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Cluster monomials in graph Laurent
phenomenon algebras

Guilherme Zeus Dantas e Moura, Ramanuja Charyulu
Telekicherla Kandalam & Dora Woodruff

Abstract Laurent phenomenon algebras, first introduced by Lam and Pylyavskyy, are a gen-
eralization of cluster algebras that still possess many salient features of cluster algebras. Graph
Laurent phenomenon algebras, defined by Lam and Pylyavskyy, are a subclass of Laurent phe-
nomenon algebras whose structure is given by the data of a directed graph. In this paper, we
prove that the cluster monomials of a graph Laurent phenomenon algebra form a linear basis, as
conjectured by Lam and Pylyavskyy and analogous to a result for cluster algebras by Caldero
and Keller. We also prove that, if the graph is a bidirected tree, the coefficients of the expansion
of any monomial in terms of cluster monomials are nonnegative.

1. Introduction
Fomin and Zelevinsky [4] introduced cluster algebras, which have since been recog-
nized as rather ubiquitous in mathematics. Originally introduced as a combinatorial
model for total positivity, cluster algebras are relevant to Teichmüller theory [2],
triangulated surfaces [3], Lie theory, representation theory of quivers, and Poisson
geometry [5], to name some examples.

Broadly, in a cluster algebra, a set of generators called the cluster variables are
organized into sets called clusters. A seed consists of a cluster and an exchange poly-
nomial for each cluster variable in the cluster. These exchange polynomials are always
binomials in the variables of the cluster and define a procedure for mutating a seed
into a different seed.

The Laurent phenomenon is a remarkable property of cluster algebras. It states
that any cluster variable can be expressed as a Laurent polynomial when written as a
rational function in any cluster. Motivated by this property, Lam and Pylyavskyy [6]
defined Laurent phenomenon algebras. Laurent phenomenon algebras are generaliza-
tions of cluster algebras in which the exchange polynomials are no longer required
to be binomials. Lam and Pylyavskyy [6] show that in their setting, the Laurent
phenomenon still holds.
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Lam and Pylyavskyy [7] also studied a specific class of Laurent phenomenon al-
gebras called graph Laurent phenomenon algebras. In a graph Laurent phenomenon
algebra, the exchange polynomials are linear polynomials determined by some directed
graph Γ . Lam and Pylyavskyy [7] provided an explicit combinatorial description of
the cluster variables and clusters of a graph Laurent Phenomenon algebra AΓ (see
Subsection 2.8).

The main result of this paper is Theorem 1.1, which confirms a conjecture by [7,
Conjecture 7.3a] that the cluster monomials form a linear basis of AΓ .
Theorem 1.1. Let Γ be a graph. The cluster monomials of the graph LP algebra AΓ

with coefficient ring R form a linear basis of AΓ over R.
Theorem 1.1 is motivated by an analogous fact about cluster algebras: Caldero

and Keller [1] proved that cluster monomials form a linear basis in finite type cluster
algebras.

The proof of Theorem 1.1 is split into two parts. First, we establish the linear
independence of cluster monomials in a graph LP algebra, as stated in Theorem 3.1.
Second, we demonstrate that cluster monomials in a graph LP algebra form an R-
linear spanning set, as stated in Theorem 4.1.

Lam and Pylyavskyy [7] also propose Conjecture 1.2, a stronger version of The-
orem 1.1 that states not only that any monomial of AΓ is a linear combination of
cluster monomials over R, but also that the coefficients are nonnegative. This stronger
conjecture is also motivated by analogous results in the case of cluster algebras, by
Lee and Schiffler [8].
Conjecture 1.2 ([7, Conjecture 7.3b]). Each monomial of AΓ is a linear combination
of cluster monomials over R with nonnegative coefficients.

We prove Conjecture 1.2 for the special case when the graph Γ is a bidirected tree,
as stated in Theorem 1.3.
Theorem 1.3. Assume that Γ is a bidirected tree. Then, each monomial of AΓ is a
linear combination of cluster monomials over R with nonnegative coefficients.

The article is organized as follows. In Section 2, we establish notation and recall
definitions and results from [7]. In Section 3, we prove that cluster monomials in a
graph LP algebra are linearly independent over R. In Section 4, we prove that cluster
monomials in a graph LP algebra form an R-linear spanning set. Finally, in Section 5,
we prove the nonnegativity result for trees.

2. Preliminaries and notational conventions
2.1. Multisets. A multiset S is a sequence of sets S(1) ⊃ S(2) ⊃ · · · indexed by
the positive integers. We say that x has multiplicity m in S if m+ 1 is the smallest
positive integer such that x /∈ S(m+1). In this case, if m > 0, it follows that x ∈ S(m).
Therefore, S(i) is the set of elements with multiplicity at least i in S. A set S is
naturally identified with the multiset given by the sequence S ⊃ ∅ ⊃ ∅ ⊃ · · ·, that
is, we interpret a set as a multiset with all multiplicities equal to 1.

Given multisets S and T , we say that S and T are disjoint if S(1) and T (1) are
disjoint. We say that S is contained in T , denoted by S ⊂ T , if S(i) ⊂ T (i) for all i.
The sum of two multisets S and T is the multiset S+T with the multiplicity of each
element x being the sum of its multiplicities in S and T . If S is contained in T , the
subtraction of S from T is the multiset T −S with the multiplicity of each element x
being the subtraction of its multiplicity in S from its multiplicity in T .

We may define a multiset by simply listing its elements, with the multiplicity of each
element being the number of times it appears in the list. For example, S = {1, 1, 2, 3}
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is the multiset with elements 1, 2, 3 and multiplicities 2, 1, 1, respectively, in which
case we have S(1) = {1, 2, 3}, S(2) = {1}, and S(i) = ∅ for all i ⩾ 3.

2.2. Directed graph. Let Γ be a directed graph with vertex set V and edge
set E. We maintain this notation throughout the document. Examples of directed
graphs are given in Figure 1.

2

3

1

4

(a) A directed graph with four vertices, 1,
2, 3, and 4, and ten directed edges, 12, 13,
14, 21, 23, 31, 32, 34, 41, and 43.

2

3

1

4

(b) A directed graph with four vertices, 1,
2, 3, and 4, and six directed edges, 12, 13,
23, 31, 34, and 41.

Figure 1. Two directed graphs. An undirected edge represents two
directed edges, one in each direction. An undirected graph will mean
a graph in which all edges are undirected.

In general, whenever we refer to an undirected graph, we mean that every edge is
bidirected.

2.3. Nested collections. A subset I ⊂ V is strongly connected if the induced
subgraph on I is strongly connected, that is, if for all vertices v, u ∈ I, there is some
directed path contained in I from v to u.

For example, taking Γ to be the directed graph in Figure 1a, the strongly connected
sets of vertices are ∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2, 3, 4}. Taking Γ to be the directed graph in
Figure 1b, the strongly connected sets of vertices are ∅, {1}, {2}, {3}, {4}, {1, 3},
{1, 2, 3}, {1, 3, 4}, and {1, 2, 3, 4}.

Note that any subset U ⊂ V is uniquely partitioned into maximal strongly con-
nected subsets, called strongly connected components of U .

A (multi)set N with elements from P(V ), where P(V ) denotes the powerset of V ,
is a nested (multi)collection if

(N1) for every pair I, J ∈ N , either I ⊂ J , J ⊂ I, or I ∩ J = ∅, and
(N2) for any R ⊂ N such that I ∩ J = ∅ for all distinct I, J ∈ R, each I ∈ R is

a strongly connected component of the subgraph induced by
⋃

J∈R J .
Note that (N2), applied to R = {I}, implies that each I ∈ N is strongly connected.

Note that a multiset N is a nested multicollection if and only if the set N (1) is a nested
collection. We usually disregard the empty set when considering nested collections.

For example, consider Γ to be the directed graph in Figure 1a. The set

{{2}, {4}, {2, 3, 4}, {1, 2, 3, 4}}

is a nested collection. The set

{{1}, {1, 3}, {1, 4}}

is not a nested collection because {1, 3} and {1, 4} do not satisfy (N1). The set

{{2, 4}, {2, 3, 4}, {1, 2, 3, 4}}

Algebraic Combinatorics, Vol. 8 #4 (2025) 999



G. Z. Dantas e Moura, R. C. Telekicherla Kandalam & D. Woodruff

is not a nested collection because R = {{2, 4}} does not satisfy (N2), since the strongly
connected components of {2, 4} are {2} and {4}. The set

{{1}, {3}, {1, 2, 3}, {1, 2, 3, 4}}

is not a nested collection because R = {{1}, {3}} does not satisfy (N2), since the only
strongly connected component of {1, 3} is {1, 3}.

