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Degrees of P -Grothendieck polynomials and
regularity of Pfaffian varieties

Oliver Pechenik & Matthew St.Denis

Abstract We prove a formula for the degrees of Ikeda and Naruse’s P -Grothendieck poly-
nomials using combinatorics of shifted tableaux. We show this formula can be used in con-
junction with results of Hamaker, Marberg, and Pawlowski to obtain an upper bound on
the Castelnuovo–Mumford regularity of certain Pfaffian varieties known as vexillary skew-
symmetric matrix Schubert varieties. Similar combinatorics additionally yields a new formula
for the degree of Grassmannian Grothendieck polynomials and the regularity of Grassman-
nian matrix Schubert varieties, complementing a 2021 formula of Rajchgot, Ren, Robichaux,
St. Dizier, and Weigandt.

1. Introduction
There has been much interest recently in the degrees on Grothendieck polynomials
(e.g., [16, 28, 54, 53, 59, 60, 61]) and related polynomials derived from the combina-
torics of K-theoretic Schubert calculus. Beyond the intrinsic combinatorial interest
of these formulas, a major motivation is that, as first observed in [59], these de-
grees yield the Castelnuovo–Mumford regularity of matrix Schubert varieties Xw and
certain Kazhdan–Lusztig varieties Xu,w. These affine varieties, introduced by [23]
and [65] respectively, are important models for local properties of Schubert varieties.
Moreover, Xw and Xu,w are generalized determinantal varieties, and in this context
various special cases have a long and distinguished history in commutative algebra
(see, e.g., [34, 52, 1, 33, 8, 11, 27, 25, 9]). In Schubert calculus, representatives for
the cohomology and K-theory classes of Schubert varieties may be obtained as torus-
equivariant classes of Xw (e.g., [23, 21, 41]), and associated combinatorial formulas
may then be obtained from studying Gröbner bases (e.g., [41, 32, 40]). Castelnuovo–
Mumford regularity, meanwhile, is an important algebraic invariant that measures the
complexity of the syzygies of defining ideals and simplifies Gröbner basis calculations;
for a survey of regularity, see [6].

Previous work on the degrees of Grothendieck polynomials has been restricted to
those in “type A”, related to the Schubert varieties in Grassmannians GLn(C)/P and
the complete flag variety GLn(C)/B. (Here, B denotes the Borel subgroup of upper
triangular matrices and P ⊃ B is a maximal parabolic subgroup.) In contrast, we
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study the degrees of P -Grothendieck polynomials GPλ, which are related in one sense
to “type B” Schubert calculus and in another to “type C”. (We note that the “P” in
the name of P -Grothendieck polynomials does not refer to a parabolic subgroup, but
is instead just the letter “P”.)

Our main combinatorial theorem is the following.

Theorem 1.1. Let λ be a strict partition and let GPλ,n be the P -Grothendieck polyno-
mial for λ in n variables. Let ∆ = (∆1, . . . , ∆ℓ) be the largest partition contained in λ
such that all parts of ∆ differ by at least two. Then the degree of the P -Grothendieck
polynomial is

deg(GPλ,n) =
{

|∆| + 2nℓ − ℓ2 − ℓ, if ∆ℓ > 1;
|∆| + 2nℓ − ℓ2 − n, if ∆ℓ = 1.

Our proof of Theorem 1.1 is based on direct combinatorial analysis of the tableau
formula for GPλ,n given in [36]. The first step of the proof is a reduction from gen-
eral GPλ,n to a special subclass GP∆,n, while the second step calculates the degree
of GP∆,n by explicitly identifying a tableau contributing to its highest-degree com-
ponent.

P -Grothendieck polynomials were introduced by T. Ikeda and H. Naruse [37, 36]
as representatives for K-theoretic Schubert classes on maximal orthogonal Grassman-
nians O2n+1(C)/P , where P is a particular parabolic subgroup of O2n+1(C). It is
in this sense that GPλ is “type B”. By specializing GPλ, one obtains the classical
P -Schur functions Pλ that were introduced by I. Schur [62] to describe the projective
representation theory of symmetric groups and were connected to the cohomological
Schubert calculus of maximal orthogonal Grassmannians by P. Pragacz [57].

Recent work of E. Marberg and B. Pawlowski [47] shows that P -Grothendieck
polynomials coincide with the stable limits of vexillary symplectic Grothendieck poly-
nomials, representatives for K-theoretic classes of Spn(C)-orbit-closures on the flag
variety GLn(C)/B. It is in this sense that GPλ is related to “type C”. Just as matrix
Schubert varieties provide affine models of Schubert varieties, skew-symmetric matrix
Schubert varieties Xss

w provide affine models for Spn(C)-orbit-closures (see [66]). Mar-
berg and Pawlowski [46] have shown that, just as ordinary Grothendieck polynomials
arise as torus-equivariant classes of ordinary matrix Schubert varieties, symplectic
Grothendieck polynomials arise as torus-equivariant classes of skew-symmetric ma-
trix Schubert varieties Xss

w . Skew-symmetric matrix Schubert varieties are instances
of Pfaffian varieties [48] and hence have a commutative algebra history in that con-
text (see, e.g., [33, 13, 14, 15, 44]). Indeed, we suspect that vexillary skew-symmetric
matrix Schubert varieties are related to the mixed ladder Pfaffian varieties of [13], for
which [14] determine a recursive regularity formula; forthcoming work by L. Escobar,
A. Fink, J. Rajchgot, and A. Woo [19] will clarify this relationship.

To obtain algebraic consequences of Theorem 1.1, we leverage the connection
between GPλ and symplectic Grothendieck polynomials. We observe that Xss

w is
Cohen–Macaulay and that the degrees of symplectic Grothendieck polynomials yield
its regularity, so that, after describing the relation between degrees of symplectic
Grothendieck polynomials and of P -Grothendieck polynomials, Theorem 1.1 implies
the following, which is our main algebraic result.

Theorem 1.2. Let z ∈ Sn be an FPF-vexillary involution with associated symplectic
shape the partition λSp(z) = λ. Let k be the position of the last nonzero entry of the
symplectic code SpCode(z) and let ∆ be the largest partition contained in λ such that
all parts differ by at least two.
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Then the Castelnuovo–Mumford regularity of the vexillary skew-symmetric matrix
Schubert variety Xss

z satisfies

reg(Xss
z ) ⩽

{
2kℓ − ℓ2 − ℓ −

(
|λSp(z)| − |∆|

)
, if ∆ℓ > 1;

2kℓ − ℓ2 − k −
(
|λSp(z)| − |∆|

)
, if ∆ℓ = 1.

In contrast to earlier “type A” work (e.g., [59, 54]), we obtain only an upper bound
on regularity instead of an exact formula. This feature arises from the fact that we
currently do not have a formula for the degrees of symplectic Grothendieck polyno-
mials, but rather only partial information extracted from such a formula for GPλ.
It would be very interesting to study the degrees of symplectic Grothendieck poly-
nomials directly. And indeed one might hope to be able to do so, perhaps using the
combinatorics developed in [46, 31, 48].

In Section 5, we imitate the proof of Theorem 1.1 to prove a new formula (The-
orem 5.6) for the degrees of symmetric Grothendieck polynomials. These polynomi-
als represent K-theoretic Schubert classes on a Grassmannian GLn(C)/P . As shown
in [59], the degree of a symmetric Grothendieck polynomial yields the Castelnuovo–
Mumford regularity of a corresponding Grassmannian matrix Schubert variety; hence,
our degree formula yields a new regularity formula (Corollary 5.7) in this context. Our
formula differs than those given previously by [59, 28, 60, 54] and it is unclear how
to relate it to those earlier formulas. (However, Section 5.2 gives some tentative con-
nections to the formulas of [54].) Moreover, our proof is arguably somewhat easier.
Except for some background on matrix Schubert varieties in Section 4.1, Section 5
can be read independently of Sections 3 and 4 by readers whose primary interest is
this type A setting.

Finally, in Section 6, we discuss obstacles to proving an analogue of Theorem 1.1
for Q-Grothendieck polynomials GQλ. It is perhaps surprising that this analogous
problem should be substantially more difficult, since the classical Q-Schur polynomials
obtained by specializing GQλ barely differ from P -Schur polynomials. Nonetheless,
there are significant technical difficulties and we provide only partial progress. A
relevant fact may be that Q-Grothendieck polynomials are related to the K-theoretic
Schubert calculus of Lagrangian Grassmannians Spn(C)/P (see [36]) and likely related
to the symmetric matrix Schubert varieties that give affine models for On(C)-orbit-
closures on GLn(C)/B; the geometry of all these varieties is known to be significantly
harder and worse-behaved than those of the varieties associated to GPλ (see, e.g., [56,
5, 55, 66, 48] for related remarks).

