

For this example, Z = {z1, z2, z3}, ZS = {z1, z3} and ZS = {1, 3}.
The fundamental binomials imply that if a subset of variables corresponds to a face

of the triangulation, then its associated graph does not contain any of the following
subgraphs, where the corresponding leading monomial (for the edge e = ij) is written
below each subgraph:

(3) teze teyije teyjie yijeyjie ziyjie zjyije
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We refer to these six subgraph as fundamental obstructions. The following lemma is
immediate.

Lemma 2.12. Let G be a simple, connected and undirected graph, and let T be a regular
unimodular triangulation of CG given by a good term order on RG. If S is a facet of
T , then GS contains only single edges and double edges. Moreover, any double edges
are of the form, where the corresponding monomial is indicated for the edge e = ij
below:

or
yijeze yjieze .

Given a subset S of the variables in RG, we define the support graph of S (or GS)
to be the graph on vertex set V and edge set

{e = ij ∈ E ∶ S ∩ {te, ze, yije, yjie} ≠ ∅}.
The following statement shows that the support graph of any facet is as large as

possible.

Proposition 2.13. Let G = (V, E) be a connected, undirected graph and let T be a
triangulation of CG coming from a good term order. Let S be a subset of the variables
of RG. If S is a facet of T , then the support graph GS of S equals G. In particular,
the support graph of S is connected.

Proof. Let S be a facet of T and assume by contradiction that there is some edge e =
ij ∈ E such that S∩{te, ze, yije, yjie} = ∅. We note that the variable te does not appear
in any of the zig-zag binomials, the cyclic binomials nor the cyclic binomials. The
only occurrence of te is in the leading term of the fundamental binomials yijete − z2

i ,
yjiete − z2

j and teze − zizj . However, since by assumption, none of yije, yjie and ze is
contained in S, it follows that S ∪ {te} is also a face of T . This contradicts the fact
that S is a facet. □

3. The cosmological polytope of the path
In this section, we give an explicit description of the regular unimodular triangulation
corresponding to a Gröbner basis with respect to a good term order of the toric ideal
for the cosmological polytope of the path with n edges In; that is, the graph with
vertex set V = [n + 1] and edge set E = {ii + 1 ∶ i ∈ [n]}.

A combinatorial description of the facets of this triangulation is given that allows
for enumeration of the facets. The resulting formula for the normalized volume of CIn

agrees with the formula identified in [13]. The combinatorial description of the facets
may also be used to compute the canonical form of the polytope in a novel way, which
may suggest new physical theories for the computation of wavefunctions associated
to such Feynman diagrams.

In the following, we use the variable order
y12 > y23 > ⋯ > ynn+1 > yn+1n > ⋯ > y32 > y21 > z12 > ⋯
⋯ > znn+1 > t12 > ⋯ > tnn+1 > z1 > ⋯ > zn+1,

(4)

where for the edge e = ii+1, we write yii+1 and yi+1i for the variables yii+1e and yi+1ie,
respectively. It can be checked that the lexicographic term order, with respect to this
ordering of the variables, on the monomials in RIn is a good term order according
to Definition 2.5. Since the cosmological polytope CG for a graph G = (V, E) has
dimension ∣V ∣ + ∣E∣ −1, the corresponding regular unimodular triangulation has facets
given by all (2n+1)-subsets of the variables yije, yjie, te, ze, zi that do not contain the
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leading terms of the binomials in this Gröbner basis. Our goal is to characterize these
subsets S in terms of the structure of their graphs GS defined in Subsection 2.1.

By Proposition 2.13, we know that GS is connected whenever S is a facet. We also
know from Lemma 2.12 that all edges in GS are either single or double edges and all
double edges are of the form

or

Since the path graph contains no cycles, the Gröbner basis given in Theorem 2.10
for IIn contains only the fundamental binomials and zig-zag binomials. Now that we
have specified a specific good term order on RIn we can also identify the subgraphs
forbidden by the leading monomials of the zig-zag binomials.

Namely, if S is a facet of the triangulation then GS does not contain any partially
directed paths to the right ending in a ○; that is, it does not contain any consecutive
edges, undirected or directed to the right, where the last edge is undirected and ends
in a ○. For example, if S is a facet it cannot contain the subset of symbols R yielding
the following graph:

.
The following lemma collects some additional useful properties of GS when S is a

facet.

Lemma 3.1. Let S be a subset of the variables generating the ring RIn . If S is a facet
of the triangulation and ZS = {i1 < i2 < ⋯ < in+1−k}, then the induced subgraphs on
[i1], [ij , ij+1] for 1 ≤ j ≤ n − k and [in+1−k, n + 1] have exactly as many double edges
as black nodes.

Proof. Since S is a facet we know that ∣S∣ = 2n+1. We know also from Proposition 2.13
that the support graph of GS is connected and equal to In. Hence, there is at least
one edge in GS for all n edges in In. Moreover, by Lemma 2.12 we know that GS only
contains single and double edges. Since ∣ZS ∣ = n+1−k and ∣S∣ = 2n+1, it follows that
GS contains exactly k double edges.

Consider now the subgraph between i < j of GS where zi, zj ∈ S and zℓ ∉ S for all
i < ℓ < j. We claim that there are at most j − i − 1 double edges in this subgraph. To
see this, suppose there are j − i double edges instead. It follows that all edges in this
subgraph are double and of the form specified in Lemma 2.12. Since the subgraph
cannot include the fundamental obstruction ○ ←, it follows that the first pair of double
edges is of the form

i i + 1

Since all remaining edges in the subgraph must also be double edges, and since these
sets of doubles must each include the undirected edge ℓℓ+1 (for i ≤ ℓ ≤ j−1), it follows
that the subgraph contains a partially directed path to the right ending in ○, which is
a forbidden subgraph by the leading term of some zig-zag binomial. Hence, we have
a contradiction.

It then follows from the Pigeonhole Principle that each subgraph of GS given by a
pair of nodes i < j for zi, zj ∈ S but zℓ ∉ S for all i < ℓ < k, or zi ∈ S but zℓ ∉ S for all
ℓ < i, or zi ∈ S but zℓ ∉ S for all i < ℓ contains exactly as many double edges as it does
black nodes. This finishes the proof. □

Based on Lemma 3.1, it can be helpful to consider facets according to their inter-
section with the set Z = {zi ∶ i ∈ [n + 1]}. If a facet S is such that ZS = S ∩ Z =
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{zi1 , . . . , zik
}, where i1 < i2 < ⋯ < ik, we can partition the graph GS into the in-

duced subgraphs on node sets {1, . . . , i1}, {ik, . . . , n+1} and {ij , ij +1, . . . , ij+1} for all
j ∈ [k−1], and consider the possible placements of the appropriate number of edges in
each induced subgraph so as to ensure that ∣S∣ = 2n+ 1. A rule for producing all such
graphs in this way will yield a combinatorial description of the facets of the triangu-
lation. The next theorem gives such a characterization of the graphs that correspond
to facets of the triangulation. In the following we use ↔ to denote that we are free to
choose between either arrow (either ← or →).