Lemma 2.1. The map N 7→
∑

I∈N I is a bijection between the set of nested multicol-
lections N and the set of multisets T with elements from V .

The proof of Lemma 2.1 is split into two parts: surjectivity and injectivity.

Proof (surjectivity). Let T be a multiset with elements from V . We construct a nested
multicollection N such that T =

∑
I∈N I.

Recall that T (i) denotes the set of elements of T with multiplicity at least i. Note
that T (1) ⊃ T (2) ⊃ · · ·. Let Ni be the set of strongly connected components of the
subgraph induced by T (i). Let N =

∑
i∈Z>0

Ni. Then,

T =
∑

i∈Z>0

T (i) =
∑

i∈Z>0

∑
I∈Ni

I =
∑
I∈N

I.

First, we show that N satisfies (N1). Let I, J ∈ N . Then, I ∈ Ni and J ∈ Nj for
some i, j ∈ Z>0. Recall that I is a strongly connected component of the subgraph
induced by T (i), and J is a strongly connected component of the subgraph induced
by T (j). Without loss of generality, i ⩽ j, therefore, T (i) ⊃ T (j). Therefore, there
exists a strongly connected component K of the subgraph induced by T (i) such that
J ⊂ K. Moreover, since I and K are strongly connected components of the subgraph
induced by T (i), I = K or I ∩ K = ∅. In the first case, I ⊂ J , while in the second
case, I ∩ J = ∅, as desired.

Now we show that N satisfies (N2), that is, for any R ⊂ N such that I ∩J = ∅ for
all distinct I, J ∈ R, each I ∈ R is a strongly connected component of the subgraph
induced by R =

⋃
J∈R J . We prove by induction on the number of elements of R. If

R = ∅, then the statement is vacuously true. Suppose that R has at least one element.
Let i ∈ Z>0 be the minimum index such that R ∩ Ni ̸= ∅, and let I ∈ R ∩ Ni. Then,
all J ∈ R are subsets of T (i), and consequently, R =

⋃
J∈R J is a subset of T (i).

Therefore, I ⊂ R ⊂ T (i). Since I is a strongly connected component of the subgraph
induced by T (i), it follows that I is a strongly connected component of the subgraph
induced by R. The connected components of the subgraph induced by R different
from I are the connected components of R ∖ I. Applying the induction hypothesis
to R ∖ {I}, we obtain that each J ∈ R ∖ {I} is a strongly connected component of
the subgraph induced by R ∖ I, and therefore, each J ∈ R is a strongly connected
component of the subgraph induced by R, as desired.

Therefore, N is a nested multicollection and T =
∑

I∈N I, as desired. □

Proof (injectivity). Let T be a multiset with elements from V . We prove that there
is a unique nested multicollection N such that T =

∑
I∈N I. The proof is by induc-

tion on the number of elements of T . If T = ∅, then N = ∅ is the unique nested
multicollection such that T =

∑
I∈N I.

Suppose that T has at least one element. Let N be a nested multicollection such
that T =

∑
I∈N I. Let T (1) be the set of elements of T with multiplicity at least 1.

Let R be the set of maximal elements of N . Note that, for all v ∈ T (1), there exists
a unique I ∈ R such that v ∈ I. Therefore, T (1) =

∑
I∈R I. Since N is nested and

I ∩ J = ∅ for all distinct I, J ∈ R, it follows that each I ∈ R is a strongly connected
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component of the subgraph induced by T (1). Hence, R is the set of strongly connected
components of the subgraph induced by T (1).

Let T ′ = T − T (1), and let N ′ = N − R. Since T =
∑

I∈N I and T (1) =
∑

I∈R I,
it follows that T ′ =

∑
I∈N ′ I. Since N is nested, N ′ is nested. By the induction

hypothesis, N ′ is unique, and consequently, N is unique. □

For our discussion of bidirected trees in Section 5, we naturally consider nested
collections of bidirected graphs. In this context, condition (N2) of a nested collec-
tion can be simplified, as stated in Lemma 2.2. This lemma is used in the proof of
Proposition 5.16.

Lemma 2.2. Assume Γ is a bidirected graph. A multicollection N is a nested multi-
collection if and only if

(N1) for every pair I, J ∈ N , either I ⊂ J , J ⊂ I, or I ∩ J = ∅,
(N2’) for every pair I, J ∈ N such that I ∩ J = ∅, there are no edges between I

and J , and
(N3’) every I ∈ N is connected.

Proof. Note that, when Γ is a bidirected graph, strongly connectedness is equivalent
to connectedness. Let N be a multicollection satisfying (N1). We show that condi-
tion (N2) is equivalent to conditions (N2’) and (N3’).

First, assume that (N2) holds. Then, applying (N2) to R = {I} for each I ∈ N ,
we obtain (N3’). Moreover, applying (N2) to R = {I, J} for each pair I, J ∈ N such
that I ∩ J = ∅, we obtain (N2’).

Second, assume that (N2’) and (N3’) hold. Let R ⊂ N be such that I ∩ J = ∅ for
all distinct I, J ∈ R. Then, (N2’) implies that there are no edges between any pair
of distinct elements of R, and (N3’) implies that each I ∈ R is connected. Therefore,
the set of connected components of the subgraph induced by

⋃
J∈R J is R, and (N2)

holds. □

2.4. Laurent polynomial ring. Let the coefficient ring R be a ring over Z
containing elements Av for each v ∈ V which are algebraically independent. For
example, R could be Z[Av : v ∈ V ]. Let L denote the Laurent polynomial ring
over R in the independent variables Xv for v ∈ V , that is, L = R[X±1

v : v ∈ V ].
The monomials in L in the variables Xv and X−1

v for v ∈ V are called Laurent
monomials. Any Laurent monomial can be written as

ℓ(U, T ) =
∏
v∈U

Xv

/ ∏
v∈T

Xv,

where U and T are disjoint multisets with elements in V . As a module over R, the
Laurent polynomial ring L has a basis consisting of all Laurent monomials.

2.5. Multifunctions. Let I be a multiset with elements from V . A multifunc-
tion f (of Γ ) on I is a directed multigraph with vertex set V and edge multiset Ef

such that
(F1) for each vertex v ∈ V , the outdegree of v in f is its multiplicity in I, and
(F2) each edge in Ef is either a loop or an edge in E.

The notation f : I means that f is a multifunction on I. If I is a set, then a mul-
tifunction on I is naturally identified with a function from I to V , explaining the
chosen nomenclature.

A multifunction f is acyclic if the only cycles in f are loops. Given two multifunc-
tions f and g on multisets I and J , respectively, we define their sum f + g as the
multifunction on I + J obtained by taking the sum of the edge multisets of f and g.
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For example, take Γ to be the directed graph in Figure 1a. Examples of multifunc-
tions of Γ are given in Figure 2. The multifunctions in Figure 2a and Figure 2b are
acyclic, and the multifunction in Figure 2c is not acyclic.

2

3

1

4

.
(a) A multifunction on {1,
1, 1, 2} with edge multiset
{(1, 1), (1, 2), (1, 2), (2, 3)}.

2

3

1

4

.
(b) A multifunction on
{3, 4} with edge multiset
{(3, 4), (4, 1)}.

2

3

1

4

.
(c) The sum of the mul-
tifunctions in Figures 2a
and 2b.

Figure 2. Multifunctions of the directed graph in Figure 1a.

Given a multifunction f and a subset W ⊂ V , the restriction of f to W , denoted
by f |W , is the multifunction whose edge multiset consists of the edges in Ef with
source in W .

2.6. Weight of a multifunction. The weight of a multifunction f on I, denoted
by wt(f), is the non-Laurent polynomial in L given by

wt(f) =
∏

(v,w)∈Ef

X̃(v,w),

where

X̃(v,w) =
{
Xw if w ̸= v,

Av if w = v.

For example, the weights of the multifunctions in Figures 2a, 2b, and 2c are, respec-
tively,

A1X
2
2X3, X1X4, and A1X1X

2
2X3X4.

The normalized weight of a multifunction f on I, denoted by nwt(f), is the
Laurent polynomial in L given by

nwt(f) = wt(f)∏
v∈I Xv

=
∏

(v,w)∈Ef

X̃(v,w)

Xv
.

For example, the normalized weights of the multifunctions in Figures 2a, 2b, and 2c
are, respectively,

A1X
2
2X3

X3
1X2

= A1X2X3

X3
1

,
X1X4

X3X4
= X1

X3
, and A1X1X

2
2X3X4

X3
1X2X3X4

= A1X2

X2
1
.

We remark that the nomenclature of “weights” and “normalized weights” is not
used by [7], although the concept is present in their work.