The earlier sections of this paper are organized as follows. Section 2 recalls com-
binatorial and algebraic background. Section 3 establishes Theorem 1.1. Section 4
recalls additional background related to (skew-symmetric) matrix Schubert varieties
and establishes Theorem 1.2.

2. Background
2.1. Combinatorial background: Tableaux and Grothendieck polynomi-
als. Diagrams of partitions are drawn in French notation, with the largest part at
the bottom of the diagram. A partition λ = (λ1, . . . , λn) is called strict if λi−1−λi ⩾ 1
for all i. If λ is a strict partition, then the shifted diagram of λ is obtained by append-
ing i−1 empty spaces to the left of the ith row of the diagram of λ. The main diagonal
of a shifted diagram consists of the leftmost box in each row. Below is the diagram
(left) and shifted diagram (right) of the partition 6421, with the main diagonal shaded
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in red ■:

If λi−1 − λi ⩾ 2 for all i, then λ is called a D-partition (from the French: Dif-
férence-partition; see [64]). We draw the diagram of a D-partition as a shifted diagram
(without further shifting of the rows).

Given a partition λ, we write B ∈ λ to denote a specific box of the diagram. To
ease manipulations of adjacent boxes, we use the notations B↑, B→, B↓, B← to denote
the boxes immediately above, to the right, below, and to the left of B, respectively.
When there is no box above B in λ, it is convenient to simply allow B↑ to be an
empty box whose contents are the empty set, to avoid the repetitive need to qualify
statements with “provided such a box exists”. We make identical definitions in the
other directions.

A filling of a diagram λ with a totally ordered alphabet A is a function T : λ → A,
which “fills" each box B ∈ λ with an element of A. A set-valued filling T assigns to
each B ∈ λ a nonempty subset T (B) ∈ P(A)∖∅. Ordinary diagrams are filled by the
natural numbers Z>0, while shifted diagrams are instead filled using the alphabet

S = 1′ < 1 < 2′ < 2 < 3′ < 3 < · · · .

We use interval notation to refer to subsets of the alphabets Z>0 and S:

[a, b] = {c ∈ Z>0 : a ⩽ c ⩽ b}, [a, b]S = {c ∈ S : a ⩽ c ⩽ b}.

Following [4], we call a set-valued filling T of an ordinary diagram λ a (semistandard)
set-valued tableau if T satisfies the following two properties for all B ∈ λ:

• max(T (B)) < min(T (B↑)),
• max(T (B)) ⩽ min(T (B→)).

The content vector c(T ) of a set-valued tableau is defined as

c(T ) = (# of ones in T, # of twos in T, . . . )

and we say the degree of T is d(T ) =
∑

c(T ).

Example 2.1. The following is a semistandard set-valued tableau of shape
λ = (6, 4, 2, 1), with content (1, 3, 4, 3, 5, 3) and degree 19.

56

4 6

3 345 5 5

12 2 23 3 45 6

We denote the set of all semistandard set-valued tableaux on λ by SVT(λ), and
the subset with entries from [1, n] by SVT(λ, n).

Algebraic Combinatorics, Vol. 8 #4 (2025) 900
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Definition 2.2 ([43, 4]). The symmetric Grothendieck polynomial for λ in n variables
is the polynomial

(1) Gλ,n =
∑

T∈SVT(λ,n)

(−1)d(T )−|λ|xc(T ).

For example, the tableau of Example 2.1 contributes the term (−1)19−13 ·
x1x3

2x4
3x3

4x5
5x3

6 to the polynomial G6421,k for any k ⩾ 6. The polynomial Gλ,n is
symmetric in the variables x1, . . . , xn; for a bijective proof of this fact, see [38].

The analogous definitions we will need for shifted diagrams are as follows.

Definition 2.3. A set-valued filling T of λ is a P -shifted set-valued tableau if for all
boxes B in the shifted diagram of λ:

• If max(T (B)) is primed, then
– max(T (B)) ⩽ min(T (B↑)).
– max(T (B)) < min(T (B→)).

• If max(T (B)) is unprimed, then
– max(T (B)) < min(T (B↑)).
– max(T (B)) ⩽ min(T (B→)).

• No boxes on the main diagonal of λ contain any primed entries.
We denote the set of all P -shifted set-valued tableaux on λ by PSVT(λ), and the subset
with entries from [1′, n]S by PSVT(λ, n). (In fact, the conditions of Definition 2.3
prevent the symbol 1′ from appearing.)

The content vector c(T ) of a P -shifted set-valued tableau T is defined as

c(T ) = (# of ones in T, # of twos in T, . . . )

and we say the degree of T is d(T ) =
∑

c(T ). We emphasize that neither content nor
degree distinguish between primed and unprimed entries.

Example 2.4. The following is a P -shifted set-valued tableau of shape λ = 6421, with
content (2, 3, 4, 6, 2) and degree 17.

5

34 45′

2 2 3′ 4′4

1 1 2′ 3′ 34′ 4

Definition 2.5 ([37, 36]). The P -Grothendieck polynomial for λ in n variables is the
polynomial

(2) GPλ,n =
∑

T∈PSVT(λ,n)

βd(T )−|λ|xc(T ).

For example, the tableau of Example 2.4 contributes the term (−1)17−13 ·
x2

1x3
2x4

3x6
4x2

5 to the polynomial GP6421,k for any k ⩾ 5. For a proof of the symmetry
of P -Grothendieck polynomials, see [36].

Remark 2.6. The original definition of the P -Grothendieck polynomials from [37, 36]
considers the limit of these polynomials by summing over the full set PSVT(λ). By
taking lowest-degree terms, one recovers the classical P -Schur functions [62].
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2.2. Algebraic background: K-polynomials and Castelnuovo–Mumford
regularity. Most of the background summarized in this subsection consists of stan-
dard commutative algebra, and proofs of all stated facts without their own citations
can be found in, for instance, [17] or [51].

Take S = C[x1, . . . , xn] a polynomial ring with the standard grading deg(xi) = 1,
and take I ⊆ S a homogeneous ideal. For any finitely generated graded S-module M ,
we denote the C-vector space of all homogeneous degree a elements of M by Ma.
Since M is finitely generated, the dimension of Ma is finite for all a, and so we can
define the Hilbert series of M as the formal power series

H(M ; t) :=
∑

a∈Z⩾0

dimC(Ma)ta.

It is often useful to write the Hilbert series as a ratio of two polynomials

H(M ; t) = K(M ; t)
(1 − t)n

,

in which case the polynomial K(M ; t) is referred to as the K-polynomial of the mod-
ule M ; see [51] for further discussion.

We define the degree-shifted module M(−j) via the condition M(−j)a = Ma−j

for all a. With this notation, a free resolution of M is an exact sequence of graded
S-modules

· · · →
⊕
i∈Z

S(−i)bk
i → · · · →

⊕
i∈Z

S(−i)b1
i →

⊕
i∈Z

S(−i)b0
i → M → 0.

A free resolution is called minimal if the value of bj
i is minimized simultaneously for

all indices i, j. In our situation, there is a unique finite minimal free resolution for any
finitely generated graded M by Hilbert’s Syzygy Theorem.

Since minimal free resolutions are unique, we can define the (Castelnuovo–
Mumford) regularity of M as

reg(M) := max{i − j : bj
i ̸= 0}.

For additional background on regularity, we refer the reader to the survey [6]. The
definition of regularity directly offers a kind of bound on the complexity of the free
resolution of M . We will only be concerned in this paper with the regularity of ideals I
and their quotient modules S/I, which are essentially the same information, since
reg(I) = 1 + reg(S/I).

In the case of a polynomial ideal I, the regularity gives information on the com-
plexity of Gröbner bases of I, via the following theorem of D. Bayer and M. Stillman.
(For background on Gröbner bases and related undefined notions, see [17, 12, 18].)

Theorem 2.7 ([2, Corollary 2.5 & Proposition 2.11]). Fix a grevlex term order. If
I ⊂ S is a homogeneous ideal in generic coordinates with Castelnuovo–Mumford regu-
larity m, then the highest-degree element of a minimal Gröbner basis for I has degree
exactly m.

There is a beautiful combinatorial Gröbner theory for matrix Schubert varieties,
which is quite well developed (e.g., [41, 42, 32, 10, 39, 40]) and explains algebraically
many of the combinatorial formulas for Schubert, Schur, and Grothendieck polynomi-
als. Contrastingly, the analogous theory for skew-symmetric matrix Schubert varieties
is understood for only a single special term order [48]. Through Theorem 2.7, our The-
orem 1.2 may provide a hint towards a broader theory.

Computing the regularity of an arbitrary module often requires technical work
with free resolutions or local cohomology. However, as noted in [59], when S/I is
a Cohen–Macaulay ring, then the following lemma is known (see [3, Lemma 2.5] for
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explanation) and allows one to compute the regularity from the ideal by combinatorial
methods.