Theorem 3.2. Let S be a subset of the generators of the ring RIn and let ZS =
{zi1 , . . . , zik

} where i1 < ⋯ < ik (and possibly, ZS = ∅. Then S is a facet of the
triangulation of CIn corresponding to the lexicographic order induced by (4) if and
only if ZS ≠ ∅ and all three of the following hold:

(1) The induced subgraph of GS on nodes [i1] is of the form

.
That is, all edges are double with a ←.

(2) For all j ∈ [k−1], the induced subgraph of GS on {ij , ij +1, . . . , ij+1} is of one
of the following forms:

That is, either (1) exactly one edge whose least vertex is a black node is either
::: or ←, all edges to the right of this edge are double with a ← and all edges
to the left of this edge are double with either arrow (← or →), except for the
first edge which must have →, or (2) the leftmost edge is either − or ::: and
all edges to the right are double with a ←.

(3) The induced subgraph of GS on nodes {ik, ik + 1, . . . , n + 1} is of the form

.
That is, all edges are double with either arrow (either ← or →), except for the
first edge which must have a →.

Proof. We first observe that any set S such that GS satisfies the listed properties, is
a facet. Moreover, if S is a facet, then ∣S∣ = 2n + 1. Since S can only contain double
edges and In has n edges, it follows that ZS ≠ ∅.

Notice first that any choice of the edges for each of the possible subgraphs does not
contain an induced subgraph excluded by the fundamental binomials. Furthermore,
any partially directed path to the right is either interrupted by a single edge of the
form ← or :::, or it terminates in a black node. Hence, such a GS also does not
contain any subgraph forbidden by the leading terms of the zig-zag binomials. Since
there is exactly one double edge for every black node, it also follows that ∣S∣ = 2n+ 1.
Since the dimension of CIn is 2n, it follows that GS is a facet of the triangulation.

Suppose now that S is a facet of the triangulation, and consider its associated
graph GS . Since S is a facet, we know ∣S∣ = 2n + 1, and by Lemma 3.1 we also know
that GS is connected and any of the induced subgraphs on node sets {1, . . . , i1},
{ik, . . . , n + 1} and {ij , ij + 1, . . . , ij+1} for j ∈ [k − 1] contains as many black nodes as
it does double edges. It therefore suffices to show that these subgraphs of GS are of
one of the possible forms specified in the above list.
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Consider first the induced subgraph of GS on node set [i1]. Since S is a facet, by
Lemma 3.1, we know that every edge in this subgraph is a double edge, and hence of
the form {(i, i+1), ii+1} or {(i+1, i), ii+1}. Since S cannot contain the leading term
of any fundamental binomial, it does not contain both zi1 and yi1−1i1 . Hence, this
subgraph must contain the double edge {(i1, i1−1), i1−1i1}. Similarly, since S cannot
contain the leading term of any zig-zag binomial, this subgraph cannot contain any
partially directed paths to the right. It follows that all double edges in this subgraph
are of the form {(i+1, i), ii+1}. Hence, GS fulfills the first criterion in the above list.

Similarly, for the induced graph of GS on node set {ij , ij + 1, . . . , ij+1}, we know
that the graph must be connected and contain exactly ij+1 − ij − 1 double edges by
Lemma 3.1. Hence, there is exactly one single edge in the graph. Suppose that this
edge is the leftmost edge (i.e. between ij and ij + 1). In this case, the edge may be
either ::: or −, but not ← or →. To see that it cannot be ←, note that this would
mean that the leading term of a fundamental binomial is contained in S. To see that
it cannot be →, note that, since all remaining edges in the subgraph must be doubled
(and hence include a −), it would follow that S contains the leading term of a zig-zag
binomial, which is a contradiction. In a similar fashion, all double edges must be of
the form {(i + 1, i), ii + 1}. Otherwise S would contain the leading term of a zig-zag
binomial.

Suppose now that the single edge in the subgraph is between ij + t and ij + t + 1
for some t > 1. By the same argument as the previous case, all remaining edges must
be double edges and all double edges to the right of ij + t + 1 must be of the form
{(i + 1, i), ii + 1}. We must also have that the double edge between ij and ij + 1 is
of the form {(ij , ij + 1), ijij + 1}, since otherwise S would contain the leading term
of a fundamental binomial. However, all double edges between ij + s and ij + s + 1
for 1 ≤ s < t can be of either form {(i + 1, i), ii + 1} or {(i, i + 1), ii + 1}, since the
single edge will interrupt any partially directed path to the right. Observe further
that the single edge must be of the form ← or :::, since any other option would
combine with the undirected edges and the directed edge between ij and ij + 1 to
yield a partially directed path to the right terminating in a ○. It follows that if S is a
facet, the corresponding induced subgraphs of GS on the intervals {ij , ij +1, . . . , ij+1}
for all j ∈ [k − 1] are of the form in item (2) in the above list.

Finally, for the induced subgraph of GS on node set {ik, . . . , n + 1}, we know from
Lemma 3.1 that all edges are double edges and hence of the form {(i+ 1, i), ii+ 1} or
{(i, i+1), ii+1}. To avoid a subgraph forbidden by a fundamental binomial, we must
also have that the double edge between ik and ik + 1 is of the form {(i, i + 1), ii + 1}.
However, since the path does not contain any ○ to the right of node ik, we are free to
choose the direction of the arrow in all remaining double edges. Hence, this subgraph
is of the form given in item (3) in the above list, which completes the proof. □

Example 3.3. According to Theorem 3.2, the facets of the triangulation of CI2 are
given by the following sixteen graphs:
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Each of these graphs encodes the collection of vertices of the corresponding facet
in the triangulation of CI2 , from which we can recover the facet-defining equations of
the simplex and thereby compute the canonical form ΩI2 .

Since the triangulation is unimodular, it follows that the normalized volume of CIn

is given by the sum over all graphs GS that satisfy the properties listed in Lemma 3.2.
Using the decomposition of these properties into subgraphs, we can recover the for-
mula for the normalized volume of CIn given in [13].

Corollary 3.4. The normalized volume of CIn is 4n.

Proof. We first deduce a formula for the normalized volume of CIn by enumerating the
facets of the triangulation using Lemma 3.2. Then we show that this formula reduces
to 4n.

To enumerate the facets via Lemma 3.2, we first pick a subset {i1, . . . , ik} of [n+1]
where we assume i1 < ⋯ < ik. Let S be a facet with ZS = {zi1 , . . . , zik

}. There is
only one possible induced subgraph on node set [i1]. The possible number of induced
subgraphs of GS on node set {ik, ik + 1, . . . , n + 1} is the following

⎧⎪⎪⎨⎪⎪⎩

1, if ik = n + 1,

2n−ik , if ik < n + 1.