Note that both weights and normalized weights are products over edges of the
multifunction, and therefore, if f and g are multifunctions, then

wt(f + g) = wt(f) wt(g) and nwt(f + g) = nwt(f) nwt(g).
Note that the normalized weight of a cycle is 1. This is an important observation that
is used in Lemma 4.6 and Proposition 5.6.
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2.7. The Y Laurent polynomials. Let I be a subset of V . We define the Laurent
polynomial YI ∈ L by

YI =
∑acy

f :I wt(f)∏
i∈I Xi

,

where the sum is over all acyclic multifunctions f on I. We write YI in terms of
normalized weights as YI =

∑acy
f :I nwt(f).

Recall that, since I is a set, a multifunction on I is naturally identified with a
function from I to V .

For example, taking Γ to be the directed graph in Figure 1a, the Laurent polyno-
mial Y{1,2} is
A1X1 +X3X1 +X4X1 +A1A2 +X2A2 +X3A2 +X4A2 +A1X3 +X2X3 +X2

3 +X4X3

X1X2
.

Note that the eleven terms in the numerator correspond to the eleven acyclic multi-
functions on {1, 2}, which are all twelve multifunctions on {1, 2} by assigning one of
the possible four edges to 1, and one of the possible three edges to 2, except for the
assignment of the edge (1, 2) to 1 and the edge (2, 1) to 2 which is not acyclic.

2.8. Graph LP algebra and clusters. The central algebraic structure of our
research is the graph Laurent phenomenon algebra AΓ over R associated to Γ ,
defined by [7]. Lam and Pylyavskyy [7] proved that AΓ is the algebra over R generated
by Xv for v ∈ V and YI for strongly connected I ⊂ V . The reader who is new to
graph LP algebras can take this as the definition of AΓ .

Although only the Laurent polynomials YI for strongly connected I ⊂ V are gen-
erators of AΓ , the Laurent polynomials YI for I ⊂ V are in AΓ as well, as guaranteed
by Lemma 2.3.

Lemma 2.3 ([7, Lemma 4.2]). Let I be a subset of V . Then, YI =
∏

J YJ , where the
product is over the strongly connected components J of the subgraph of Γ induced
by I.

The monomials in AΓ in the elements Xv for v ∈ v and YI for I ⊂ V are simply
called monomials. Any monomial in AΓ can be written as

m(U,S) =
∏
v∈U

Xv

∏
I∈S

YI ,

where U is a multiset with elements in V and S is a multiset with elements in P(V ).
The set of monomials in AΓ is a spanning set of AΓ as a module over R. The mono-
mials in AΓ in the elements YI for I ⊂ V are called Y -monomials, which can be
written as m(∅,S) =

∏
I∈S YI where S is a multiset with elements in P(V ).

The elements Xv for v ∈ V and YI for strongly connected I ⊂ V are grouped
into sets called clusters. We refer to [7] for the definition of clusters. Lam and
Pylyavskyy [7] proved that the clusters of AΓ are the sets of the form

{Xv : v ∈ U} ∪ {YI : I ∈ N }
where U ⊆ V and N is a maximal nested collection on V ∖U . The reader who is new
to graph LP algebras can take this as the definition of the clusters of AΓ .

The monomials in AΓ in the elements of a given cluster are called cluster mono-
mials. Any cluster monomial can be written as

m(U,N ) =
∏
v∈U

Xv

∏
I∈N

YI ,

where U is a multiset with elements in V and N is a nested collection on V ∖ U (1).
The monomials in AΓ in the elements YI for I ⊂ V of a given cluster are called

Algebraic Combinatorics, Vol. 8 #4 (2025) 1003
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cluster Y -monomials, which can be written as m(∅,N ) =
∏

I∈N YI where N is a
nested collection on V .

Recall that Lemma 2.1 provides a bijection between nested multicollections N and
multisets T with elements from V . Therefore, we can reindex the cluster monomials
by a pair (U, T ) where U and T are disjoint multisets with vertices from V , and the
cluster monomial indexed by (U, T ) is m(U, T ) = m(U,N ), where N is the unique
nested multicollection such that T =

∑
I∈N I.

3. Linear independence
In this section, we show that the cluster monomials in a graph LP algebra are linearly
independent, as stated in Theorem 3.1.

Theorem 3.1. The set of cluster monomials of a graph LP algebra is linearly inde-
pendent over R.

The overview of the proof of Theorem 3.1 is as follows. The key observation is
that the cluster monomial m(U, T ) is a linear combination of the Laurent monomials
ℓ(U ′, T ′) with U ′ ⊆ U and T ′ ⊇ T . This observation induces a triangular structure
on the coefficient matrix relating cluster monomials to Laurent monomials, with the
diagonal entries being nonzero. From this triangular structure, the linear indepen-
dence of the cluster monomials follows from the linear independence of the Laurent
monomials.

Lemmas 3.2 and 3.3 establish the triangularity condition, and then we prove The-
orem 3.1. Recall that ℓ(U, T ) denotes the Laurent monomial

∏
v∈U Xv

/∏
v∈T Xv.

Lemma 3.2. Let U1, U2, T1, T2 be multisets with vertices from V such that U1 ∩ T1 =
U2 ∩ T2 = ∅. If U1 ̸⊂ U2, then, when expanding m(U1, T1) as a linear combination
of Laurent monomials over R, the coefficient of ℓ(U2, T2) is 0. If T1 ̸⊃ T2, then,
when expanding m(U1, T1) as a linear combination of Laurent monomials over R, the
coefficient of ℓ(U2, T2) is 0.

Proof. Let N1 be the unique nested multicollection such that T1 =
∑

I∈N1
I. Recall

that

m(U1, T1) =
∏

v∈U1

Xv

∏
I∈N1

YI =
∏

v∈U1
Xv∏

v∈T1
Xv

 ∏
I∈N1

acy∑
f : I

wt(f)

 .

Since
∏

I∈N1

∑acy
f : I wt(f) is a polynomial, the numerator of any term of m(U1, T1)

is a multiple of
∏

v∈U1
Xv. Hence, if U1 ̸⊂ U2, then the coefficient of

ℓ(U2, T2) =
∏

v∈U2
Xv∏

v∈T2
Xv

in m(U1, T1) is 0.
Since

∏
I∈N1

∑acy
f : I wt(f) is a polynomial, the denominator of any term ofm(U1, T1)

is a divisor of
∏

v∈T1
Xv. Hence, if T1 ̸⊃ T2, then the coefficient of

ℓ(U2, T2) =
∏

v∈U2
Xv∏

v∈T2
Xv

in m(U1, T1) is 0. □

Lemma 3.3. Let U, T be multisets with vertices from V . When expanding m(U, T )
as a linear combination of Laurent monomials over R, the coefficient of ℓ(U, T )
is

∏
v∈T Av.
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Proof. Let N be the unique nested multicollection such that T =
∑

I∈N I. Recall
that

m(U, T ) =
∏
v∈U

Xv

∏
I∈N

YI =
∏

v∈U Xv∏
v∈T Xv

 ∏
I∈N

acy∑
f : I

wt(f)

 .

Note that
∏

I∈N
∑acy

f : I wt(f) is a polynomial with constant term
∏

v∈T Av, ob-
tained from the constant acyclic function on each I ∈ N . Therefore, the coefficient of
ℓ(U, T ) in m(U, T ) =

∏
v∈U Xv

/∏
v∈T Xv is

∏
v∈T Av. □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that there exists a nontrivial linear combination of
cluster monomials that equals 0. Explicitly, suppose that there exists coefficients
c(U, T ), not all zero, such that∑

U,T

c(U, T )m(U, T ) = 0.

Pick (U0, T0) with c(U0, T0) ̸= 0 such that |U0| − |T0| is minimized. This implies
that, for all (U, T ) ̸= (U0, T0) such that c(U, T ) ̸= 0, it holds that |U |−|T | ⩾ |U0|−|T0|,
and consequently, U ̸⊂ U0 or T ̸⊃ T0.

Hence, by Lemma 3.2, the coefficient of ℓ(U0, T0) in c(U, T )m(U, T ) is 0 for all
(U, T ) ̸= (U0, T0) such that c(U, T ) ̸= 0; and, by Lemma 3.3, the coefficient of ℓ(U0, T0)
in the expression c(U0, T0)m(U0, T0) is c(U0, T0)

∏
v∈T0

Av. Therefore, the coefficient
of ℓ(U0, T0) in

∑
U,T c(U, T )m(U, T ) is c(U0, T0)

∏
v∈T0

Av ̸= 0, a contradiction. □

We remark that the triangularity argument used to prove linear independence
does not directly imply that the cluster monomials form a spanning set. In finite-
dimensional vector spaces, any order of the indices of the basis has a minimal element,
and the triangularity argument would imply that the linear combinations of the basis
elements form a spanning set. However, this intuition does not fully carry over to
infinite-dimensional vector spaces. In our context, the issue arises from the absence of
a minimal element in the ordering of pairs (U, T ) of multisets with vertices from V .