Lemma 2.8. Let I ⊆ S and let S/I be a Cohen–Macaulay ring. Then

reg(S/I) = deg(K(S/I; t)) − ht(I).

For ideals pertaining to Schubert calculus, both terms on the right side of
Lemma 2.8 can be more approachable than the regularity itself. The height of I
can often be computed from the indexing combinatorics for I, and the polynomial
K(S/I; t) often has some known combinatorial description as a generating polynomial,
such as a Grothendieck polynomial. Thus, the problem of computing the regularity
of I can be solved if one is able to compute the degree of the K-polynomial through
combinatorial means. The approach provided by this lemma is the underpinning of
all combinatorial computations of regularity overviewed in Section 1, and will be
followed in this paper as well.

3. Degrees of P -Grothendieck polynomials and proof of
Theorem 1.1

By Definition 2.5, the degree of the P -Grothendieck polynomial GPλ,n is the maxi-
mum degree amongst all tableaux T ∈ PSVT(λ, n). We compute this number in two
steps. First, we establish that for all partitions λ, the degree of GPλ,n is equal to the
degree of GP∆,n, where ∆ is the largest D-partition contained in λ. This reduces the
problem to computing the maximum degree of a tableau in PSVT(∆, n), in which
case we explicitly construct a tableau of maximum degree, with a sufficiently simple
form that the degree can be directly calculated by elementary counting. In fact, our
arguments give relations between the contents of tableaux instead of merely their
degrees; while this extra strength is not necessary to our applications here, we record
these facts as they may be useful in future work on the support of P -Grothendieck
polynomials (analogous to the type A results of [50]).

Lemma 3.1. Suppose µ ⊆ λ are strict partitions and let n ⩾ ℓ(λ). If T ∈ PSVT(µ, n) is
a P -shifted set-valued tableau, then there exists a T ′ ∈ PSVT(λ, n) with d(T ′) ⩾ d(T ).
Indeed, we can choose T ′ such that c(T ′) ⩾ c(T ), where the comparison is componen-
twise.

Proof. By induction, it suffices to assume that |λ| − |µ| = 1. Let the unique box
of λ ∖ µ be B0. We will construct T ′ from T by filling the box B0 with the value n
and then possibly making adjustments to other boxes to obtain a valid tableau. For
an illustration of the algorithm, see Example 3.2.

Recursively define some boxes as follows. For k odd, let Bk = B↓k−1, while for k
even let Bk = B←k−1. Extending the definition from [63], we say a short ribbon is an
edge-connected set of boxes that does not contain a 2 × 2 subshape and where each
row and column contains at most two boxes. We now define the short ribbon R to
consist of all of the boxes Bk for k ⩾ 0. We consider two cases according to whether
or not B0 lies on the main diagonal.

(Case 1: B0 is not on the main diagonal): Add the value n to the box B0. We truncate R
to another short ribbon S as follows. First, say B1 ∈ S if T (B1) ∋ n; otherwise S
is the empty ribbon. For each even j ⩾ 2, if Bj−1 ∈ S and |T (Bj−1)| = 1 and
T (Bj) ∋ (n− j

2 +1)′, include Bj ∈ S. For each odd j ⩾ 3, if Bj−1 ∈ S and |T (Bj−1)| = 1
and T (Bj) ∋ n − (j−1)

2 , include Bj ∈ S. (In Example 3.2, we have S = R ∖B0; for an
illustration of the case S ̸= R ∖ B0, see Example 3.3.)
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For each box Bj ∈ S, modify its filling as follows:

(3) T ′(Bj) =


T (Bj) ∖ max T (Bj), if |T (Bj)| > 1;
k − 1, if T (Bj) = k′;
k′, if T (Bj) = k.

This operation is well-defined because n ⩾ ℓ(λ) by assumption, so the height of the
ribbon S is at most n, and k cannot become non-positive before the ribbon terminates.
Since the ribbon S terminates as soon as it reaches a box with more than one entry,
the first case in the definition (3) can only occur at most once; therefore T ′ deletes
at most one entry from T , and since we have added one n in the newly added box, it
follows that d(T ′) ⩾ d(T ), as desired. Moreover, it is straightforward to check that if
the first case in (3) applies once, then c(T ′) = c(T ), while if this case never applies,
then c(T ′) differs from c(T ) by incrementing the coordinate for the value T ′(Bm)
where m is maximal with Bm ∈ S ∪ {B0}.

It remains to check that increasingness conditions are satisfied in T ′. Suppose there
is an increasingness violation in T ′; since only the content of the ribbon S was al-
tered, the violation must involve some box of S. First, observe that the increasingness
violation cannot be between two boxes of S and that it cannot involve a box of S
with more than one entry. Let j be the smallest index such that Bj is involved in an
increasingness violation. If j is odd, then the violation must be either between Bj and
B↓j or Bj and B→j . The latter is clearly not possible, since the content of Bj has been
decreased from T and these two boxes were increasing in T . A violation between Bj

and B↓j is not possible either, since if j is odd then T (Bj) is, by assumption, unprimed,
and so max(T (B↓j )) < T (Bj), which implies max(T (B↓j )) ⩽ T ′(Bj).

Suppose instead then that j is even. Then the only two violations could be be-
tween Bj and B←j or Bj and B↑j . The latter is impossible, because we have lowered
the content of Bj while holding B↑j fixed. A violation between Bj and B←j is also im-
possible, because T (Bj) is primed by assumption, so T (B←j ) < T (Bj), which implies
T (B←j ) ⩽ T ′(Bj).

(Case 2: B0 is on the main diagonal): Add the value n to the box B0. Again, we
truncate R to another short ribbon S, but in a slightly different way. First, say B1 ∈ S
if T (B1) ∋ n; otherwise S is the empty ribbon. For each even j ⩾ 2, if Bj−1 ∈ S and
|T (Bj−1)| = 1 and T (Bj) ∋ n− j

2 +1, include Bj ∈ S. For each odd j ⩾ 3, if Bj−1 ∈ S

and |T (Bj−1)| = 1 and T (Bj) ∋ n − (j−1)
2 , include Bj ∈ S.

For each box Bj ∈ S, modify its filling as follows:

(4) T ′(Bj) =


T (Bj) ∖ max T (Bj), if |T (Bj)| > 1;
T (Bj) − 1, if j is even;
T (Bj)′, if j is odd.

Exactly as above, this operation is well-defined and the tableau T ′ has degree
d(T ′) ⩾ d(T ) and content c(T ′) ⩾ c(T ). We now consider increasingness conditions.

Again as above, any possible increasingness violation must involve exactly one box
of the ribbon S. Suppose j is the smallest index on such a box Bj . If j is odd, then the
only violations can be between Bj and B↓j or Bj and B→j . Again, the latter is impossible
because we have only decreased the content of Bj , and a violation between Bj and B↓j
is not possible either, since if j is odd then T (Bj) is, by assumption, unprimed, and
so max(T (B↓j )) < T (Bj), which implies max(T (B↓j )) ⩽ T ′(Bj).
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If on the other hand j is even, then there cannot possibly be any increasingness
violations, since Bj is on the main diagonal for even j. Any violation would have to
involve either B←j and B↑j , but neither of these boxes exist for a box on the main
diagonal.

Therefore, in either case the tableau constructed by modifying the ribbon S as
above and leaving all other boxes unaltered is a P -shifted set-valued tableau T ′ on λ
with degree greater than or equal to that of T , as desired. □

Example 3.2. Let n = 6, and consider the P -shifted set-valued tableau

5 6′

4 5′ 6′ 6

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

of shape µ = (6, 5, 4, 2).
Suppose we wish to construct a P -shifted set-valued tableau with greater or equal

weight on λ = (6, 5, 4, 3) ⊃ µ. This is performed by the following sequence of steps:

5 6′ 6

4 5′ 6′ 6

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

5 6′ 6

4 5′ 6′ 6′

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

5 6′ 6

4 5′ 5 6′

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

5 6′ 6

4 5′ 5 6′

2 4′ 5′ 5′ 56′

1 12′ 34′ 4 4 4

5 6′ 6

4 5′ 5 6′

2 4′ 4 5′ 56′

1 12′ 34′ 4 4 4

5 6′ 6

4 5′ 5 6′

2 4′ 4 5′ 56′

1 12′ 34′ 4′ 4 4

5 6′ 6

4 5′ 5 6′

2 4′ 4 5′ 56′

1 12′ 3 4′ 4 4
.

Here, the unique box B0 ∈ λ ∖ µ is shaded in blue ■, while the boxes of the short
ribbon S are shaded in red ■. In this case, the short ribbon R consists of all of the
shaded boxes, either blue or red. In general, R could contain further boxes below and
left of the bottom of S.
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Example 3.3. Let n = 7, and consider again the P -shifted set-valued tableau

5 6′

4 5′ 6′ 6

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

of shape µ = (6, 5, 4, 2) from Example 3.2. Suppose we wish to construct a P -shifted
set-valued tableau with greater or equal weight on λ = (6, 5, 4, 3) ⊃ µ.