Given an interval {ij , ij + 1, . . . , ij+1}, the possible induced subgraphs on this interval
of GS must contain a single edge between ij + s and ij + s + 1 for exactly one s ∈
{0, 1, . . . , ij+1−ij−1}. By Lemma 3.2 we always have two choices for this edge. Further,
by the same lemma, when s = 0, there are exactly two possible subgraphs of GS on
this interval. For s > 0, there are 2s choices (including the choice of edge type for the
single edge). Hence, there are a total of

2 +
ij+1−ij−1

∑
s=1

2s = 1 +
ij+1−ij−1

∑
s=0

2s,

= 1 + (2ij+1−ij − 1),
= 2ij+1−ij

possible subgraphs for this interval. The number of facets S of the triangulation with
ZS = {i1, . . . , ik} is then equal to

⎧⎪⎪⎨⎪⎪⎩

1 ⋅ (∏k−1
j=1 2ij+1−ij) ⋅ 1, if ik = n + 1,

1 ⋅ (∏k−1
j=1 2ij+1−ij) ⋅ 2n−ik , if ik < n + 1

=
⎧⎪⎪⎨⎪⎪⎩

2ik−i1 , if ik = n + 1,

2n−i1 , if ik < n + 1.

Summing over all proper subsets of [n + 1], yields

∑
∅≠Z∈2[n]

2n−min(Z) + ∑
Z∈2[n]

2n+1−min(Z) =
n

∑
ℓ=1

2n−ℓ ⋅ 2n−ℓ +
n

∑
ℓ=1

2n−ℓ ⋅ 2n+1−ℓ + 1

=
n−1
∑
ℓ=0

4ℓ + 2
n−1
∑
ℓ=0

4ℓ + 1

= 3
n−1
∑
ℓ=0

4ℓ + 1

= 34n − 1
4 − 1

+ 1 = 4n,

which completes the proof. □
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4. The cosmological polytope of the cycle
We now consider the cosmological polytope CCn associated with the n-cycle Cn, i.e.
the graph with vertex set V = [n] and edge set E = {ii + 1 ∶ i ∈ [n]}, where i + 1
is considered modulo n. Via a mild extension of the observations made in Section 3,
we can characterize the facets of a regular unimodular triangulation of CCn arising
from a good term order. This yields a method for computing the canonical form
ΩCn . Furthermore, we can enumerate these facets, yielding a closed formula for the
normalized volume of CCn , which was previously unknown.

We use the notation introduced in Section 3. In particular, we represent sets of
variables S in RCn with the graphs GS . For the edge e = ii + 1 we also write yii+1
and yi+1i for the corresponding y-variables. Just as in Section 3, we consider the
triangulation T of CCn induced by a lexicographic term order with respect to the
following ordering of the variables

y12 > y23 > ⋯yn−1n > yn1 > y1n > ynn−1 > ⋯ > y21 > z12 > ⋯(5)
⋯ > zn−1n > t12 > ⋯ > tn−1n > z1 > ⋯ > zn.

This term order is seen to be a good term order (see Definition 2.5).
With respect to such a term order, the leading terms of zig-zag binomials corre-

spond again to partially directed paths ending in a ○, just as in Section 3. Note that
this is indeed true even more general for facets of the cosmological polytope of any
graph for any induced path (whose internal vertices have degree 2) with respect to
any good term order for which variables corresponding to one direction of the path
are greater than the ones for the other direction.

We must now also avoid the subgraphs corresponding to leading terms of cyclic
binomials. For cycle binomials, this implies that we must avoid subgraphs that are
directed cycles (both clockwise and counter-clockwise), such as

1

23

1

23
.

Here, we note that no vertices are chosen. For cyclic binomials that are not cycle
binomials, since yii+1 > yj+1j for every i, j ∈ [n] (with addition taken modulo n), the
leading terms will always correspond to partially directed cycles oriented clockwise,
such as

1

2

3

4

5

6

.

Hence, we must avoid subgraphs that are partially directed cycles with a clockwise
orientation. The following theorem provides a characterization of the facets of this
triangulation in terms of these forbidden subgraphs.
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Theorem 4.1. Let S be a subset of the generators of the ring RCn and let ZS =
{zi1 , . . . , zik

} where i1 < ⋯ < ik. Then S is a facet of the triangulation of CCn corre-
sponding to the lexicographic order induced by (5) if and only if all of the following
hold:

(1) ZS ≠ ∅,
(2) the induced subgraph of GS on {it, it + 1, . . . , it+1} is of the form described in

Theorem 3.2 (2) for all t ∈ [k − 1], and
(3) the induced subgraph of GS on {ik, ik + 1 mod n, . . . , i1} is of the form de-

scribed in Theorem 3.2 (2) where the right-most node is i1.

Proof. Suppose that S is a facet of T . Then ∣S∣ = 2n. If ZS = ∅, then by the forbidden
subgraphs arising from the fundamental binomials, we know that every edge in GS is
a double edge consisting of an undirected edge together with a directed edge. This,
however, would imply that GS contains a subgraph corresponding to the leading term
of a cyclic binomial, which is a contradiction. Hence, ZS ≠ ∅. The fact that conditions
(2) and (3) hold follows from the specified variable ordering and the arguments given
in the proof of Theorem 3.2.

Similarly, the converse follows from the arguments given in the proof of Theo-
rem 3.2, with the additional observation that the specified paths between any two
white nodes contains a single edge and these single edges prevent the existence of
clockwise partially directed and directed cycles. □

Similar to the results in Section 3, we can use the characterization in Theorem 4.1
to enumerate the facets of the triangulation and derive a closed formula for the nor-
malized volume of CCn . The resulting formula appears as sequence A020522 in the
Online Encyclopedia of Integers Sequences [18].

Theorem 4.2. The cosmological polytope of the n-cycle Cn has normalized volume

Vol(CCn) = 4n − 2n.

Proof. Let S be a facet of the triangulation T described above and ZS = {zi1 , . . . , zik
}

where i1 < ⋯ < ik. Then the induced subgraph of GS on {iℓ, . . . , iℓ+1 mod k} for 1 ≤ ℓ ≤ k
is of the form described in Theorem 3.2 (2). By the proof of Corollary 3.4 there are
2iℓ+1 mod k−iℓ possible subgraphs for this interval which gives ∏k

ℓ=1 2iℓ+1 mod k−iℓ = 2n

possible graphs GS with a prescribed set of white vertices. Varying the latter over
all non-empty subsets of the vertices, we get a total of (2n − 1)2̇n = 4n − 2n possible
subgraphs GS . It remains to verify that none of these subgraphs contains a clockwise
partially oriented cycles or a completely oriented cycle. To see this, it suffices to note
that if any induced subgraph on {iℓ, . . . , iℓ+1 mod k} for 1 ≤ ℓ ≤ k is of the first three
types in Theorem 3.2 (2), then the unique single edge already prevents the existence
of such a cycle. However, if all considered subgraphs are of the fourth type then none
of the variables yii+1 mod n is present. Hence, GS neither contains a clockwise partially
oriented cycle nor a completely oriented cycle. This finishes the proof. □

5. The cosmological polytope of a tree
The description of the facets for a regular unimodular triangulation arising from a
good term order for the path in Section 3 can be extended to any tree. To do so, we
first specify a good term order associated to an arbitrary tree T on node set [n + 1]
that generalizes the term order used in Section 3.