4. Spanning set
In this section, we show that the cluster monomials in a graph LP algebra form a
spanning set, as stated in Theorem 4.1.

Theorem 4.1. Any monomial is a linear combination of cluster monomials over R.

The overview of the proof of Theorem 4.1 is as follows. We show that any Y -
monomial can be expressed as a linear combination of cluster Y -monomials over Z.
This involves establishing a relation on the normalized weights of tuples of functions
on multicollections with equal sum. Using the fact that the normalized weight of a
cycle is 1, we derive a corresponding relation on acyclic functions, which we then
translate into a relation on Y -monomials. We then use [7, Lemma 4.7], a result on
the product of an X-variable and a Y -variable, to show Theorem 4.1.

4.1. Product of an X-variable and a Y -variable. Let p : v →I w denote the
statement that p is a vertex non-repeating directed path from v to w with intermediary
vertices in I. Let I ∖ p denote the set of vertices in I that are not in p. Lemma 4.2
allows us to rewrite the product of Xv and YI whenever v ∈ I.
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Lemma 4.2 ([7, inferred from Lemma 4.7]). Let I ∈ P(V ) and v ∈ I. Then,

XvYI =
∑
w∈I

v→I w∑
p

YI∖pXw +
∑
w ̸∈I

v→I w∑
p

YI∖pAw.

Any monomial only in the X-variables is already a cluster monomial, and
Lemma 4.2 essentially gives us a way to multiply an X-variable with a Y -variable. It
remains to understand how to multiply Y -variables.

Thus, our proof strategy is to focus first on Y -monomials. We show first that
cluster Y -monomials span Y -monomials. Then, we use Lemma 4.2 to deduce that
cluster monomials span all monomials.

4.2. Integer expansion of Y -monomials. In this subsection, we show that cluster
Y -monomials span Y -monomials, as stated in Theorem 4.3.

Theorem 4.3. Any Y -monomial is an integer linear combination of cluster Y -
monomials.

Before proving Theorem 4.3 in its generality, we discuss a special case that moti-
vates the proof. Consider the Y -monomial m(∅, {I, J}) = YIYJ where I and J are
disjoint subsets. Note that

YIYJ =
∑
f,g

nwt(f + g),

where the sum is over acyclic functions f on I and g on J . Given such a pair f, g,
their sum f + g is a function on I ∪ J . However, f + g may not be acyclic, as cycles
that are not entirely contained in I or in J may appear in f +g. Since the normalized
weight of a cycle is 1, removing these cycles do not affect the normalized weight of
f + g. With this in mind, one might expect that

YIYJ =
∑

C

YI∪J∖C ,

where the sum runs over families C of disjoint cycles in I ∪ J that are not fully
contained in I or J (including the empty family), and V (C) denotes the set of vertices
in the cycles in C. Finally, the right-hand-side is the sum of a cluster Y -monomial
YI∪J and lower order terms YI∪J∖C that can be dealt with inductively.

The more general setting has two complications: the monomial m(∅,S) might have
|S| > 2; and the sets in S have nontrivial intersections. Nevertheless, the core idea
is roughly the same: study the sum of acyclic functions on the sets in S, how they
relate to functions on the sum of the sets in S, and use induction to handle lower
order terms.

Given a tuple of multifunctions, we define its normalized weight as the product of
the normalized weights of its elements.

Lemma 4.4 (Preimages Lemma). Let F1,F2,G be sets of tuples of multifunctions.
If ϕ1 : F1 → G and ϕ2 : F2 → G preserve normalized weights, and |ϕ−1

1 (g)| = |ϕ−1
2 (g)|

for all g ∈ G, then ∑
f∈F1

nwt(f) =
∑

f∈F2

nwt(f).

Proof. For i ∈ {1, 2}, apply the weight-preserving property and double-count pairs
(f, g) ∈ F × G such that ϕi(f) = g to obtain∑

f∈F

nwt(f) =
∑
f∈F

nwt(ϕi(f)) =
∑
g∈G

∣∣ϕ−1
i (g)

∣∣ nwt(g).
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Therefore,∑
f∈F1

nwt(f) =
∑
g∈G

∣∣ϕ−1
1 (g)

∣∣ nwt(g) =
∑
g∈G

∣∣ϕ−1
2 (g)

∣∣ nwt(g) =
∑

f∈F2

nwt(f). □

Lemma 4.5. Let S be a multiset with elements in P(V ). Let T =
∑

I∈S I be the
multiset containing the vertices that appear in the sets of S, counting multiplicities.
Let T be the multiset whose elements are T (1), T (2), · · · ∈ P(V ). Then,∏

S∈S

∑
f :S

nwt(f) =
∏

T ′∈T

∑
f :T ′

nwt(f).

Proof. Let S1, S2, . . . , S|S| be the elements of S. Let T1, T2, . . . , T|T | be the elements
of T . Note that T =

∑|S|
i=1 Si =

∑|T |
j=1 Tj . Define the sets

F1 = {(f1, f2, . . . , f|S|) : fi is a multifunction on Si},
F2 = {(f1, f2, . . . , f|T |) : fj is a multifunction on Tj},

G = {g : g is a multifunction on T},

and the nwt-preserving functions ϕ1 : F1 → G and ϕ2 : F2 → G defined by
ϕ1(f1, f2, . . . , f|S|) = f1 + f2 + · · · + f|S| and ϕ2(f1, f2, . . . , f|T |) = f1 + f2 + · · · + f|T |.

Fix g ∈ G. Let’s count the number of (f1, f2, . . . , f|S|) ∈ F1 such that
ϕ1(f1, f2, . . . , f|S|) = g. Fix v ∈ V . Let gv denote the multiset of edges in g
from v. Note that |gv| is the multiplicity of v in T , which is the number of sets Si in
S that contain v. Hence, the number of ways to appropriately assign the edges of gv

to the functions f1, f2, . . ., f|S| is

|gv|!

1
∣∣g

(1)
v

∣∣
· 2

∣∣g
(2)
v

∣∣
· 3

∣∣g
(3)
v

∣∣
· · ·
.

Therefore, the number of (f1, f2, . . . , f|S|) ∈ F1 such that ϕ1(f1, f2, . . . , f|S|) = g is∣∣ϕ−1
1 (g)

∣∣ =
∏
v∈V

|gv|!

1
∣∣g

(1)
v

∣∣
· 2

∣∣g
(2)
v

∣∣
· 3

∣∣g
(3)
v

∣∣
· · ·
.

The same argument applies to ϕ2, and we obtain, for all g ∈ G,∣∣ϕ−1
1 (g)

∣∣ =
∏
v∈V

|gv|!

1
∣∣g

(1)
v

∣∣
· 2

∣∣g
(2)
v

∣∣
· 3

∣∣g
(3)
v

∣∣
· · ·

=
∣∣ϕ−1

2 (g)
∣∣ .

Hence, by Lemma 4.4, we obtain∑
f∈F1

nwt(f) =
∑

f∈F2

nwt(f). □

Given S ∈ P(V ), we denote by CS the set of families of vertex-disjoint simple
directed cycles in the restriction of Γ to S. Given a family C ∈ CS , we denote by
V (C) the set of vertices that appear in the cycles in C. For example, if S = {1, 2, 3, 4}
and Γ is as in Figure 1a, then CS contains 14 elements: 1 empty family, 4 families
of a single 3-cycle, 2 families of a single 4-cycle, 5 families of a single 2-cycle, and 2
families of two 2-cycles. These 14 families are shown in Figure 3.

Lemma 4.6. Let S ∈ P(V ). Then,∑
f :S

nwt(f) =
∑

C∈CS

YS∖V (C).
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Figure 3. The families of vertex-disjoint simple directed cycles in
CS for S = {1, 2, 3, 4} and Γ as in Figure 1a. In order, the set V (C)
of vertices in each family C is ∅, {1, 2, 3}, {1, 2, 3}, {1, 3, 4}, {1, 3, 4},
{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3, 4},
{1, 2, 3, 4}.