Then we modify the tableau to

5 6′ 7

4 5′ 6′ 6

2 4′ 5′ 5 56′

1 12′ 34′ 4 4 4

,

where the unique box B0 ∈ λ ∖ µ is shaded in blue ■. Here, the short ribbon R
consists of all seven boxes that are shaded in Example 3.2, while the short ribbon S
is empty.

Lemma 3.4. Let T ∈ PSVT(λ, n) be a P -shifted set-valued tableau and let ∆ be the
largest D-partition contained in λ. Then there exists a tableau S ∈ PSVT(∆, n) such
that d(S) = d(T ). Indeed, we may choose S such that c(S) = c(T ).

Proof. If λ = ∆, then there is nothing to show. Otherwise, λ is not a D-partition, so
there exists at least one row k for which λk − 1 = λk+1; choose the largest such k,
and let R0 be the rightmost box in row k. By the choice of k, R↑0 exists. Consider the
longest possible sequence of boxes

R0, U1, R1, U2, R2, . . . , Uj , (Rj)

in λ such that Ui = R↑i−1 and Ri = U←i (where the final box Rj may or may not exist).
This sequence of boxes forms a short ribbon in the sense of [63] and contains at least
two boxes. Two nominally distinct cases can occur, based on whether the final box in
the ribbon is an R or a U:

(5) (A)
Rj Uj

Rj−1 Uj−1

. . .
. . .

. . . U2

R1 U1

R0

or (B)
Uj

Rj−1 Uj−1

. . .
. . .

. . . U2

R1 U1

R0

Observe that, by choice of k, the boxes U↑i and U→i do not exist for any i. In case (A),
where Rj exists, the box R↑j does not exist. In case (B), the box U←j does not exist.
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We define a sequence of fillings (not necessarily P -shifted set-valued tableaux)
recursively as follows. Let λ(0) = λ and T (0) = T . For i > 0, let λ(i) = λ(i−1) ∖ Ui.
Take T (i) to be the filling of λ(i) defined by:

• T (i)(Ri−1) = T (i−1)(Ri−1) ∪ T (i−1)(Ui),

• T (i)(Ri) = T (i−1)(Ri) ∪
(

T (i−1)(Ui) ∩ T (i−1)(Ri−1)
)

,

• T (i)(B) = T (i−1)(B), for all other boxes B.
That is to say, at the ith step of the recursion, we delete the box Ui from the diagram,
slide the contents of Ui down into Ri−1, and to preserve degree, place any intersection
between T (i−1)(Ui) and T (i−1)(Ri−1) into Ri. (One might be concerned that this
description requires, in case (A), placing labels in Rj when that box does not exist;
however, we will show that this does not occur.) For example, the local configuration
below changes in the following way:

T (i−1)(Ui+1)

T (i−1)(Ri) T (i−1)(Ui)

T (i−1)(Ri−1)

T (i)(Ui+1)

T (i)(Ri)

T (i)(Ri−1)

45

2′3 6′7

6′

45

2′36′

6′7

We make the following claims about the sequence (λ(i), T (i))j
i=0.

Claim 3.5. The sequence (λ(i), T (i)) satisfies
(1) ∆ ⊆ λ(j) ⊂ λ(j−1) ⊂ · · · ⊂ λ(1) ⊂ λ(0);
(2) if T (i) is not a P -shifted set-valued tableau, then the only violation is an

increasingness violation that occurs between the boxes Ri and Ui+1;
(3) T (i−1)(Ui) ∩ T (i−1)(Ri−1) consists only of primed letters; and
(4) c(T (i)) = c(T (i−1)), so d(T (i)) = d(T (i−1)).

Proof of the claim. We prove the four statements in turn.
(1) Each step from λ(i) to λ(i+1) replaces two consecutive rows of the partition

(r, r − 1) with (r, r − 2); this cannot change the largest D-partition contained
within the partition.

(2) This follows inductively, the base case i = 0 being true by the assumption
that T (0) = T is a P -shifted set-valued tableau. If T (i−1) is a valid tableau
except for Ui, then by removing the box Ui and only changing the filling by
adding elements to the boxes Ri and Ri−1 which are larger than all of the
current contents, we can only introduce an increasingness violation involving
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these two boxes and a box above or to the right. Ri−1 no longer has any
boxes above or to the right in λ(i), and Ri has nothing to its right, so the only
possible violation is between Ri and Ui+1, as claimed.

(3) This also follows by induction, the base case i = 1 following from the fact
that T is a valid tableau so the intersection in question is either empty or a

single primed letter. By definition, T (i−1)(Ri−1) is T (Ri−1) ∪
(

T (i−2)(Ui−1) ∩

T (i−2)(Ri−2)
)

, which is by induction T (Ri−1) together with (perhaps) some

primed letters. We have T i−1(Ui) = T (Ui), and since T is a P -shifted set-
valued tableau, the intersection T (Ui) ∩ T (Ri−1) is either empty or a single
primed letter. This proves this part of the claim.

(4) If T (i−1)(Ui) ∩ T (i−1)(Ri−1) = ∅, then this is trivial. Otherwise, T (i−1)(Ui) ∩
T (i−1)(Ri−1) is a set of primed letters by Claim (3), and because the origi-
nal filling T is row-increasing, none of these primed letters are contained in
T (i−1)(Ri), so the content and degrees are preserved.

This completes the proof of the claim. □

Now, we deal with the concern that case (B) appears to define a filling for a box Rj

that does not exist. However, it can be seen that, in case (B), the definition of T (j)(Rj)
will always be empty; since Uj is on the main diagonal, T (j−1)(Uj) = T (Uj) contains
no primed entries, and so the intersection T (j−1)(Uj) ∩ T (j−1)(Rj−1) is empty. Since
T (Rj) also originally sits empty, the T (j)(Rj) prescribed by the algorithm is empty,
and this procedure is in fact well-defined.

It then follows from Claim (2) that T (j) is a P -shifted set-valued tableau on λ(j)

(since Uj+1 does not exist), from Claim (1) that ∆ ⊆ λ(j) ⊂ λ, and from Claim
(4) that c(T (j)) = c(T ), and so the P -shifted set-valued tableau T (j) on the strict
partition λ(j) suffices to establish the lemma. □

Example 3.6. Below, we trace through the algorithm of Lemma 3.4 applied to a
tableau of shape 7642 to reduce to a tableau of D-partition shape 7531. Boxes denoted
Ui are shaded in red ■, while boxes denoted Ri are shaded in blue ■.

5 6
56′

4 4 4 56′

2 3′ 3 3 4′5′ 6′6

1 12′ 2 2 2 4′ 6′

5 6
56′

4 4 4 56′

2 3′ 3 3 6′

4′5′

1 12′ 2 2 2 4′ 6′6

5 6
56′

4 4 46′

2 3′ 3 3 56′

4′5′

1 12′ 2 2 2 4′ 6′6

56′

4 4 6′6
45

2 3′ 3 3 56′

4′5′

1 12′ 2 2 2 4′ 6′6

56

4 4 6′6
45

2 3′ 3 3 56′

4′5′

1 12′ 2 2 2 4′ 6′6
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Definition 3.7. Let ∆ be a D-partition of length ℓ and fix a natural number n ⩾ ℓ.
If ∆ℓ > 1, we define the P -shifted set-valued tableau M∆,n to be

(6)
ℓ ℓ . . . [ℓ, n]S

. .
. ...

...
...

...
. . .

. .
.

. .
. ...

...
...

...
. . .

. . .

2 2 2 2 2 2 2 2 . . . [2, n]S

1 1 1 1 1 1 1 1 1 . . . 1 [1, n]S

.

That is, each box in row i is filled with the value i, except the rightmost box in row i
which receives the interval [i, n]S. If instead ∆ℓ = 1, we define M∆,n to be

(7)
[ℓ, n]

k · · · k [k, n]S
...

...
...

...
...

. . .

...
...

...
...

...
...

...
. . .

2 2 2 2 2 2 2 2 . . . [2, n]S

1 1 1 1 1 1 1 1 1 . . . 1 [1, n]S

,

where k = ℓ − 1. That is, each box outside the top row is filled as before, while the
unique box of the top row receives the integer interval [ℓ, n].

Lemma 3.8. For any D-partition ∆ and any n ∈ N, the tableau M∆,n has maximum
degree among all tableaux in PSVT(∆, n).