Fix a leaf node r of T and consider a planar embedding of T in which r is located
at the origin and the vertices at distance d from r in T are located at (d, y) for some
y ∈ Z. We let <r denote the total order on the vertices of T given by reading the
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vertices from left-to-right, top-to-bottom, with the first vertex you read being the
smallest in the order. A total ordering ≺ on the edges of T is analogously given by
reading the edges from left-to-right, top-to-bottom.

Using these orderings, we can then define a total order < of the variables yij , zij ,
tij and zi such that

(1) If (i, j), (s, t) ∈ E(Ð→T ) and (i, j) ≺ (s, t), then
● yij > yst,
● yts > yji,
● zij > zst, and
● tij > tst,

(2) If (i, j), (s, t) ∈ E(Ð→T ), then
● yij > yts,
● yij > zst,
● yji > zst,
● yij > tst,

● yji > tst,
● yij > zs,
● yji > zs,
● zij > tst,

● zij > zs,
● tij > zs, and

(3) If i <r j, then zi > zj .
This variable ordering is seen to generalize the variable ordering (4), and the asso-

ciated lexicographic term order on the monomials in RT is a good term order. Hence,
by Corollary 2.11, we obtain a regular unimodular triangulation T of CT .

Note that the total ordering <r induces a directed version of T in which an edge
between two adjacent nodes i, j in T is oriented as i→ j if and only if i <r j. A floret
in this directed tree consists of a node i and all of its children, i.e. the nodes j such
that i→ j is an edge of the tree. Using this definition, we note the following property
of the chosen edge ordering of T .

Lemma 5.1. Suppose that i <r j, and let π = {i1i2, . . . , ik−1ik} be the unique path in T
between i1 = i and ik = j. Then (i2, i1) ≺ (ik−1, ik).

Proof. Note first that since i <r j, the distance from r to j in T is at least the
distance from r to i in T . Suppose that these two distances are equal. Let α =
min<r{i1, . . . , ik}, and let π1 and π2 be the unique path between i1 and α and ik

and α, respectively. We index π1 as π1 = {i0,1i1,1, i1,1i2,1, . . . , it−1,1it,1} and π2 as
π2 = {i0,2i1,2, i1,2i2,2, . . . , it−1,2it,2} where i0,1 = i0,2 = α, it,1 = i1 and it,2 = ik. Observe
that π1 and π2 have the same length since i and j have the same distance from r.

We claim now that ij,1 <r ij,2 for all j = 1, . . . , t. To see this, suppose for the sake
of contradiction that there exists a j for which ij,1 >r ij,2. Then the floret for ij,2 has
its children ordered before that of ij,1. This implies that ij+1,2 >r ij+1,1. Iterating this
argument implies that i = it,1 >r it,2 = j, which is a contradiction. Hence, ij,1 <r ij,2
for all j = 1, . . . , t. It follows that

(i2, i1) = (it−1,1, it,1) ≺ (it−1,2, it,2) = (ik−1, ik),
as desired.

Now suppose that the distance from r to j in T is strictly larger than the distance
from r to i in T . Then π1 contains only nodes of distance at most t from r and π2
contains a node at distance t + 1 from r, for minimally chosen t. By the chosen edge
ordering, the edge in π2 from the node at distance t to the node at distance t + 1
is larger than all edges in π1. This edge is also seen to be equal to, or smaller than
(ik−1, ik), which completes the proof. □

For each edge ij ∈ E(T ) the fundamental binomials in BT imply that if S is a
subset of the generators of RT corresponding to a face of T , then the graph GS does
not contain any of the subgraphs listed in (3).
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Similarly, the zig-zag binomials in BT imply that the graph GS must not contain
certain subgraphs along paths if S is a face of T . These subgraphs generalize the
partially directed increasing paths from Section 3 and are defined as follows:

Let i1, ik be vertices of T such that i1 <r ik, let π = {i1i2, i2i3, . . . , ik−1ik} be the
unique path in T between i1 and ik, and let α =min<r{i1, . . . , ik}. Further let π1 and
π2 denote the subpaths of π between i1 and α and ik and α, respectively. Given the
ordering of the variables above, the leading terms of any zig-zag binomial for a zig-zag
pair on π have associated graphs being one of the following:

(1) Partially directed paths toward i1 ending in ○ that include a directed edge on
π1 pointing toward i1.

(2) Partially directed paths toward ik ending in ○ that include an edge directed
toward ik on π2, and

(3) Partially directed paths toward i1 ending in ○ with all edges on π2 directed
and all edges on π1 undirected.

Observe that the paths in (2) include the paths excluded by the leading terms of
zig-zag binomials for the path in Section 3 by taking i1 = α. To see that these three
options contain all possible leading terms of zig-zag binomials, consider a zig-zag
pair (E1, E2) on the path π, where E1 are the edges directed toward ik and E2 are
the edges directed toward i1. If either E1 contains edges on π2 or E2 contains edges
on π1, then under the given variable ordering one of the y-variables represented by
these edges is the largest. Hence, under the given term order the leading term of the
associated zig-zag pair is represented by a graph of type (1) or (2).

On the other hand, if E1 is all the edges on π1 and E2 is all the edges on π2,
then by Lemma 5.1, the leading term is given by the y-variables in E2. Hence, such
a zig-zag pair is represented by the graphs in (3) listed above.

We call these paths zig-zag obstructions. Zig-zag obstructions of the form (i) for
i = 1, 2, 3 are called zig-zag obstructions of type i.

Example 5.2. In Figure 2 we see four graphs. The first three each contain a zig-zag
obstruction of type 1, 2, and 3, respectively, when considered from left-to-right. The
second graph, which highlights in red a zig-zag obstruction of type 2 also contains
three additional zig-zag obstructions (of the same type). These are given by replacing
exactly the one of the directed edges with its undirected version, or alternatively
considering the subgraph of the red edges where we forget the least of the two directed
edges. The rightmost graph depicts a graph that contains no zig-zag obstructions.