Proof. Given a multifunction f on S, since S is a set, the outdegree of a vertex
in f is at most 1 and, consequently, no two cycles in f share a vertex. Therefore,
each multifunction f : S can be uniquely decomposed as the sum of a family C of
vertex-disjoint cycles and an acyclic function g : S ∖ V (C). Similarly, given a family
of vertex-disjoint cycles C and an acyclic function g : S ∖ V (C), a function f : S can
be obtained by taking the sum of g and the cycles in C. Thus, there is a bijection
between the set of functions f : S and the set of pairs (C, g) where C is a family of
vertex-disjoint cycles in S and g is an acyclic function on S∖V (C). Moreover, if this
bijection associates f to (C, g), then the normalized weight of f is the product of
the normalized weight of g and the normalized weight of the cycles in C. Since the
normalized weight of a cycle is 1, it follows that nwt(f) = nwt(g). Finally, we have∑

f :S
nwt(f) =

∑
C∈CS

acy∑
g:S∖V (C)

nwt(g) =
∑

C∈CS

YS∖V (C). □

Lemma 4.7. Let T be a multiset of vertices. Let T be the multiset whose elements are
T (1), T (2), · · · ∈ P(V ). Then, the Y -monomial m(∅, T ) is a cluster Y -monomial.

Proof. Let Ni be the set of strongly connected components of the subgraph of Γ
induced by T (i) for each i ∈ Z>0, and let N =

∑
i Ni. Lemma 2.1 implies that N

is a nested multicollection. Finally, Lemma 2.3 implies that YT (i) =
∏

J∈Ni
YJ , and

consequently

m(∅, T ) =
∏

i

YT (i) =
∏

i

∏
J∈Ni

YJ =
∏

J∈N
YJ = m(∅,N ). □

With these lemmas in hand, we can prove the main result of this section, Theo-
rem 4.3.

Theorem (Theorem 4.3, repeated). Any Y -monomial is an integer linear combination
of cluster Y -monomials.

More precisely, for any multiset S with elements in P(V ), the Y -monomial m(∅,S)
is an integer linear combination of cluster Y -monomials. Moreover, a cluster Y -
monomials m(∅,N ) appearing in the integer linear combination of m(∅,S) satisfies
that all vertices in a set of N are vertices in a set of S.

Proof. We apply strong induction on
∣∣∑

I∈S I
∣∣, that is, the number of vertices in a set

of S, counting multiplicities. Assume, by induction hypothesis, that the result holds
for any multiset R with elements in P(V ) such that

∣∣∑
J∈R J

∣∣ < ∣∣∑
I∈S I

∣∣.
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Let T =
∑

I∈S I, the multiset containing the vertices in a set of S, counting
multiplicities. Let T be the multiset whose elements are T (1), T (2), · · · ∈ P(V ). By
Lemma 4.7, the Y -monomial m(∅, T ) is a cluster Y -monomial.

If T = S, then m(∅,S) = m(∅, T ) is a cluster Y -monomial, and we are done.
Otherwise, T ̸= S. From Lemma 4.5, we know that∏

S∈S

∑
f :S

nwt(f) =
∏

T ∈T

∑
f :T

nwt(f).

Applying Lemma 4.6 to each term of both products, we obtain∏
S∈S

∑
CS∈CS

YS∖CS
=

∏
T ∈T

∑
CT ∈CT

YT∖CT
.

Rewriting the equation above in terms of Y -monomials, we obtain∑
(C

(1)
S

, C
(2)
S

, ... )∈

C(1)
S

×C(2)
S

×···

m(∅, {S(1) ∖ C
(1)
S , . . . }) =

∑
(C

(1)
T

, C
(2)
T

, ... )∈

C(1)
T

×C(2)
T

×···

m(∅, {T (1) ∖ C
(1)
T , . . . }).

Note that for ∅ = C
(1)
S = C

(2)
S = · · ·, the term in the sum in the left-hand side is the

Y -monomial m(∅,S). Therefore, the Y -monomial m(∅,S) is equal to

(1)
∑

(C
(1)
T

, C
(2)
T

, ... )∈
C(1)

T
×C(2)

T
×···

m(∅, {T (1) ∖ C
(1)
T , . . . }) −

∑
(C

(1)
S

, C
(2)
S

, ... )∈

C(1)
S

×C(2)
S

×···
except all ∅

m(∅, {S(1) ∖ C
(1)
S , . . . }).

Note that each term in (1) is of the form ±m(∅,R), and satisfies either that
R = T or that

∣∣∑
I∈R I

∣∣ < ∣∣∑
I∈S I

∣∣. Hence, by Lemma 4.7 and by the induction
hypothesis, each monomial m(∅,R) in (1) is an integer linear combination of cluster
Y -monomials, and therefore, the Y -monomial m(∅,S) is an integer combination of
cluster Y -monomials.

Moreover, note that each monomial in (1) of the form ±m(∅,R) have the property
that all vertices in a set of R are vertices in a set of S. Consequently, by the induction
hypothesis, the cluster Y -monomials m(∅,N ) in the expansion of m(∅,S) are such
that all vertices in a set of N are vertices in a set of S.

Therefore, by induction, the result holds. □

4.3. Expansion of monomials. We proceed to the proof of the main result of this
section, Theorem 4.1.

Theorem (Theorem 4.1, repeated). Any monomial is a linear combination of cluster
monomials over R.

More precisely, for any multiset U with elements in V and any multiset S with
elements in P(V ), the monomial m(U,S) is a linear combination of cluster monomials
over R.

Proof. We apply strong induction on
∣∣∑

I∈S I
∣∣, the number of vertices in a set of S,

counting multiplicities. Assume, by induction hypothesis, that the monomial m(T,R)
is a linear combination over R of cluster monomials whenever

∣∣∑
J∈R J

∣∣ < ∣∣∑
I∈S I

∣∣.
Assume there exists v ∈ U such that v ∈ S for some S ∈ S. We can write

m(U,S) = m(U − {v},S − {S}) ·Xv · YS .
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Apply Lemma 4.2 to Xv and YS to obtain

XvYS =
∑
w∈S

v→Sw∑
p

YS∖pXw +
∑
w ̸∈S

v→Sw∑
p

YS∖pAw.

Therefore,

m(U,S) =
∑
w∈S

v→Sw∑
p

m(U − {v} + {w},S − {S} + {S ∖ p})

+
∑
w ̸∈S

v→Sw∑
p

Awm(U − {v},S + {S ∖ p} − {S}).

This implies that we can write m(U,S) as a linear combination over R of mono-
mials of the form m(T,R), where

∣∣∑
J∈R J

∣∣ < ∣∣∑
I∈S I

∣∣. Therefore, by the induction
hypothesis, m(U,S) is a linear combination over R of cluster monomials.

Otherwise, assume all v ∈ U satisfy v ̸∈ S for all S ∈ S. In other words, S ∈
P(V ∖ U). We can write m(U,S) = m(U,∅)m(∅,S). Apply Theorem 4.3 to obtain
that m(∅,S) is a linear combination over R of cluster Y -monomials of the form
m(∅,N ), where N is a nested multicollection such that the vertices in sets of N are
a subset of the vertices in sets of S. Explicitly,

m(∅,S) =
∑
N
c(N )m(∅,N ),

where the sum is over all nested multicollections N such that the vertices in sets of
N are a subset of the vertices in sets of S. Multiplying by m(U,∅), we obtain

m(U,S) =
∑
N
c(N )m(U,N ).

Since S ∈ P(V ∖U), it follows that N ∈ P(V ∖U) for all N in the sum above, and con-
sequently, m(U,N ) is a cluster monomial. Therefore, m(U,S) is a linear combination
over R of cluster monomials. □

5. Nonnegativity for trees
In this section, we prove Theorem 1.3, which is the special case of Conjecture 1.2 where
Γ is a bidirected tree. Throughout this section, we assume that Γ is a bidirected tree,
that is, a directed graph such that vu ∈ E(Γ ) ⇐⇒ uv ∈ E(Γ ) and whose underlying
undirected graph is a tree.

Theorem (Theorem 1.3, repeated). If Γ is a bidirected tree, each monomial of AΓ is
a linear combination of cluster monomials over R with nonnegative coefficients.

The outline of the proof of Theorem 1.3 is as follows. First, in Proposition 5.2, we
explicitly expand YIYJ as a sum of YI∪JYI∩J and lower order terms of the form YKYL

with K ⊆ I ∪J and L ⊆ I ∩J . This is done similarly to the proof of Theorem 4.3, but
the restriction to bidirected trees and to the product of two Y -variables allows us to
derive an explicit formula that guarantees nonnegative coefficients. Then, using that
Γ is bidirected, it follows that the Y -monomials of AΓ are nonnegative integer linear
combinations of cluster Y -monomials. Finally, Theorem 1.3 follows using Lemma 4.2.