Proof. For an arbitrary tableau T ∈ PSVT(∆, n), we will construct a finite sequence
of tableaux T = T0, T1 . . . , Tj−1, Tj = M∆,n such that d(T0) ⩽ d(T1) ⩽ · · · ⩽ d(Tj).
If T = M∆,n, there is nothing to show, so we assume there exists at least one box
B ∈ ∆ for which T (B) ̸= M∆,n(B). Find the smallest index i for which a box in row i
of ∆ differs between T and M∆,n, and find the leftmost box Bbad in this row such
that T (Bbad) ̸= M∆,n(Bbad). There are three nominally distinct cases to treat:

(Case 1: Bbad is not the rightmost box in row i): In this case, we define the tableau T1
as follows:

• T1(Bbad) = {i},
• T1(B→bad) = T (Bbad) ∪ T (B→bad),
• T1(B) = T (B), for all other boxes B.
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The only two boxes which are different in T1 and T are Bbad and B→bad, so to confirm
that T1 remains a valid tableau we only need to check the following local region.

T (B↑bad) T (B→↑bad)

i T (Bbad) T (B→bad) T (B→→bad )

i − 1 i − 1

T1(B↑bad) T1(B→↑bad)

i i T1(B→bad) T1(B→→bad )

i − 1 i − 1

Most increasingness conditions follow immediately from inspection and that T ∈
PSVT(∆, n); we only need to remark that since we only add elements (weakly) less
than the minimum of T (B→bad) to B→bad, we cannot introduce a violation with the boxes
B→↑bad or B→→bad . To conclude that d(T ) ⩽ d(T1), observe that |T (Bbad) ∩ T (B→bad)| ⩽ 1,
and so

|{i}| + |T (Bbad) ∪ T (B→bad)| ⩾ 1 + (|T (Bbad)| + |T (B→bad)| − 1).
Thus, the total content of these two boxes in T1 is weakly larger than in T .

(Case 2: Bbad is the rightmost box in row i and does not lie on the main diagonal): In
this case, we set T1(Bbad) = [i, n]S and T1(B) = T (B) for all other boxes B. Since
Bbad is in row i, min(T (Bbad)) ⩾ i, so T (Bbad) ⊆ [i, n]S, and therefore d(T ) ⩽ d(T1).
The tableau T1 is still a valid tableau, because by assumption T1(B←bad) = {i} and
T1(B↓bad) = {i − 1} (or is empty, if i = 1), and boxes in the other two directions do
not exist. Since T (Bbad) ⊆ [i, n]S, it follows that |T (Bbad)| ⩽ |[i, n]S|, and since this is
the only box which changes between T and T1, we conclude d(T ) ⩽ d(T1).

(Case 3: Bbad is the rightmost box in row i and lies on the main diagonal): This can
only happen if row i consists of only the single box Bbad. In this case, we proceed
identically as Case 2, except that we are prohibited from having primed entries in
Bbad, so we set T1(Bbad) = [i, n] instead, and as in Case 2, we see that T1 remains a
valid tableau with d(T ) ⩽ d(T1).

If T1 ̸= M∆,n, then we can produce another tableau T2 by applying the same con-
struction to T1, and continue to produce a sequence of P -shifted set-valued tableaux
T0, T1, T2, . . . with the property that d(Ti) ⩽ d(Ti+1) for all i. This sequence must be
finite, because by construction the bad box of Ti+1 is either in the same row as the
bad box of Ti but strictly further right, or in a strictly higher row. The sequence will
stop when we are unable to find any box of Tj differing from M∆,n, that is, when
Tj = M∆,n, which completes the proof of the lemma. □

Applying Lemmas 3.4 and 3.8 reduces the computation of the degree of GPλ,n to
directly counting how many entries are in M∆,n, so we can now finish the proof.

Proof of Theorem 1.1. Now, we complete the proof of Theorem 1.1 by combining the
previous lemmas. Let ∆ be the largest D-partition contained in λ and let the last
nonzero part of ∆ be ∆ℓ. By Lemma 3.1, d(GP∆,n) ⩽ d(GPλ,n). By Lemma 3.4,
we have d(GP∆,n) ⩾ d(GPλ,n). Therefore, d(GP∆,n) = d(GPλ,n). By Lemma 3.8,
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d(GP∆,n) = d(M∆,n). If ∆ℓ ̸= 1, then by direct inspection of the tableau M∆,n, we
have

c(M∆,n) = (∆1, ∆2 + 2, . . . , ∆ℓ + 2ℓ, 2ℓ, 2ℓ, . . . , 2ℓ),

so that

d(M∆,n) = |∆| +
ℓ∑

i=1
2i + 2ℓ(n − ℓ) = |∆| + 2nℓ − ℓ2 − ℓ.

Otherwise, ∆ℓ = 1 and again by inspection we find

c(M∆,n) = (∆1, ∆2 + 2, . . . , ∆ℓ−1 + 2(ℓ − 1), ∆ℓ + 2ℓ − 2, 2ℓ − 1, 2ℓ − 1, . . . , 2ℓ − 1),

so that
d(M∆,n) = |∆| + 2nℓ − ℓ2 − n. □

Remark 3.9. Lemma 3.8 explicitly identifies an element of PSVT(λ, n) of maximum
degree, when λ is a D-partition. Through Lemmas 3.1 and 3.4, this is sufficient to allow
us to determine the degree of GPλ,n for general λ, but without identifying explicit
elements of top degree outside of the D-partition case. It would be very interesting to
find and describe such representatives.

4. Regularity of Pfaffian ideals
In this section, we relate the combinatorics of the previous section to commutative
algebra. First, in Section 4.1, we recall the definition of matrix Schubert varieties,
for which the combinatorics developed in Section 5 will provide a new regularity
formula in the Grassmannian case, complementing those of [59, 28, 60, 54]. Then,
in Section 4.2, we recall skew-symmetric matrix Schubert varieties, and observe that
they are Cohen–Macaulay. Finally, in Section 4.3, we recall symplectic Grothendieck
polynomials and use them in combination with Theorem 1.1 to establish our main
algebraic result, Theorem 1.2.

4.1. Matrix Schubert varieties. For textbook treatments of the material in this
section, see [24, 51].

For a permutation w ∈ Sn, the permutation matrix P w ∈ Matn associated to w is
defined as the n × n matrix

P w
i,j =

{
1, if j = w(i);
0, otherwise.

For example, the permutation matrix P 52134 is
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

For any matrix A ∈ Matn and any subsets I, J ⊆ [n], we define AIJ to be the
submatrix

{Ai,j : (i, j) ∈ I × J}.

In particular, the matrix A[i][j] is the principal i × j minor of A.
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The rank matrix Rw of w is the matrix defined by the condition that Rw
i,j is the

rank of the i × j principal minor P w
[i][j]. For example, the rank matrix R52134 is

0 0 0 0 1
0 1 1 1 2
1 2 2 2 3
1 2 3 3 4
1 2 3 4 5

 .

The matrix Schubert variety Xw is the set of matrices

Xw := {A ∈ Matn : rank A[i][j] ⩽ Rw
i,j},

which is indeed an affine algebraic variety since each inequality is equivalent to the
polynomial condition that all

(
Rw

i,j + 1
)

×
(
Rw

i,j + 1
)

minors of A[i][j] vanish. These
varieties, first introduced by W. Fulton [23], provide an affine model of for Schubert
varieties, and have been of significant interest for many years (see, e.g., [20, 22, 32, 35,
40, 41, 42, 54]). Fulton [23] shows that the defining determinantal conditions generate
a prime ideal Iw of the ring S := C[xi,j : 1 ⩽ i, j ⩽ n]. We are interested in the
coordinate ring S/Iw.

A permutation w ∈ Sn that fixes n determines a permutation w′ ∈ Sn−1. We
routinely identify w with w′ or write w = w′ × 1 for clarity. Everything we study is
invariant under the transformation w 7→ w × 1; in particular, S/Iw

∼= S/Iw′ .
A permutation w ∈ Sn is Grassmannian if there is at most one value 1 ⩽ i < n

such that w(i) > w(i+1). In Section 5, we will be interested in those matrix Schubert
varieties Xw with w Grassmannian. The code of a permutation w ∈ Sn is BCode(w) =
(c1, . . . , cn), where ci is the number of integers j with j > i and w(j) < w(i). Sorting
the entries of BCode(w) into a partition yields the shape λB(w) of w.

Permutations are uniquely determined by their codes. Given a nonempty parti-
tion λ and a positive integer n ⩾ ℓ(λ), there is a unique Grassmannian permuta-
tion wλ with w(n) > w(n + 1) and λB(w) = λ. To find this permutation, extend λ to
have length n by appending the needed number of terminal 0s and then reverse λ to
obtain a weakly increasing sequence. This sequence is uniquely the code of the desired
permutation wλ.

4.2. Skew-symmetric matrix Schubert varieties. Let Matss
n denote the variety

of n×n skew-symmetric matrices, a linear subspace of Matn. Our focus is on the skew-
symmetric matrix Schubert varieties Xss

w := Xw ∩Matss
n as studied by E. Marberg and

B. Pawlowski in [48]. These varieties provide an affine model of orbit-closures for the
action of the symplectic group Spn(C) on the flag variety F lagn.