For the chosen term order, we can further reduce the Gröbner basis identified for
IT . Consider paths of the form π = {i1, . . . , ik} in which i1 <r i2 <r ⋯ <r ik. We define
a simple zig-zag pair of type 1 as zig-zag pair (E1, E2) where E1 = {i1 → i2} and
E2 = {it+1 → it ∶ t ∈ {2, . . . , k−1}}. Consider also paths of the form π = {i1, i2, . . . , ik}
in which ij <r i1 for all j = 2, . . . , k − 1 but i1 <r ik. Let α = min<r{i1, . . . , ik}, and
take π1 and π2 as before. A simple zig-zag pair of type 2 is a zig-zag pair (E1, E2) on
this path where E1 consists of all edges on π1 oriented toward α and E2 consists of
all edges on π2 oriented toward α.

Lemma 5.3. Let T be a tree. The leading term of any zig-zag binomial under the
lexicographic order on RT corresponding to < is divisible by the leading term of a
simple zig-zag binomial.

Proof. Under the given term order, the leading term of the zig-zag binomial for a
simple zig-zag pair is graphically represented by a partially directed path from i1 to ik

in which the first edge i1 → i2 is directed toward ik and all other edges are undirected,
plus a symbol for the variable zi1 . Given a zig-zag binomial whose leading term is
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Figure 2. The first three graphs are, respectively from left-to-right,
examples of zig-zag obstructions of type 1, 2 and 3 with the obstruc-
tion depicted in red. The rightmost graph is an example of a graph
that contains no zig-zag obstructions. The order <r is the natural
order on the vertex set.

represented by a zig-zag obstruction of type 1, the associated path π = {i1, . . . , ik} is
such that the subpath π1 contains at least one directed edge pointing toward i1. Pick
the edge is ← is+1 of this form on π1 with s minimal. The remaining edges between
this edge and i1 must be undirected, and hence the subpath on {i1, . . . , is} is the
graphical representation of the leading term of the zig-zag binomial of a simple zig-
zag pair of type 1. Hence, the leading term of this zig-zag binomial is divisible by the
leading term of a zig-zag binomial of a simple zig-zag pair. The same argument shows
that all zig-zag binomials whose leading terms are represented by zig-zag obstructions
of type 2 are also divisible by the leading term of some zig-zag binomial for a simple
zig-zag pair of type 1.

For zig-zag binomials whose leading terms are represented by zig-zag obstructions
of type 3, the subpath {i1, . . . , it = α, it+1, . . . , is}, where is is the first node on π2
larger than i1 under <r, is the graphical representation of the leading term of a zig-
zag binomial for a simple zig-zag pair of type 2. This follows from Lemma 5.1. Hence,
all such zig-zag binomials also have leading terms divisible by the leading term of a
zig-zag binomial for a simple zig-zag pair. This completes the proof. □

Let S be the subset of variables in the leading term of a zig-zag binomial for a
simple zig-zag pair of type 1. We call the graph GS a simple zig-zag obstruction of
type 1. We similarly define simple zig-zag obstructions of type 2.

Example 5.4. The zig-zag obstructions in the first and third graphs in Figure 2 are
both simple (of type 1 and 2, respectively). On the other hand, the zig-zag obstruction
in the second graph is not simple, but contains a simple zig-zag obstruction of type 2
as a subgraph. This obstruction is given by deleting the first of the two directed edges
from the graph. Such subgraph inclusions correspond to the divisibility of leading
terms as seen in the proof of Lemma 5.3.

Since T is a tree on vertex set [n + 1], the dimension of CT is ∣V ∣ + ∣E∣ − 1 = 2n.
By Lemma 5.3, a characterization of the facets of the triangulation T of CT given by
the specified good term order consists of all subsets S of the variables generating RT

with ∣S∣ = 2n + 1 for which the graph GS contains no fundamental obstructions and
no simple zig-zag obstructions.
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(a) A tree T . (b) The graph GS .

Figure 3. A tree T and the graph GS for a subset S of the variables
in the ring RT .

In the following, we say that two nodes i, j in a undirected graph G = (V, E) are
connected given a subset C ⊂ V if there is a path π = {i1i2, . . . , ik−1ik} in G such that
i1 = i, ik = j and i2, . . . , ik−1 ∉ C. We say a subset of vertices B of G is maximally
connected given C if all vertices in B are connected given C and there is no pair
of vertices i ∈ B and j ∉ B such that i and j are connected given C. For a tree T
and subset S of variables in RT , we let GS,1, . . . , GS,M denote the induced subgraphs
of GS on the maximally connected subsets of T given ZS . We call the collection of
graphs GS,1, . . . , GS,M the ZS-components of GS .

Remark 5.5. One can intuitively think of the ZS-components as the collection of
subgraphs obtained in the following way: Delete all vertices from the set ZS to obtain
a collection of disjoint subgraphs of G. To each subgraph, add back in any adjacencies
it had to elements in ZS . For the special case that two nodes i, j ∈ ZS are adjacent in
G, we include a graph in our ZS-components that is exactly the edge between i and
j.

Recall from Proposition 2.13 that the support graph of GS for S a facet of the
triangulation of CT is the tree T . Hence, the support graph of each GS,j is a subtree
of T . In the following, we will want to refer to certain subgraphs of GS,j that are
induced subgraphs of GS,j on the vertex set of the corresponding induced subgraphs
of T . For instance, although a vertex i in GS,j may have degree greater than 1, we will
call it a leaf node of GS,j if it is a leaf node in the support graph of GS,j . Similarly, we
may refer to a subgraph of GS,j as a path in GS,j if it is the induced subgraph of GS,j

on the node set of a path in its support graph, despite the fact that it may include
multiple edges between the same pair of vertices. This mild abuse of terminology
should, however, be clear from context. As a first example, we call the graph GS,j

ZS-bounded if all leaf nodes of GS,j are in ZS . Otherwise, we call it ZS-unbounded.

Example 5.6. Consider the tree T and the graph GS depicted in Figure 3a and
Figure 3b, respectively. For GS , we have that

ZS = {6, 7, 10, 11, 13, 14, 21, 22, 23, 24, 25}.

The natural order on the vertex set is taken for <r, where r = 1, under which we see
that GS contains no fundamental obstructions and no simple zig-zag obstructions.
From GS we also see that ∣S∣ = 2n+1, where n = 24, and so it follows that S is a facet
of the triangulation T .

The graph GS has the ZS-components depicted in Figure 4, in which the two
leftmost graphs are ZS-unbounded and the remaining ones are ZS-bounded.
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Figure 4. The ZS-components of the graph GS in Figure 3b.

To analyze the graphs GS,j it will be helpful to have a notion of separation of
vertices by edges. Given a graph G with vertex set V and edge set E, we say that the
subset of nodes A ⊂ V are separated by the subset of edges B ⊂ E if for every pair of
nodes i, j ∈ A all paths in G from i to j include an edge in B. Note that the set B is a
cut-set for which the associated cuts each contain a single vertex in A. The following
lemma will be used.