We remark that in order to prove Conjecture 1.2 where Γ is a bidirected graph
that is not necessarily a tree, the only missing step is to generalize Proposition 5.2 by
showing that, if Γ is a bidirected graph, then YIYJ is a sum of YI∪JYI∩J and lower
order terms.
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5.1. Nonnegative formula for the product of two Y -variables. Lam and
Pylyavskyy [7, Theorem 6.1] give a Ptolemy-like formula for expanding YIYJ into a
positive integer linear combination of cluster monomials in the case where Γ is a path.
In order to extend their formula, we introduce the notion of a path from I to J .

Definition 5.1 (Path from I to J). Let Γ be a bidirected tree. Let I, J ⊂ V . A path
P = w1w2 . . . wk of Γ is said to be a path from I to J if w1 ∈ I∖J , w2, . . . , wk−1 ∈
I ∩ J , and wk ∈ J ∖ I.

Let WI(P ), WJ(P ), WI∪J(P ), and WI∩J(P ) be the sets of vertices of P that are
in I, in J , in I ∪ J , and in I ∩ J , respectively. Explicitly,

WI(P ) = {w1, w2, w3, . . . , wk−1}, WJ(P ) = {w2, w3, . . . , wk},
WI∪J(P ) = {w1, w2, w3, . . . , wk}, WI∩J(P ) = {w2, w3, . . . , wk−1}.

Given a family P = {P1, P2, . . . , Pt} of disjoint paths from I to J , define WX(P) =⋃t
i=1 WX(Pi) for X ∈ {I, J, I ∪ J, I ∩ J}, that is, the set of vertices of the paths in P

that are in X for X ∈ {I, J, I ∪ J, I ∩ J}.

Note that the empty set is a family of (zero) disjoint paths from I to J .

· · ·

· · ·

Figure 4. Illustration of a family P of (two) disjoint paths from I
to J . The vertices of the blue region are in WI(P), the vertices of the
red region are in WJ(P), the vertices of blue or red regions are in
WI∪J(P), and the vertices of blue and red regions are in WI∩J(P).

Proposition 5.2 gives an explicit formula for expanding YIYJ into a positive integer
linear combination of cluster monomials.

Proposition 5.2. Let Γ be a tree. Let I, J ⊂ V . The expansion of YIYJ into cluster
monomials is given by

YIYJ =
∑

P
YI∪J∖WI∪J (P)YI∩J∖WI∩J (P),

where the sum is taken over all families P of disjoint paths from I to J .

Before proving Proposition 5.2, we give two examples.

Example 5.3. Let Γ = Pn, the path graph with vertices {1, 2, . . . , n}. Figure 5a shows
the path graph P6. Let I = {1, 2, . . . , k} and J = {l, l+1, . . . , n}. If k < l−1, then there
is no path from I to J and Proposition 5.2 implies that YIYJ = YI∪J , which is a cluster
monomial. If k ⩾ l − 1, then the only path from I to J is P = {l − 1, l, . . . , k, k + 1}.
Therefore, YIYJ is expanded into two cluster monomials: one corresponding to the
empty family of paths, and the other corresponding to the family containing only P .
Explicitly, we recover [7, Theorem 6.1]’s Ptolemy-like formula:

Y{1,...,k}Y{l,...,n} = Y{1,...,n}Y{l,...,k} + Y{1,...,l−2,k+2,...,n}.
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1 2 3 4 5 6

(a) The path graph P6, with six vertices, 1,
2, 3, 4, 5, and 6, and five edges, 12, 23, 34,
45, and 56.

1 2 3

4 5 6

(b) The tree with six vertices, 1, 2, 3, 4, 5,
and 6, and five edges, 23, 12, 45, 56, and 52.

Figure 5. Two examples of trees.

Example 5.4. Let Γ be the tree with vertex set V = {1, 2, 3, 4, 5, 6} and undirected
edge set E = {23, 12, 45, 56, 52}, as shown in Figure 5b. Let I = {1, 2, 4, 5} and let
J = {2, 3, 5, 6}. There are six families of disjoint paths from I to J ,
∅,

{
(1, 2, 3)

}
,

{
(4, 5, 6)

}
,

{
(1, 2, 5, 6)

}
,

{
(4, 5, 2, 3)

}
,

{
(1, 2, 3), (4, 5, 6)

}
.

Therefore, Proposition 5.2 implies that YIYJ is expanded into six cluster monomials,
one for each family of disjoint paths. Explicitly,
Y{1,2,4,5}Y{2,3,5,6} = Y{1,2,3,4,5,6}Y{2,5} +Y{4,5,6}Y{5} +Y{1,2,3}Y{2} +Y{4,3} +Y{1,6} +1.

For organizational purposes, the proof of Proposition 5.2 is divided into multiple
lemmas. Before we proceed with the lemmas, one more definition is salient.

Definition 5.5 (Multifunction along path). Let P = w1w2 . . . wk be a path from I
to J . The multifunction along the path P is the multifunction p on the multiset

{w1, w
2
2, w

2
3, . . . , wk} = WI(P ) ⊔WJ(P ) = WI∪J(P ) ⊔WI∩J(P )

with directed edges
w1w2, w2w3, . . . , wk−1wk, wkwk−1, wk−1wk−2, . . . , w2w1.

Let P = {P1, . . . , Pm} be a family of disjoint paths from I to J . The multifunction
along the family of disjoint paths P is the sum of the multifunctions along each
path in P, that is, p =

∑m
i=1 pi.

· · ·

· · ·

Figure 6. Illustration of the multifunction along the family of dis-
joint paths P from I to J in Figure 4.

Since a multifunction along a path from I to J consists of a sum of 2-cycles, whose
normalized weight is 1, we have the following proposition:

Proposition 5.6. The normalized weight of the multifunction along a family of dis-
joint paths from I to J is 1.

Assume Γ is a directed subgraph of a bidirected tree. Let I, J ⊂ V . Let F be the
set of pairs (f, g) such that f is an acyclic function on I and g is an acyclic function
on J . Hence, YIYJ =

∑
(f,g)∈F nwt(f + g).

The outline of the proof of Proposition 5.2 is as follows. After proving some prop-
erties of multifunctions along paths, we partition F into sets FP for each family P
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of disjoint paths from I to J , so that the multifunction p along P is a submultiset of
the sum f + g. Then, we show that FP is in a nwt-preserving bijection with the set
HP of pairs (f ′, g′) such that f ′ is an acyclic function on (I ∪ J) ∖WI∪J(P) and g′

is an acyclic function on (I ∩ J) ∖WI∩J(P). Finally, aggregating over all families of
disjoint paths, we obtain the desired expansion.

5.1.1. Properties of multifunctions along paths. Note that I ⊔ J = (I ∪ J) + (I ∩ J).
That is, vertices v ∈ I∩J have multiplicity 2 in I⊔J , while vertices v ∈ (I∪J)∖(I∩J)
have multiplicity 1 in I ⊔ J .

Proposition 5.7. Let h be a multifunction on a submultiset of I ⊔ J . Let W ⊂ I ∪ J
be a strongly connected component of h. Assume that W is not entirely contained in I
or J . Then, the restriction h|W to edges with source in W is a multifunction along a
path from I to J .

Proof. Let k = |W |. Since W is not entirely contained in I, there exists w1 ∈ W such
that w1 ∈ I ∖ J . Since W is not entirely contained in J , there exists wk ∈ W such
that wk ∈ J ∖ I.

Consider the undirected graph γ obtained from the subgraph of Γ induced by W
by removing the directions of the edges. Since W is a strongly connected component
of h ⊂ Γ , the undirected graph γ is connected. Since Γ is a subgraph of a bidirected
tree, the undirected graph γ is a tree. Each vertex w ∈ W has multiplicity 2 in I ⊔ J ,
except for w1 and wk which have multiplicity 1. Therefore, each vertex w ∈ W of γ
has degree at most 2, and the vertices w1 and wk have degree 1.

A walk from w1 to wk in γ exists, since γ is connected, and passes through
all vertices of W , since the degree of each vertex is at most 2. Therefore, W =
{w1, w2, . . . , wk}, where w1, w2, w3, . . . , wk−1, wk are the vertices of a walk from w1
to wk in γ.

For each i ∈ {1, 2, . . . , k−1}, the undirected edge wiwi+1 is an edge of γ. Therefore,
at least one of the directed edges wiwi+1 and wi+1wi is an edge of h|W . If only one
of wiwi+1 and wi+1wi is an edge of h|W , say wiwi+1, then there is a (simple) directed
path from wi+1 to wi in h|W . Since W is a strongly connected component of h, there
exists a (simple) cycle in h|W of length at least 3. Since Γ is a directed subgraph of
a bidirected tree, this is impossible. Therefore, both wiwi+1 and wi+1wi are edges
of h|W .

Since this gives the total count of edges in h|W , these are the only edges of h|W ,
and h|W is the multifunction along the path w1, w2, w3, . . . , wk−1, wk from I to J . □

Note that the edges of h|W are uniquely determined by W and γ.