While Xss
w is defined for arbitrary permutations, this is not the appropriate gener-

ating set, as for example, Xss
21 = Xss

12, since the diagonal entries of a skew-symmetric
matrix are necessarily zero. Instead, in the symplectic context the relevant indexing
family for cohomology classes is the set of fixed-point-free involutions, which is the set

FPFn := {z ∈ Sn : z2 = 1 and z(i) ̸= i for 1 ⩽ i ⩽ n}.

Note this set is empty if n is odd, so from this point forward we assume we are working
with 2n × 2n matrices and the symmetric group S2n.

A second, subtler issue which arises is that the ideal of minors defining Xss
z is

not generally prime. This differs in a significant way from the generic matrix setting,
where it is established by [23] that the ideal of minors defining Xw is always prime.
Constructing the ideal I(Xss

z ) requires some intricacies with Pfaffian polynomials
which we cover below, closely following [48], where one can look for full proofs and
additional information.
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Recall that a skew-symmetric matrix A ∈ Matss
2n carries an invariant polynomial

known as the Pfaffian pf(A) with the property that pf(A)2 = det(A). Formally, we
define it as

pf(A) := 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

i=1
aσ(2i−1),σ(2i).

For background on combinatorial appearances of Pfaffians, see [26].
Fix n and let S = C[xi,j : 1 ⩽ j < i ⩽ 2n] be a polynomial ring in

(2n
2

)
independent

indeterminates.
Theorem 4.1. [48] Let z ∈ FPF2n, and let X ss be the 2n×2n skew-symmetric matrix

0 −x2,1 . . . −x2n,1
x2,1 0 . . . −x2n,2

...
. . .

. . .
...

x2n,1 . . . . . . 0

 .

Then the radical ideal I(Xss
z ) ⊂ S is

I(Xss
z ) = ⟨pf(X ss

UU ) : ∃(i, j) ∈ (2n × 2n), i ⩾ j, U ⊆ [i], |U ∩ [j]| > Rz
i,j⟩.

Theorem 4.2. The coordinate ring S/I(Xss
z ) of the variety Xss

z is Cohen–Macaulay.

Proof. Marberg–Pawlowski [48] show that there is a term order such than an initial
ideal of I(Xss

z ) is squarefree and that the corresponding Stanley–Reisner simplicial
complex is shellable, so that for this term order in(I(Xss

z )) is Cohen–Macaulay (see,
e.g., [18, Theorem 5.13]). Thus it follows (see, e.g., [18, Corollary 6.9]) that S/I(Xss

z )
is Cohen–Macaulay. □

Remark 4.3. E. De Negri and E. Gorla [13] show that (affine cones over) mixed ladder
Pfaffian varieties are Cohen–Macaulay. We believe this is related to the vexillary
case of Theorem 4.2, but do not currently understand the the precise connection;
forthcoming work of L. Escobar, A. Fink, J. Rajchgot, and A. Woo [19] is expected
to shed more light on this.

4.3. Symplectic Grothendieck polynomials and proof of Theorem 1.2.
Let ∂i be the divided difference operator ∂if := f−sif

xi−xi+1
, and let ∂i := ∂i(1 − xi+1)f).

The symplectic Grothendieck polynomials are, like ordinary Schubert polynomials,
constructed from a top element by sequences of divided difference operators. They
are defined as follows.

Definition-Theorem 4.4 ([66, 47]). The symplectic Grothendieck polynomials in 2n
variables are the unique family of polynomials {GSp

z }z∈FPF2n satisfying
(1) GSp

2n(2n−1)...321 =
∏

1⩽i<j⩽2n−i(xi + xj − xixj); and
(2) if i + 1 ̸= z(i) and i ̸= z(i + 1) and z(i) > z(i + 1), then GSp

sizsi
= ∂iG

Sp
z .

An involution z ∈ FPFn has a symplectic code [47, §4.4] SpCode(z) = (c1, . . . , cn)
where ci is the number of integers j with

z(i) > z(j) < i < j.

Sorting the entries of SpCode(z) into a partition and then taking the transpose yields
the symplectic shape λSp(z) of z [47, §4.4].

It is shown in [46, §4.2] and [45, Theorem 1.9], that the stable limit

lim
n→∞

GSp
(21)n×z

exists (in a ring of power series) and is a finite sum of GPλs. We say that z ∈ FPFn

is FPF-vexillary if this stable limit is a single GPλ. (This differs slightly from the
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more usual definition, but is equivalent by [49, Theorem 3.23].) An explicit charac-
terization of FPF-vexillary involutions in terms of pattern avoidance appears in [30,
Corollary 7.9]; we do not recall it here as it is somewhat complicated and the details
will not play a role in this paper.

If z is FPF-vexillary with symplectic shape λ = λSp(z), we have by [49, Theo-
rem 3.23]

(8) lim
n→∞

GSp
(21)n×z = GPλ = lim

k→∞
GPλ(x1, . . . , xk).

We need to understand the nature of this limit in slightly more detail. Given two
polynomials f, g ∈ S with real coefficients, we say f ⪯ g if, for each monomial m, we
have

[m]f ⩾ 0 ⇔ [m]g ⩾ 0 and
|[m]f | ⩽ |[m]g|,

where [m]h denotes the coefficient on the monomial m in h. Note that symplectic
Grothendieck polynomials have real (and indeed integral) coefficients.

Lemma 4.5. For z ∈ FPF2n, we have GSp
z ⪯ GSp

21×z.

Proof. As defined in [46, §3.3], a Hecke atom for z is a permutation w such that w
acts on the fixed-point-free involution 2143 . . . (2n)(2n − 1) according to an action
studied in [58] to produce z. This action is somewhat complicated, so we omit the
details; however, it is easy to see from the definition that if w is a Hecke atom for z,
then 12 × w is a Hecke atom for 21 × z. We then have that, by [46, Theorem 3.12],
which gives a formula for the symplectic Grothendieck polynomial GSp

u in terms of
Hecke atoms of u, the lemma follows. □

Corollary 4.6. If z ∈ FPF2n is FPF-vexillary and the last nonzero entry of
SpCode(z) is in position k, then

GSp
z ⪯ GPλSp(z),k.

In particular, degGSp
z ⩽ deg GPλSp(z),k.

Proof. Since the last nonzero entry of SpCode(z) is in position k, we have GSp
z ∈

C[x1, . . . , xk] by the involution pipe dream formulas of [31]. The corollary is then
immediate from Lemma 4.5 combined with (8). □

Finally, let us recall the theorem connecting the ideals I(Xss
z ) to our degree calcu-

lations:

Theorem 4.7 ([48]). Let z ∈ FPF2n. Then

GSp
z (1 − t, 1 − t, . . . , 1 − t) = K(I(Xss

z ); t).

We may now conclude the main theorem of this section, which is the precise version
of Theorem 1.2.

Theorem 4.8. Let z ∈ FPF2n be FPF -vexillary with the last nonzero entry of
SpCode(z) in position k. Further let ∆ ⊆ λSp(z) be the largest D-partition contained
in λSp(z). Then

reg S/I(Xss
z ) ⩽

{
2kℓ − ℓ2 − ℓ −

(
|λSp(z)| − |∆|

)
, if ∆ℓ > 1;

2kℓ − ℓ2 − k −
(
|λSp(z)| − |∆|

)
, if ∆ℓ = 1.
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Proof. Since Xss
z is Cohen–Macaulay by Theorem 4.2, we have that Theorem 2.8

applies. Hence reg S/I(Xss
z ) = deg K(I(Xss

z ); t) − ht I(Xss
z ). By Theorem 4.7,

degGSp
z = deg K(I(Xss

z ); t). We have ht I(Xss
z ) = |λSp(z)| (this follows from exam-

ple from combining [30, Theorem 1.2] with [31, Theorem 1.2]). By Corollary 4.6,
degGSp

z ⩽ deg GPλSp(z),k. From Theorem 1.1 we have that

deg(GPλ,k) =
{

|∆| + 2kℓ − ℓ2 − ℓ, if ∆ℓ > 1;
|∆| + 2kℓ − ℓ2 − k, if ∆ℓ = 1.

Thus the theorem follows. □

5. Degrees of symmetric Grothendieck polynomials
5.1. A new degree formula. In this section, we obtain a formula for the degree
of (type A) symmetric Grothendieck polynomials, complementary to that of [59]. Our
formula differs in appearance from the formula of [59], and neither formula appears
to follow directly from the other. (However, see Section 5.2 for tentative relations
to the more general formula of [54].) Our approach parallels the shifted arguments
of the previous sections, with an analogous collection of lemmas. The proofs of the
analogues of Lemmas 3.1 and 3.4 are somewhat easier than in the shifted setting
because two vertically adjacent boxes in an ordinary set-valued tableau always have
disjoint content. The proof of Lemma 5.4 is nearly verbatim that of Lemma 3.8.