Lemma 5.7. Let T be a tree with set of leaf nodes A. If the set A is separated by B,
then ∣B∣ ≥ ∣A∣ − 1.

Proof. Note that if B is a set of edges separating the leaf nodes A of the tree T
then deleting the edges in B from T results in a forest with at least ∣A∣ connected
components such that no two leaves of T are in the same component. This is because
removing a single edge from a forest always increases the number of connected compo-
nents by exactly 1. Hence, to get ∣A∣ connected components that each contain a unique
leaf node we must remove ∣A∣ − 1 edges, which proves the desired lower bound. □

Lemma 5.8. Let T be a tree with set of leaves A and let B be a set of edges in T
that separate A. If ∣B∣ = ∣A∣ − 1, then for each edge e ∈ B there exists a unique pair of
vertices i, j ∈ A such that B separates i and j but B ∖ e does not.

Proof. By Lemma 5.7 the set B is a minimal separating set for A. Hence, removing
a single edge e = st ∈ B from B connects at least one pair of leaves of T . Suppose we
connect two pairs of leaves, say i, j and k, ℓ. Then, without loss of generality, i and
k and j and ℓ are, respectively, on the same side of the single edge e, i.e. they are in
the same connected component given by deleting the edge e. Say j and ℓ are in the
component containing t and i and k are in the component containing s.

Since T is a tree there is a unique path between i and k, and this path must be
the concatenation of the paths between i and s and k and s. Since this path does not
contain e, it must contain another edge e′ ∈ B. Without loss of generality, suppose e′

lies on the path between i and s. This contradicts the assumption that removing e
from the separating set connects i and j, which completes the proof. □

We say that an edge e critically separates a pair of nodes i and j in a graph
G = (V, E) with respect to B ⊂ E if B separates i and j but B∖e does not. Lemma 5.8
states that if G is a tree with set of leaf nodes A and B separates A with ∣B∣ = ∣A∣ −1,
then each edge in B critically separates a unique pair of leaf nodes in G. For a fixed
tree T , we let mj ∶= ∣V (GS,j) ∩ZS ∣. The following generalizes Lemma 3.1 to arbitrary
trees.

Lemma 5.9. Let T be a tree on node set [n+1] and let S be a facet of the triangulation
of CT . If ZS = {i1 <r ⋯ <r in+1−k} it follows that

(1) GS contains exactly k double edges,
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(2) GS,j contains exactly mj − 1 single edges for all j ∈ [M].

Proof. We first show that (1) holds. Since S is a facet and dim(CT ) = ∣V (T )∣+∣E(T )∣−
1 = 2n, we have ∣S∣ = 2n + 1. Suppose now that ∣ZS ∣ = n − k + 1. We know that the
support graph of GS equals G by Proposition 2.13, and hence GS contains at least
n edges. Since ∣ZS ∣ + n = 2n − k + 1 and ∣S∣ = 2n + 1, and every edge in GS is either a
single edge or a double edge, it follows that GS contains exactly k double edges.

It remains to see that (2) holds. Consider first the case when GS,j is ZS-bounded.
Let nj = ∣V (GS,j)∣. We claim that there are at most nj −mj double edges in GS,j ;
equivalently, there are at least mj − 1 single edges in GS,j . To see this, note that the
single edges in GS,j must separate all nodes in V (GS,j) ∩ ZS . That is, the edges in
the support graph of GS,j corresponding to the single edges in GS,j must separate
the leaf nodes of the support graph. Otherwise, there is at least one simple zig-zag
obstruction in GS , which would contradict S being a facet.

To see this claim, assume otherwise. Then there is a pair of vertices i1, ik ∈ V (GS,j)∩
ZS such that the unique path π = {i1i2, . . . , ik−1ik} in T between i1 and ik contains
only double edges in GS,j . Suppose without loss of generality that i1 <r ik. Since
i1, ik ∈ ZS , we know these nodes are ○ nodes in GS . Let α =min<r{i1, . . . , ik}, and let
π1 and π2 denote the subpaths of π between i1 and α and ik and α, respectively. If
there is a directed arrow pointing toward i1 or ik, respectively on π1 or π2 then GS

contains a zig-zag obstruction of type (1) or (2), and hence contains a simple zig-zag
obstruction of type 1. This, would contradict S being a facet. Thus, all directed edges
on π must be directed toward α. However, this implies that GS contains a simple
zig-zag obstruction of type 2, which is again a contradiction.

Thus, no such paths of double edges exist, and we conclude that the single edges
must separate the nodes in V (GS,j)∩ZS . Since T is a tree, we require at least mj − 1
such single edges in GS,j by Lemma 5.7. Similarly, if GS,j is ZS-unbounded, we can
consider the induced subgraph of GS,j by all nodes on the unique paths in T between
the vertices in V (GS,j) ∩ ZS , and the same argument applies as in the ZS-bounded
case. Hence, there are at least mj −1 single edges in GS,j and at most nj −mj double
edges.

We now claim that there are exactly mj − 1 single edges in GS,j . By our choice
of Gröbner basis, the graph GS,j also corresponds to a facet of the triangulation of
the cosmological polytope of the support graph T ′ of GS,j . Since T ′ is a tree on nj

vertices, and since ∣V (GS,j) ∩ ZS ∣ contains mj vertices, we know from (1) that GS,j

must exactly contain nj−mj double edges. Equivalently, it must contain exactly mj−1
single edges, which completes the proof. □

In the proof of Lemma 5.9 we use the fact that the set of single edges in a ZS-
component GS,j corresponds to a set of edges in the support graph of the component
that separates its leaf nodes. In the following, we will simply say that a set of edges in
a ZS-component separates a set of nodes A if the corresponding edges in the support
graph separate A.

By definition, each of the ZS-components GS,j has a unique minimal node rS,j

under the vertex ordering <r. This node is the root of the induced subgraph of Ð→T on
the vertex set V (GS,j). A root-to-leaf path in this subtree is a path connecting the
root node rS,j to a leaf node i. We can consider the induced subgraph on the node
set of such a path in the graph GS,j . For simplicity, we refer to such a subpath as a
root-to-leaf path in GS,j , noting that it may contain multiple edges. When we refer
to a leaf-to-root path we imagine reading such a root-to-leaf path backwards from the
leaf to the root node.
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For each node i ∈ V (GS,j)∩(ZS ∖{rS,j}) consider the first single edge encountered
along the leaf-to-root path from i to rS,j in GS,j . By Lemma 5.8, this edge critically
separates a unique pair of vertices s, t ∈ V (GS,j) ∩ ZS (with respect to the set of
single edges in GS,j). Moreover, it can be seen by applying a similar argument as
in the proof of Lemma 5.8 that one of these two vertices must be i, say s = i. Let
π = {i1i2, . . . , ik−1ik} denote the unique path in T between i and t, and let α =
min<r{i1, . . . , ik}. We call the path between α and i the threshold path for i. If we
take i = ik and α = it for some t ∈ [k] in π, we see that it <r it+1 <r ⋯ <r ik; that is, the
threshold path for i is a decreasing path from i to α under the ordering <r. It follows
that the threshold path for i always contains the unique single edge on π separating
i and t as the leaf-to-root path used to define the threshold path is also decreasing.