Proposition 5.8. Let p be a multifunction along a path P = w1w2 . . . wk from I to J .
Then,

(i) there exist unique acyclic functions pI on WI(P ) and pJ on WJ(P ) such that
u = pI + pJ ,

(ii) there does not exist acyclic functions pI∪J on WI∪J(P ) and pI∩J on WI∩J(P )
such that u = pI∪J + pI∩J .

Proof (existence of (i)). Define pI on WI(P ) as the multifunction consisting of the
edges w1w2, w2w3, . . . , wk−1wk, and define pJ on WJ(P ) as the multifunction con-
sisting of the edges w2w1, w3w2, . . . , wkwk−1. Then, p = pI + pJ . □

Proof (uniqueness of (i)). Let pI and pJ be acyclic functions on WI and WJ such
that u = pI + pJ . Note that w1w2 ∈ pI . If wiwi+1 ∈ pI for all i ∈ {2, . . . , k− 1}, then
we obtain the construction above. Otherwise, let i ∈ {2, . . . , k − 1} be the smallest
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· · ·

Figure 7. Illustration of construction of pI on WI(P ) (in blue) and
pJ on WJ(P ) (in red) for which p = f + g.

index for which wiwi+1 /∈ pI . On the one hand, since wi sends an edge in pI , we obtain
wiwi−1 ∈ pI . On the other hand, by minimality, we have wi−1wi ∈ pI . Hence, pI is
not acyclic, a contradiction. Therefore, the only acyclic functions pI and pJ on WI

and WJ such that p = pI + pJ are the ones constructed above. □

Proof (nonexistence of (ii)). Assume there exist acyclic functions pI∪J on WI∪J and
pI∩J on WI∩J such that p = pI∪J +pI∩J . Note that w1w2 ∈ pI∪J and wkwk−1 ∈ pI∪J .
Let i ∈ {1, 2, . . . , k−1} be the largest index such that wiwi+1 ∈ pI∪J . If i = k−1, then
wk−1wk, wkwk−1 ∈ pI∪J so pI∪J is not acyclic, a contradiction. Assume i < k − 1.
Then, wiwi+1 ∈ pI∪J . By maximality, wi+1wi+2 /∈ pI∪J . Since wi+1 sends an edge in
pI∪J , we obtain wi+1wi ∈ pI∪J . Hence, pI∪J is not acyclic, a contradiction. Therefore,
there do not exist acyclic functions pI∪J and pI∩J on WI∪J and WI∩J such that
p = pI∪J + pI∩J . □

The previous proposition can be stacked to obtain analogous proposition for mul-
tifunctions along families of disjoint paths.

Corollary 5.9. Let p be the multifunction along a family P of disjoint paths from I
to J . Then,

(i) there exist unique acyclic functions pI on WI(P) and pJ on WJ(P) such that
p = pI + pJ , and

(ii) there does not exist acyclic functions pI∪J on WI∪J(P) and pI∩J on WI∩J(P)
such that p = pI∪J + pI∩J .

5.1.2. Partition of F into FP . Given a multifunction p along a family of disjoint
paths P from I to J , define FP to be the set of pairs of acyclic functions (f̄ , ḡ) such
that

• f̄ is an acyclic function on I ∖WI(P),
• ḡ is an acyclic function on J ∖WJ(P), and
• f̄ + ḡ has no strongly connected components which are not entirely contained

in I nor entirely contained in J .

Lemma 5.10. ∑
(f,g)∈F

nwt(f + g) =
∑

P

∑
(f̄ ,ḡ)∈FP

nwt(f̄ + ḡ),

where the sum is over all families of disjoint paths P from I to J .

Proof. It suffices to construct a nwt-preserving bijection between

F and
⊔
P

FP .

Define α : F →
⊔

P FP as follows. Given (f, g) ∈ F , consider the strongly connected
components of f + g. By Proposition 5.7, each strongly connected component that is
not entirely contained in I or J has an associated path from I to J . Let P be the family
of disjoint paths associated with these components, and let p be the multifunction
along P. Recall the existence of unique acyclic functions pI on WI(P) and pJ on
WJ(P) such that p = pI + pJ from Corollary 5.9. Since the p ⊂ f + g, we have pI ⊂ f
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and pJ ⊂ g. Define α(f, g) = (f−pI , g−pJ), which are acyclic functions on I∖WI(P)
and J ∖WJ(P). The map is well-defined, since f − pI + g − pJ = f + g − p has no
strongly connected components which are not entirely contained in I nor entirely
contained in J . Moreover, since nwt(p) = 1,

nwt(f − pI + g − pJ) = nwt(f + g − p) = nwt(f + g),
and consequently α is nwt-preserving.

Define β :
⊔

P FP → F as follows. Let (f̄ , ḡ) ∈ FP for some family P of disjoint
paths from I to J . Let p be the multifunction along P. Define β(f̄ , ḡ) = (f̄+pI , ḡ+pJ).
Note that, since nwt(p) = 1,

nwt(f̄ + pI + ḡ + pJ) = nwt(f̄ + ḡ + p) = nwt(f̄ + ḡ),
and consequently β is nwt-preserving.

Direct computation shows that α and β are inverses of each other. Therefore, α is
a nwt-preserving bijection between F and

⊔
P FP , as desired. □

5.1.3. Bijection between FP and HP . Given a multifunction along a family of disjoint
paths P from I to J , define HP be the set of pairs (f ′, g′) such that f ′ is an acyclic
function on (I ∪ J) ∖WI∪J(P), and g′ is an acyclic function on (I ∩ J) ∖WI∩J(P).
From Corollary 5.9, f ′ + g′ has no strongly connected components which are not
entirely contained in I nor entirely contained in J . By definition, we have

YI∪J∖WI∪J (P)YI∩J∖WI∩J (P) =
∑

(f ′,g′)∈HP

nwt(f ′ + g′).

Proposition 5.11. Let P be a family of disjoint paths from I to J . Then,∑
(f,g)∈FP

nwt(f + g) =
∑

(f ′,g′)∈HP

nwt(f ′ + g′).

To prove this proposition, we define a nwt-preserving bijection between FP and HP .

Proof of Proposition 5.11. We define the map ϕ : FP → HP as follows. Given
(f, g) ∈ FP , partition the vertex set (I ∪ J) ∖ WI∪J(P) into strongly connected
components of f + g. Let VI be the set of vertices in components entirely contained
in I, and let VJ be the set of vertices in components entirely contained in J but not
in I. By definition of FP , there are no components of f + g which are not entirely
contained in I nor entirely contained in J . Hence, VI and VJ form a partition of
(I ∪ J) ∖WI∪J(P). Define ϕ(f, g) = (f ′, g′) where

f ′ = f |VI
+ g|VJ

and g′ = f |VJ
+ g|VI

.

Claim 5.12. The map ϕ is a well-defined nwt-preserving map from FP to HP .

Proof. Note that f ′ + g′ = f + g. Hence, ϕ is nwt-preserving. We check that ϕ is well-
defined, that is, (f ′, g′) ∈ HP . First, we check that f ′ and g′ are functions on (I∪J)∖
WI∪J(P) and on (I ∩ J) ∖WI∩J(P), respectively. Assume v ∈ (I ∩ J) ∖WI∩J(P).
If v ∈ VI , then v has exactly one outgoing edge in f ′ as part of f |VI

, and exactly one
outgoing edge in g′ as part of g|VI

. If v ∈ VJ , then v has exactly one outgoing edge
in f ′ as part of g|VJ

, and exactly one outgoing edge in g′ as part of f |VJ
. Assume

v ∈ (I ∪ J) ∖ (I ∩ J) ∖WI∪J(P). If v ∈ VI , then v has exactly one outgoing edge
in f ′ as part of f |VI

, and no outgoing edges in g′. If v ∈ VJ , then v has exactly one
outgoing edge in g′ as part of g|VJ

, and no outgoing edges in f ′. Therefore, f ′ and g′

are functions on (I ∪ J) ∖WI∪J(P) and on (I ∩ J) ∖WI∩J(P), respectively.
Now, we check that f ′ and g′ are acyclic. If c ⊂ f ′ is a cycle, then c ⊂ f ′+g′ = f+g.