Lemma 5.1. Suppose µ ⊆ λ are partitions and that n ⩾ ℓ(λ). If T ∈ SVT(µ, n) is a
set-valued tableau, then there exists some T ′ ∈ SVT(λ, n) with d(T ′) ⩾ d(T ). Indeed,
we can choose T ′ such that c(T ′) ⩾ c(T ), where the comparison is componentwise.

Proof. It suffices to assume that |λ| − |µ| = 1. Let the unique box of λ ∖ µ be B0. To
define the filling T ′, we first set T ′(B0) = n.

Let the boxes of the column of B0 be B0, B1, . . . from top to bottom. Next, we
define a partial column C as follows. If n ̸∈ B1, then C is empty. Otherwise, recursively
include Bi in C if

• Bi−1 ∈ C,
• |T (Bi−1)| = 1,
• and n − i + 1 ∈ T (Bi).

If Bi ∈ C, we also refer to it as Ci.
We then define the filling T ′ on the partial column C as

(9) T ′(Cj) =
{

T (Cj) ∖ max T (Cj), if |T (Cj)| > 1;
T (Cj) − 1, if |T (Cj)| = 1.

Since n ⩾ ℓ(λ), Equation (9) is well-defined. Finally, if A ̸= B0 and A ̸∈ C, then we
define T ′(A) = T (A). We claim that this tableau T ′ has the desired properties.

Since we have added an entry to the new box B0 and the filling T ′ deletes at most
one entry from T (the top case of Equation (9) can occur at most once), it follows
that either d(T ′) = d(T ) or d(T ′) = d(T ) + 1. In particular, d(T ′) ⩾ d(T ). Indeed, it
is straightforward to see that c(T ′) ⩾ c(T ).

It only remains to check that T ′ satisfies the necessary increasingness conditions.
First, consider B0. Since B0 is the rightmost box in its row and n is the largest letter
of the alphabet, there can be no row increasingness violations with B0. Furthermore,
if n ∈ T (C1), then by the construction of the filling, n ̸∈ T ′(C1), so T ′ has no violation
of increasingness between boxes B0 and C1.
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Since the partial column C is column-increasing in T , by construction it is also
column-increasing in T ′. Similarly, there can be no column-increasingness violation in
T ′ between the bottom box of C and the box directly below it.

Since we have only decreased the values in the boxes in C, we cannot have intro-
duced any increasingness violations between a box in C and the box to its right. We
then need only check if we introduced a violation between C and boxes to its left. We
show by contradiction that this is impossible. Suppose Ck is the smallest k such that
max(C←k ) > min(Ck). The box Ck must have had only a single entry, since otherwise its
content only weakly decreases. Therefore, letting a = T (Ck) = T ′(Ck)+1, this implies
a ∈ C←k . Since T was supposed to be column-increasing, this forces min(T (C↑←k )) > a.
This, however, cannot occur, since T ′(Ck−1) = a, and as Ck−1 is the box directly
right of C↑←k , this implies a row-increasingness violation for a smaller k than our
chosen minimum, which is a contradiction (if k = 1, this argument implies there
is a row-increasingness violation in the box T ′(B0), which we already know to be
impossible). □

Lemma 5.2. Let T ∈ SVT(λ, n) be a set-valued tableau, and let µ be the largest
strict partition contained in λ. Then there exists a tableau S ∈ SVT(µ, n) such that
d(S) = d(T ), and indeed such that c(S) = c(T ).

Proof. If λ = µ, we are done. Otherwise λ is not strict, so there exists at least one
row k for which λk = λk+1; choose the largest such k, and let R be the rightmost box
in row k. Set U := R↑. We define the filling T ⋆ on λ ∖ U (which is a valid tableau
because U is a corner box, otherwise it would be a higher row k such that λk = λk+1)
as:

• T ⋆(R) = T (R) ∪ T (U),
• T ⋆(B) = T (B), for all other boxes B.

This is simpler than the shifted case where one must track a short ribbon up the
tableau, as the tableau obtained by deleting just this single box already works. The
critical difference in this case is that T (R) ∩ T (U) = ∅ by the definition of a set-
valued tableau, so it is clear that c(T ⋆) = c(T ). Since R was the rightmost box in
its row and we have only added strictly larger numbers to it, we have not introduced
any increasingness violations with R← or R↓. Therefore µ ⊆ λ ∖ U ⊂ λ and T ⋆ is a
set-valued tableau on λ ∖ U with c(T ⋆) = c(T ). By iterating this construction until
we eventually remove enough corner boxes to reach µ, we establish the lemma by
induction. □

Lemma 5.3. If µ is the largest strict partition contained in λ and n ⩾ ℓ(λ), then
deg Gµ,n = deg Gλ,n.

Proof. This follows from Lemmas 5.1, 5.2, and the tableau formula for symmetric
Grothendieck polynomials. □

Lemma 5.4. For any strict partition µ with length ℓ and any n ∈ N, the tableau

(10)
ℓ . . . [ℓ, n]

...
...

...
...

2 2 2 . . . [2, n]

1 1 1 . . . . . . . . . [1, n]
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has maximum degree among all tableaux in SVT(µ, n).

Proof. Here we can proceed very similarly to the proof of Lemma 3.8, with minor
modifications. To further mimic the situation already proved, we call the tableau (10)
by the name Nµ,n.

If T ̸= Nµ,n, we find the smallest index i for which there exists a box B in row i
such that T (B) ̸= Nµ,n(B), denote the leftmost such box in the row Bbad, and define
a new tableau T1 ∈ SVT(µ, n) satisfying d(T ) ⩽ d(T1). We split into cases analogous
to cases 1 and 2 in the proof of Lemma 3.8:

(Case 1: Bbad is not the rightmost box in row i): In this case, we define the tableau T1
as follows:

• T1(Bbad) = {i},
• T1(B→bad) = T (Bbad) ∪ T (B→bad),
• T1(B) = T (B), for all other boxes B.

The only two boxes which are different in T1 and T are Bbad and B→bad, so to confirm
that T1 remains a valid tableau we only need to check the following local region.

T (B↑bad) T (B→↑bad)

i T (Bbad) T (B→bad) T (B→→bad )

i − 1 i − 1

T1(B↑bad) T1(B→↑bad)

i i T1(B→bad) T1(B→→bad )

i − 1 i − 1

Most increasingness conditions follow immediately from inspection and T ∈
SVT(µ, n); we only need to remark that since we only add elements (weakly) less
than the minimum of T (B→bad) to B→bad, we cannot introduce a violation with the boxes
B→↑bad or B→→bad . To conclude that d(T ) ⩽ d(T1), observe that |T (Bbad) ∩ T (B→bad)| ⩽ 1,
and so

|{i}| + |T (Bbad) ∪ T (B→bad)| ⩾ 1 + (|T (Bbad)| + |T (B→bad)| − 1).
Thus, the total content of these two boxes in T1 is weakly larger than in T .

(Case 2: Bbad is the rightmost box in row i): In this case, we set T1(Bbad) = [i, n] and
T1(B) = T (B) for all other boxes B. Since Bbad is in row i, a min(T (Bbad)) ⩾ i, so
T (Bbad) ⊆ [i, n], and therefore d(T ) ⩽ d(T1). The tableau T1 is still a valid set-valued
tableau, because by assumption T1(B←bad) = {i} and T1(B↓bad) = {i − 1} (or is empty,
if i = 1), and boxes in the other two directions do not exist. Since T (Bbad) ⊆ [i, n], it
clearly follows that |T (Bbad)| ⩽ |[i, n]|, and since this is the only box whose content
changes between T and T1, we conclude d(T ) ⩽ d(T1).

(There is no need for an analogous case to case 3 of the proof of Lemma 3.8, since in
the symmetric case there is no main diagonal and thus no varying behavior if a box is
the only box in its row or not.) Exactly as in Lemma 3.8, repeating this construction
yields a finite sequence of tableaux T, T1, . . . , Tj = Nµ,n such that d(T ) ⩽ d(T1) ⩽
· · · ⩽ d(Tj), completing the proof. □
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Remark 5.5. An anonymous referee points out that Lemmas 5.3 and 5.4 can likely
also be derived from the results of [29] on vexillary Grothendieck polynomials and dual
characters of flagged Weyl modules. It would be interesting if these lemmas extend to
the vexillary setting; in particular, this might give another perspective on the results
of [60].

We may now prove the main results theorem of this section, complementing the
formulas of [59] and paralleling the formulas of Theorems 1.1 and 1.2.
Theorem 5.6. Let λ be a partition, and let µ = (µ1, . . . , µℓ) be the largest strict
partition contained in λ. Then

(11) deg(Gλ,n) = |µ| + ℓn − ℓ(ℓ + 1)
2 .