If i <r t it follows that the threshold path is the path π1, and if t <r i it is π2. In
the former case, we say the threshold path is type 1, and we say it is type 2 in the
latter case. A threshold path of type 1 is blocking if the portion of the path between i
and the first single edge consists only of undirected edges paired with directed edges
pointing away from i and the single edge is a directed edge pointing away from i or a
:::. A threshold path of type 2 is blocking if the portion of the path between i and the
first single edge consists only of undirected edges paired with directed edges pointing
away from i and one of the following holds:

(1) The single edge is undirected and all directed edges on the threshold path
point away from i, or

(2) the single edge is :::, or
(3) the single edge is a directed edge pointing away from i and at least one directed

edge on the portion of the path between α and this single edge points toward
i.

Example 5.10. We consider some examples of threshold paths in the rightmost ZS-
component for the graph GS in Example 5.6. For instance, the threshold path for the
vertex 22 in this ZS component is

The unique edge on the leaf-to-root path from 22 to r = 1 has first single edge the
undirected edge between vertices 13 and 16 depicted here. This edge critically sep-
arates the two nodes 13, 22 ∈ ZS (with respect to the set of all single edges in the
ZS-component), and hence the threshold path for 22 is the entire path in the ZS-
component between 22 to 13. Since 13 <r 22, this is a threshold path of type 2. We
see that it is blocking since it satisfies (1).

As a second example, consider the leaf node 25 in the same ZS-component. The
first edge on its leaf-to-root path is a single edge. This edge critically separates nodes
22, 25 ∈ ZS . The path between these nodes is depicted on the left in the following, and
the threshold path for 25 is depicted on the right:
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(a) A ZS-component of the graph GS in
Figure 3b.

(b) The ZS-component in Figure 5a with
one edge direction reversed.

Figure 5. Examples and non-examples of partially directed branch-
ings. An example of a partially directed branching appears in red.

Since 22 <r 25, the threshold path for 25 is also type 2, and we see that it is blocking
by (2).

As a third, and final example, consider the root-to-leaf path from node 21 in the
same ZS-component. As the first edge on this path is a single edge which critically
separates nodes 21 and 22, we have that the path between nodes 21 and 22 is that
depicted on the left, and the threshold path for 21 is that depicted on the right:

Since 21 <r 22 this is a threshold path of type 1, which is seen to be blocking since
the single edge is a :::.

We will use the notion of blocking paths in our characterization of the facets of the
triangulation of CT . We additionally require one more type of path. Given a node i
of the graph T we say that a node j covers i if i <r j and no node along the unique
path from j to r in T is larger than i. Let π = {i1i2, . . . , ik−1ik} be the unique path in
T between i and j and let α = min<r{i1, . . . , ik}. A partially directed branching from
j to i is a partial orientation of π such that all edges along the path between i and α
are undirected and all edges along the path between j and α are directed toward α.

Example 5.11. We consider the ZS-component depicted in Figure 5a for the graph
GS in Figure 3b. The node 23 is covered by nodes 24 and 25. We see from inspection
of the graph that there are no partially directed branchings in this ZS-component
from 24 to 23 nor from 25 to 23. However, if we were to reverse the direction of the
edge between nodes 16 and 18 we would then have a partially directed branching from
24 to 23, as depicted in red in Figure 5b.

The following theorem characterizes the facets of the triangulation of CT for T a
tree under the specified good term order.

Theorem 5.12. Let S be a subset of generators of RT where T is a tree on node set
[n + 1]. Let GS,1, . . . , GS,M be the ZS-components of GS. The set S is a facet of the
triangulation T of CT corresponding to a lexicographic order induced by the order < if
and only if the following hold:

(1) GS is connected,
(2) GS contains only single and double edges, where all double edges are of the

form
or
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(3) For all j ∈ [M]
(a) GS,j contains exactly ∣V (GS,j) ∩ ZS ∣ − 1 single edges,
(b) for all i ∈ V (GS,j) ∩ (ZS ∖ {rS,j}) the threshold path for i is blocking,
(c) for all i ∈ V (GS,j)∩(ZS∖{rS,j}) there are no partially directed branchings

to i from a node that covers i, and
(d) if rS,j ∈ ZS, then the edges incident to it are either a single :::, a single

undirected edge, or an undirected edge together with an edge directed away
from rS,j.

Proof. Assume first that S is a facet. By Proposition 2.13 we know that (1) is satisfied.
By Lemma 2.12, (2) is satisfied. By Lemma 5.9 we know that (3)(a) is also satisfied.

To see that (3)(b) holds, consider a leaf-to-root path from i ∈ V (GS,j)∩(ZS∖{rS,j})
and the portion of this path up to and including its first single edge. We note that this
is a subpath of the threshold path for i. Since S is a facet, all edges before the single
edge are double, and by (2) they are of the specified form above. Since the path is
leaf-to-root, then reading its vertices from the single edge out toward i is an increasing
sequence of nodes under the ordering <r. Hence, if any of these double edges contains
an arrow pointing toward i, then GS would contain a simple zig-zag obstruction of
type 1, which is a contradiction to S being a facet.

Consider now the unique pair of vertices in V (GS,j) ∩ ZS separated by the single
edge on this path, one of which is i and the other of which we denote by t. Denote this
path by π, and consider its associated α-value, and the two paths π1 and π2 between
α and i and α and t. Here, we let π1 denote the path between α and the least of the
two vertices i and t under <r, and π2 denote the path between α and the largest of
the two. Note that the single edge is always on the path π1 or π2 that contains i.
Since the given single edge is the unique separator of i and t, we know that all other
edges on this path are double and of the form specified in (2). If i <r t and the single
edge is on π1 (the path from the least of the two nodes i and t to α) then π2 must
consist of only double edge directed toward α. Otherwise, GS would contain a simple
zig-zag obstruction of type 1. Since all edges on π1 are also double edges except for
the single edge, GS would contain a simple zig-zag obstruction of type 2 if the single
edge were undirected. Since it would contain a simple zig-zag obstruction of type 1 if
the edge were directed toward i, the only valid options are a ::: or an edge directed
toward α. Hence, the threshold path for i is of type 1 and blocking.