Since f + g has no strongly connected components which are not entirely contained
in I nor entirely contained in J , then c is entirely contained in I or J . If c is entirely
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contained in I, then f ′ = f |VI
+g|VJ

implies that c ⊂ f |VI
, a contradiction because f is

acyclic. By an analogous argument, if c is entirely contained in J , then g′ = f |VJ
+g|VI

implies that c ⊂ g|VI
, a contradiction because g is acyclic. Therefore, f ′ is an acyclic

function on (I ∪ J) ∖WI∪J(P). By an analogous argument, g′ is an acyclic function
on (I ∩ J) ∖WI∩J(P). Therefore, (f ′, g′) ∈ HP . □

Moreover, define the map ψ : HP → FP as follows. Given (f ′, g′) ∈ HP , partition
the vertex set (I∪J)∖WI∪J(P) into strongly connected components of f ′ +g′. Let VI

be the set of vertices in components entirely contained in I∖WI(P), and let VJ be the
set of vertices in components entirely contained in J ∖WJ(P) but not in I ∖WI(P).
Recall that there are no components of f ′ + g′ which are not entirely contained in I
nor entirely contained in J . Hence, VI and VJ form a partition of (I ∪ J)∖WI∪J(P).
Define ψ(f ′, g′) = (f, g) where

f = f ′|VI
+ g′|VJ

and g = f ′|VJ
+ g′|VI

.

Claim 5.13. The map ψ is a well-defined nwt-preserving map from HP to FP .

The proof of Claim 5.13 is analogous to the proof of Claim 5.12.

Claim 5.14. The maps ϕ and ψ are inverses of each other.

Proof. Let (f, g) ∈ FP , and let (f ′, g′) = ϕ(f, g) ∈ HP . Since f + g = f ′ + g′, the sets
of strongly connected components of f + g and f ′ + g′ are the same, i.e., VI and VJ

are the same in the definitions of ϕ and ψ. Therefore, if (f ′′, g′′) = ψ(f ′, g′), then

f ′′ = f ′|VI
+ g′|VJ

= (f |VI
+ g|VJ

)|VI
+ (f |VJ

+ g|VI
)|VJ

= f |VI
+ f |VJ

= f.

Therefore, ψ◦ϕ = idFP . By an analogous argument, ϕ◦ψ = idHP . Therefore, ϕ and ψ
are inverses of each other. □

Finally, the map ϕ is a nwt-preserving bijection between FP and HP . As a conse-
quence, we have ∑

(f,g)∈FP

nwt(f + g) =
∑

(f ′,g′)∈HP

nwt(f ′ + g′). □

5.1.4. Aggregating over all families of disjoint paths. We are finally ready to prove
Proposition 5.2.

Proposition (Proposition 5.2, repeated). Let I, J ⊂ V . The expansion of YIYJ into
cluster monomials is given by

YIYJ =
∑

P
YI∪J∖WI∪J (P)YI∩J∖WI∩J (P),

where the sum is taken over all families P of disjoint paths from I to J .

Proof of Proposition 5.2. Proposition 5.11 implies that, for each family P of disjoint
paths from I to J , ∑

(f,g)∈FP

nwt(f + g) = YI∪J∖WI∪J (P)YI∩J∖WI∩J (P).

Adding over all P ∈ P and using Lemma 5.10, we obtain

YIYJ =
∑

(f,g)∈F

nwt(f+g) =
∑

P

∑
(f,g)∈FP

nwt(f+g) =
∑

P
YI∪J∖WI∪J (P)YI∩J∖WI∩J (P).

□
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5.2. Nonnegative expansion of Y -monomials. In this subsection, we show that
cluster Y -monomials span Y -monomials with nonnegative coefficients when Γ is a
bidirected tree, as stated in Proposition 5.16. This is the analogous result to Theo-
rem 4.3 in the context of nonnegativity for bidirected trees.

Definition 5.15 (Dominance order). Let A and B be two multisets whose elements
are positive integers, and have equal sum. We say that A dominates B, denoted A ⊵ B,
if for all k ∈ Z>0, the sum of the k largest elements of A is at least the sum of the k
largest elements of B. (If k is larger than the size of a multiset, then the sum of the
k largest elements is the sum of all elements.)

For example, {4, 4, 1} ⊵ {4, 3, 1, 1}, since 4 ⩾ 4, 4+4 ⩾ 4+3, 4+4+1 = 9 ⩾ 4+3+1,
and 4 + 4 + 1 ⩾ 4 + 3 + 1 + 1. It is known that the dominance order is a partial order
on multisets whose elements are positive integers and have a fixed sum n.

Dominance order is useful because, given a multicollection S with sets I and J of
vertices, if T is the nested multicollection obtained by replacing I and J by I ∪J and
I ∩ J , then the multiset of sizes of sets in T is dominated by the multiset of sizes of
sets in S, that is, {|T | : T ∈ T } ⊵ {|S| : S ∈ S}, where equality holds if and only if
{I, J} = {I ∪ J, I ∩ J}, that is, I ⊂ J or J ⊂ I.

Finally, note that both the dominance order and the reverse dominance order are
well-founded on multisets of positive integers with a fixed sum, meaning that any
non-empty set of multisets with a fixed sum has a minimal element with respect to
the dominance order and a maximal element with respect to the reverse dominance
order. This means that we can apply induction on the dominance order and the reverse
dominance order on multisets of positive integers with a fixed sum.

Proposition 5.16. Assume Γ is a bidirected tree. Then, each Y -monomial of AΓ is
a nonnegative integer linear combination of cluster Y -monomials.

More precisely, the Y -monomial m(∅,S) is a nonnegative integer linear combina-
tion of cluster Y -monomials m(∅,N ), where N is a nested multicollection such that
the vertices in sets of N are a subset of the vertices in sets of S.

Proof of Proposition 5.16. We apply strong induction on
∣∣∑

S∈S S
∣∣, the number

of vertices in a set of S, counting multiplicities; and then we apply induction
on {|S| : S ∈ S}, the multiset of sizes of sets in S, with respect to reverse dominance
order.

Let S be a multicollection. Assume, by induction hypothesis, that the result holds
for all nested multicollections R such that

∣∣∑
R∈R R

∣∣ < ∣∣∑
S∈S S

∣∣. Also assume, by
induction hypothesis, that the result holds for all nested multicollections R such that∣∣∑

R∈R R
∣∣ =

∣∣∑
S∈S S

∣∣ and R ▷ S.
Recall Lemma 2.2, which states that a multicollection N is nested if and only

if it satisfies conditions (N1), (N2’), and (N3’). We split into whether S satisfies
conditions (N1) and (N2’).

If (N1) or (N2’) fails, then there exist I, J ∈ S such that I ̸⊂ J and J ̸⊂ I.
This implies that {I ∪ J, I ∩ J} ̸= {I, J}. Given a family P of disjoint paths from
I to J , let RP denote the nested multicollection obtained by replacing I and J
by (I ∪ J) ∖WI∪J(P) and (I ∩ J) ∖WI∩J(P). By Proposition 5.2,

m(∅,S) =
∑

P
m(∅,RP).

For each non-empty P, the nested multicollection RP has fewer vertices than S,
that is,

∣∣∑
R∈RP

R
∣∣ <

∣∣∑
S∈S S

∣∣. Therefore, by the induction hypothesis, each
m(∅,RP) is a nonnegative integer linear combination of cluster Y -monomials.
For P = ∅, the nested multicollection R∅ has the same number of vertices as S,
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that is,
∣∣∣∑R∈R∅

R
∣∣∣ =

∣∣∑
S∈S S

∣∣, but additionally it satisfies R∅ ▷ S. Therefore, by
the induction hypothesis, m(∅,R∅) is a nonnegative integer linear combination of
cluster Y -monomials. Hence, it follows that m(∅,S) is also a nonnegative integer
linear combination of cluster Y -monomials.

Otherwise, assume that conditions (N1) and (N2’) hold. Let N be the multicol-
lection obtained from S by replacing each set I ∈ S with the connected components
of I. Now, N satisfies (N3’), while (N1) and (N2’) are preserved from S. Therefore,
by Lemma 2.2, N is a nested multicollection. Moreover, by Lemma 2.3, we have
m(∅,S) = m(∅,N ), so m(∅,S) equals to a cluster Y -monomial, as desired. □

5.3. Nonnegative expansion of monomials. In this subsection, we prove Theo-
rem 1.3 as a corollary of Proposition 5.16. This is very similar to the proof of Theo-
rem 4.1 as a corollary of Theorem 4.3, with the additional care of making sure that
the coefficients are nonnegative.

Theorem (Theorem 1.3, repeated). Assume that Γ is a bidirected tree. Then, each
monomial of AΓ is a linear combination of cluster monomials with over R with non-
negative coefficients.

The proof of Theorem 1.3 is completely analogous to the proof of Theorem 4.1: re-
place all instances of “integer linear combination” to “nonnegative integer linear com-
bination”, replace all instances of “linear combination over R” to “linear combination
over R with nonnegative coefficients”, and replace the application of Theorem 4.3 to
an application of Proposition 5.16.
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