Proof. By Lemma 5.3, deg(Gλ,n) = deg(Gµ,n). By Lemma 5.4, deg(Gµ,n) equals the
number of labels in the tableau (10). Elementary counting of entries then yields the
theorem. □

Corollary 5.7. Let w be a Grassmannian permutation with w(n) > w(n + 1) and
λB(w) = λ. Then the matrix Schubert variety Xw has Castelnuovo–Mumford regularity

reg(S/Iw) = ℓn − ℓ(ℓ + 1)
2 −

(
|λ| − |µ|

)
.

Proof. This follows from Theorem 5.6 exactly as in the analogous calculations of [59,
§4.2] □

5.2. Connections to the Grothendieck degree formula of [54]. We end this
section with some remarks connecting to the Grothendieck degree formula from [54].
We thank Anna Weigandt for suggesting these ideas to us. To avoid introducing
significant amounts of background and notation, this discussion is less self-contained
than the rest of the paper; however, we include pointers to further elaboration in the
literature.

A permutation w is inverse fireworks [54, Definition 3.5] if the initial elements of the
maximal decreasing runs of w−1 are in increasing order. For example, u = 317429865
has maximal decreasing runs 31, 742, and 9865, whose initial elements 3, 7, 9 appear
in increasing order; hence u−1 is inverse fireworks. For the definition of Grothendieck
polynomials Gw indexed by arbitrary permutations, see, e.g., [41, 54]. A permutation
w is k-Grassmannian if w(i) < w(i + 1) for all i ̸= k. Given a partition λ of length ℓ
and n ⩾ ℓ, let wλ,n be the unique n-Grassmannian permutation such that, for each
1 ⩽ i ⩽ n, there exist exactly λi values v > n such that wλ,n(v) < wλ,n(n + 1 − i).
Every n-Grassmannian permutation is of this form for some partition λ. The key fact
is that Gwλ,n

= Gλ,n.
The proof for the degree formula in [54] is essentially by reduction to the case

where w is inverse fireworks. The following connects this reduction to the correspond-
ing reduction arguments of this section. For the definition of the Rothe diagram D(w)
of a permutation w, see, e.g., [54, 50].
Proposition 5.8. A Grassmannian permutation wλ,n is inverse fireworks if and only
if λ is a strict partition.
Proof. Applying transpose to [50, Proposition 3.9] implies that a permutation w is in-
verse fireworks if and only if the rightmost box of each nonempty row i of D(w) appears
in position (i, w(i) − 1). For an n-Grassmannian permutation wλ,n with λi = λi+1, it
is straightforward from the definition to see that the rightmost boxes of rows n+1− i
and n + 1 − (i + 1) of D(wλ,n) appear in the same column. Hence, such a permuta-
tion cannot be inverse fireworks. Conversely, if λ is a strict partition, it is similarly
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straightforward to see that each nonempty row of D(wλ,n) satisfies the condition for
wλ,n to be inverse fireworks. □

Proposition 5.8 gives some explanation for the appearance of strict partitions in
our analysis. Moreover, the reduction from an arbitrary partition λ to the largest
strict partition µ contained in λ is likely related to the inverse fireworks map Φinv
of [54, §4.4]; to avoid a major digression and because our arguments are easier than
the more general arguments of [54], we do not pursue this line of inquiry further here.
Proposition 5.8, together with the results of [54], suggests that there might be an
appropriate notion of “FPF-inverse fireworks fixed-point-free involutions” governing
the regularity of all skew-symmetric matrix Schubert varieties, for which D-partitions
appear from the fixed-point-free involutions that are both FPF-vexillary and FPF-
inverse fireworks. More generally, it suggests some hope of porting the entire theory
of [54] to the fixed-point-free involution setting.

6. The case of Q-Grothendieck polynomials
If we remove the final assumption in Definition 2.3 and allow primed entries on the
main diagonal, then we obtain what are referred to as Q-shifted set-valued tableaux [37,
36]. In particular, every P -shifted set-valued tableau is also Q-shifted. The generating
function (analogous to Definition 2.5) for Q-shifted set-valued tableaux is the Q-
Grothendieck polynomial GQλ,n. Below, we use the notation QSVT(λ, n) to refer to
the set of all Q-shifted set-valued tableaux of shape λ with entries from [n]S. The
Q-Grothendieck polynomials have similar geometric significance to other families of
Grothendieck polynomials; they are representatives of K-theoretic Schubert classes in
the Lagrangian Grassmannian parametrizing isotropic n-planes in C2n with respect
to a nondegenerate skew-symmetric bilinear form. (For more background on the K-
theory of Lagrangian Grassmannians, see [5, 36, 55].) Given the significance of the
degrees of other families of Grothendieck polynomials to regularity questions, it is
natural to ask if our proof can be adapted to obtain the Q-Grothendieck degrees as
well.

Remark 6.1. Even if one succeeds in characterizing the degrees of Q-Grothendieck
polynomials, there has not been developed an analogous body of theory to that applied
in Section 4, so it is unclear what regularities these degrees track, if indeed they are
related to the regularity of some varieties. However, see some discussion at the end
of [48, §1] for some potentially related ideas about the geometry of symmetric matrix
Schubert varieties. The geometry in this setting, however, appears to be much more
difficult; see [56, 66] for further discussion.

The proof of Lemma 3.8 essentially does not depend on the fact that the tableau in
question is P -shifted, rather than Q-shifted; the same proof, mutatis mutandis, yields
that a maximum degree Q-shifted tableau for a D-partition ∆ is the same as M∆,n,
except for containing the newly allowed k′ on the kth row of the main diagonal. Thus,
we can still determine a tableau of maximum degree in the case that λ is a D-partition.

The proof of Lemma 3.4, however, does rely on the tableau being P -shifted, as
the analysis applied to ribbons of type (B) can fail when there are primes in the top
box on the main diagonal. Indeed, the conclusion of Lemma 3.4 does not hold in
the Q-shifted case; there are examples where deg(GQ∆,n) < deg(GQλ,n) with ∆ the
largest D-partition inside λ. One such example is the partition λ = 421. The largest
D-partition contained in 421 is ∆ = 42. However, the tableau T ∈ QSVT(42, 3) shown
below is of maximum degree 14 in QSVT(42, 3), but has lower degree than the tableau
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T ′ ∈ QSVT(421, 3), which has degree 15:

T = 2′2 23′3

1′1 1 1 12′23′3

3′3

T ′ = 2′2 23′

1′1 1 1 12′23′3

While it seems difficult to characterize when deg(GQ∆,n) < deg(GQλ,n), we make a
couple of observations.

Proposition 6.2. If ∆ is the largest D-partition in λ and ℓ(∆) = ℓ(λ), then
deg(GQ∆,n) = deg(GQλ,n).

Proof. In this case, the proof of Lemma 3.8 extends directly, since ribbons of type (B)
(as defined in that proof) only occur when an entire row of the tableau is deleted. □

Note that Proposition 6.2 gives only a sufficient condition for equality and is not a
characterization. For example, one can compute that deg(GQ321,3) = deg(GQ31,3) =
12, while 31 is the largest D-partition inside 321.

It is tempting to attempt to describe the degrees of Q-Grothendieck polynomials
in terms of the degrees of P -Grothendieck polynomials. We observe some bounds on
the difference between these degrees.

Proposition 6.3. For any strict partition λ, we have
deg(GQλ,n) − deg(GPλ,n) ∈ [ℓ(λ), n].

In particular, if n = ℓ(λ), then deg(GQλ,n) = deg(GPλ,n) + n.

Proof. To establish the lower bound, note that for any P -shifted set-valued tableau T
we can produce a Q-shifted tableau T ′ with d(T ′) = d(T ) + ℓ(λ) by adding to every
box on the main diagonal a primed copy of the minimum element it contains.

For the upper bound, consider a tableau S ∈ QSVT(λ, n). One can see that if S is of
maximal degree, then every box on the main diagonal must contain both a primed and
an unprimed entry. In particular, we can produce a P -shifted set-valued tableau S†

by deleting all primed entries from the main diagonal of S. It therefore suffices to
observe that no tableau in QSVT(λ, n) can have any particular primed value i′ in
more than one box on the main diagonal. This is immediate, because if a box B is
northeast of a box A in a shifted set-valued tableau, then min(T (B)) > max(T (A)).
Thus, deg(GQλ,n) ⩽ deg(GPλ,n) + n. □

Recently, Y. Chiu and E. Marberg [7] proved a result giving a signed and cancella-
tive expansion of a Q-Grothendieck polynomial in terms of P -Grothendieck polyno-
mials. As the formula is signed, it cannot be used directly to compute the degree of
a Q-Grothendieck polynomial in n variables by specialization; in fact, the examples
discussed above show that some highly coordinated cancellations can sometimes oc-
cur when specializing this formula to particular numbers of variables, causing entire
leading terms of the sum to vanish. It appears difficult to understand when these
cancellations occur.
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