On the other hand, if t <r i, then the unique single edge on the path between i and
t would lie on π2 (i.e. the path from the largest of the two nodes i and t to α). Hence,
all edges on π1 are double and directed toward α to avoid simple zig-zag obstructions
of type 1. We note that the single edge cannot be a directed edge toward i as this
would lead to a simple zig-zag obstruction of type 1 as well. If the edge is undirected,
then GS contains no simple zig-zag obstructions of type 1 only if all directed edges
on π2 point toward α. If the single edge is :::, all directed edges between the single
edge and i must point toward α. Finally, if the single edge is directed toward α there
must be at least one directed edge between α and the single edge pointing toward
i. Otherwise, GS would contain a simple zig-zag obstruction of type 2. Hence, the
threshold path must also be blocking in this case. Therefore, (3)(b) holds for S a
facet.

To see that (3)(c) holds, note that if there was such a partially directed branching
then GS would necessarily contain a simple zig-zag obstruction of type 2, a contra-
diction to S being a facet.

To see that (3)(d) holds, note that any other choice of edge configuration at rS,j

would imply that GS contains a fundamental obstruction. Hence, the listed conditions
are all satisfied if S is a facet of the triangulation.
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Conversely, suppose that the listed conditions are satisfied by S. Let ∣ZS ∣ = n+1−k.
We will show now that (3)(a) implies that GS contains exactly k double edges. Since
GS is a connected graph on vertex set [n + 1], it contains at least n edges. If exactly
k of these edges are double then ∣S∣ = 2n + 1, which is the correct dimension for S to
be a facet. To see this claim, assume (3)(a) holds, i.e. assume that each GS,j contains
exactly mj−1 single edges, where we let mj = ∣V (GS,j)∩ZS ∣. We induct on the number
M ≥ 1 of ZS-components in GS . The result is seen to hold in the case that M = 1, as
in this case mj − 1 = (n + 1 − k) − 1. Suppose now that the result holds for GS with
at most M − 1 ≥ 0 ZS-components, and consider GS with M ZS-components. Since
M > 1, there is at least one ZS-component containing a sink node of Ð→T that does not
contain the root node r. Suppose this component is GS,j and that its support graph
has nj edges. Note that rS,j is necessarily a ○ node, as rS,j ≠ r.

We then have that the subgraph of T given by deleting all edges of the support
graph of GS,j is a tree containing n−nj edges. Since GS,j does not contain r and does
contain a sink node ofÐ→T , deleting all vertices in V (GS,j)∖{rS,j} and all edges incident
to these vertices from GS , results in a graph G̃S̃ that contains n + 1 − k − (mj − 1) =
(n+ 1−k)−mj + 1 ○ nodes. By the inductive hypothesis, G̃S̃ contains (n+ 1−k)−mj

single edges. By assumption, GS,j contains mj − 1 single edges. Hence, GS contains
n − k single edges, or equivalently, k double edges.

Since ∣S∣ = 2n+1, which is the correct size for S to be a facet, it only remains to see
that the set S contains no fundamental obstructions or simple zig-zag obstructions.
The fact that GS contains no fundamental obstructions follows from (2) together
with (3)(d) and (3)(b) (when we consider the definition of blocking). The fact that
GS contains no simple zig-zag obstructions follows from (3)(b) and (3)(c), which
completes the proof. □

Remark 5.13. The graphs characterized in Theorem 5.12 give an explicit vertex rep-
resentation of the facets of a subdivision of CT . Since each facet is a simplex, this can
be readily converted to a hyperplane representation which gives the denominator of
the canonical form (2). Since each facet is further a unimodular simplex, the numer-
ator of its canonical form is ±1 (see [14, Section 1]). Hence, Theorem 5.12 gives an
algorithm for the computation of the canonical form of CT for any tree T via (1).

6. Open problems
We conclude with a few problems of interest left open by the article. As we worked out
in the case of cycles and trees, a combinatorial analysis of the Gröbner basis presented
in Section 2 reveals an explicit facet description for the corresponding triangulation.
Moreover, one of the features of having a regular unimodular triangulation is that
the computation of the volume can be reduced to counting the facets. It would be
interesting to push this understanding further.

Problem 6.1. Obtain a facet description for a regular unimodular triangulation of
the cosmological polytope of more general families of graphs. Can the volume of the
cosmological polytope of an arbitrary graph be expressed in terms of elementary graph
invariants?

Since the initial release of this paper, additional progress has been made on Prob-
lem 6.1. In [15], a facet description of a good triangulation of CG for G the complete
bipartite graph K2,m was deduced and used to compute the normalized volume for-
mula Vol(CK2,m) = 12m(1 + (m/3)). Facet descriptions for good triangulations and
normalized volume formulas for G a multitree or multicycle were also given in the
follow-up paper [6].
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From a combinatorial viewpoint one is typically interested in finer invariants than
the volume of a lattice polytope. One popular instance is the h∗-polynomial; that is,
the univariate polynomial with integer coefficients which arises as the numerator of the
Ehrhart series of a lattice polytope (see for instance [4, Chapter 3]). As an example,
we observed experimentally that the h∗-polynomial of the cosmological polytope of
a tree on n + 1 vertices equals h∗(t) = (1 + 3t)n. This has since been proven (and
generalized) in the follow-up paper [6]. However, the following problem remains open
for general graphs.
Problem 6.2. Find formulas for the h∗-polynomial of a cosmological polytope CG in
terms of graph invariants of G.

Finally, since, as we commented in the introduction, the computation of the canon-
ical form of a polytope can be reduced to computing the canonical forms of the facets
of any triangulation, we propose the following problem:
Problem 6.3. Describe (lattice) triangulations of cosmological polytopes with the
minimum number of facets.

Corollary 3.4 shows that a unimodular triangulation of CG for G a path graph with
n edges has 4n facets. However, this number of facets is far from minimal. As described
in the following remark, for any tree G on n edges, there exists a triangulation of CG

having 2n−1 facets. Regarding Problem 6.3, it remains to show there is no (lattice)
triangulation of CG with fewer facets.
Remark 6.4. A tree G can be constructed iteratively, where at each step in the
iterative construction we add a new leaf node j attached by an edge to a node i already
in the tree. Letting G be a tree and G + ij denoting the tree produced by such a leaf
addition to G, we have that CG+ij = conv(CG∪{xj+xi−xji,−xj+xi+xij , xj−xi+xij}).
The addition of only the first two of these additional three lattice points amounts to
taking a bipyramid over CG. Then adding in the additional third lattice point realizes
CG+ij as a pyramid over this bipyramid (see [13, Proposition 4.1]). A triangulation TG

of CG induces a canonical triangulation of the bipyramid with twice as many facets
as TG, and this triangulation induces a canonical triangulation of the pyramid, also
with twice as many facets as TG. Since the cosmological polytope of a single edge is
a 2-dimensional simplex, it follows inductively that for G a tree on n + 1 vertices, CG

admits a triangulation with 2n−1 facets.
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