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The Saxl conjecture and the tensor square
of unipotent characters of GLn(q)

Emmanuel Letellier & GyeongHyeon Nam

Abstract We know from [9] that if for some triple of partitions (λ, µ, ν) of n the Kronecker
coefficient ⟨χλ ⊗ χµ, χν⟩ is non-zero then the corresponding multiplicity ⟨Uλ ⊗ Uµ, Uν⟩ for
the unipotent characters of GLn(Fq) is also non-zero. A conjecture of Saxl says that if µ is
a staircase partition, then all irreducible characters of S|µ| appear non-trivially in the tensor
square χµ ⊗χµ. Therefore the Saxl conjecture implies its analogue for unipotent characters, i.e.
all unipotent characters of GL|µ|(Fq) appear non-trivially in the tensor square Uµ ⊗Uµ when µ
is a staircase partition. In this paper we prove the analogue of the Saxl conjecture for unipotent
characters. In a second part we describe conjecturally the set of all partitions µ for which the
tensor square Uµ ⊗ Uµ contains non-trivially all the unipotent characters of GL|µ|(Fq).

1. Introduction
For a partition µ of n, we let χµ denote the corresponding irreducible character of
the symmetric group Sn and we let Uµ denote the corresponding unipotent character
of GLn(Fq) (see §2.3). If µ = (n) then χµ and Uµ are the trivial characters and if
µ = (1n), then χµ is the sign character and Uµ is the Steinberg character St.

Given a triple of partitions µ = (µ1, µ2, µ3) of n we consider

gµ := ⟨χµ1
⊗ χµ2

⊗ χµ3
, 1⟩Sn

, Uµ(q) :=
〈

Uµ1
⊗ Uµ2

⊗ Uµ3
, 1
〉

GLn(Fq)
.

The first one is a non-negative integer known as a Kronecker coefficient and the second
one is a polynomial in q. One of the most challenging problem in algebraic combina-
torics (going back to Murnaghan in 1938, cf. [13]) is to describe combinatorially the
set

{µ = (µ1, µ2, µ3) | gµ ̸= 0}.

The analogous problem for Uµ(q) is relatively new. As far as we know, it was first
investigated in [5]. Since then, substantial progress was made [10][9][8][4][14].

In [9], it is shown that the two problems are somehow related, namely it is proved
that if gµ is non-zero then Uµ(q) is also non-zero (the converse is false).

A 10 years old conjecture due to Saxl states that if µ1 = µ2 is a staircase partition
then gµ is non-zero for any partition µ3. The main theorem of this paper is the
following theorem (as predicted by the Saxl conjecture and the results of [9]), which
is proved in §3.
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Theorem 1.1 (Analogue of the Saxl conjecture for unipotent characters). If µ1 = µ2

is a staircase partition, then Uµ(q) ̸= 0 for any partition µ3.

In a second part we are interested in the unipotent characters whose tensor-square
contains all the unipotent characters. By the above theorem, the unipotent characters
attached to the staircase partitions do satisfy this property. By [4][9], we know that
the Steinberg characters St also satisfy this property.

We make the following conjecture (see Conjecture 4.1).

Conjecture 1.2. Let µ = (µ1, µ2, . . . ) be a partition of n.
(1) If µ1 ⩽ ⌈n/2⌉, then for any partition τ of n we have

U(µ,µ,τ)(q) ̸= 0.

(2) If µ1 > ⌈n/2⌉, then
U(µ,µ,(1n))(q) = 0.

We verify this conjecture for n ⩽ 8 using Mattig’s experimental data [12]. Theorem
1.1 is also an evidence for this conjecture as the staircase partitions do satisfy the
condition on µ1.

The results of this paper and [9] suggests that Conjecture 1.2 could be reduced to a
statement on Kronecker coefficients (see §4). However we could not find a precise rea-
sonable conjectural statement on Kronecker coefficients that would imply Conjecture
1.2.

2. Preliminaries
We denote by P the set of all partitions and for a non-negative integer n, we let
Pn be the subset of partitions of size n. For a partition λ = (λ1, λ2, . . . , λr) with
λ1 ⩾ λ2 ⩾ · · · ⩾ λr we denote by ℓ(λ) = r its length and by |λ| = λ1 + · · · + λr its
size.

2.1. Roots of star-shaped graphs. Let us start by explaining briefly why root
systems appear in our context.

Crawley-Boevey [1] associated to any k-tuple O = (O1, . . . , Ok) of adjoint orbits of
gln(K) (with K an algebraically closed field) a star-shaped graph ΓO with k branches
(whose lengths are determined by the Jordan type of the orbits). Using the theory
of quiver representations, he found a very nice solution in terms of the root system
of ΓO of the Deligne-Simpson problem which is to determine for which k-tuples of
adjoint orbits O the following equation has a solution

X1 + · · · + Xk = 0, X1 ∈ O1, . . . , Xk ∈ Ok.

In [3], we use Fourier transforms to link the counting (over finite fields) of the number
of solutions of the above equation with the multiplicity of the trivial character of
GLn(Fq) in a tensor product of irreducible characters of GLn(Fq). We use this in [9]
to study tensor products of unipotent characters of GLn(Fq).

We now recall some definitions for an arbitrary graph (see [7, Chapter 5] for more
details).

Assume given a finite graph Γ = (I, Ω) where I is the set of vertices and Ω the set
of edges. We assume that Γ has no loops.

For i ∈ I we let ei be the element of ZI defined as

(ei)j = δi,j
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An analogue of the Saxl conjecture

Denote by C = (cij)i,j∈I the Cartan matrix of Γ, i.e.

cij =
{

2 if i = j

−nij otherwise

where nij is the number of edges between the vertices i and j. The Cartan matrix
defines a symmetric bilinear form ( , ) on ZI by

(ei, ej) = cij .

For i ∈ I, we have the fundamental reflection si : ZI → ZI

si(v) = v − (v, ei)ei, v ∈ ZI .

If nij is at most 1 (which will be our case), then the i-th coordinate of si(v) equals

(
∑

j

vj) − vi

where j runs over the vertices which are connected to i by an edge, and the j-th
coordinate of si(v), for j ̸= i, remains unchanged (i.e. (si(v))j = vj).

We say that v ∈ ZI is a dimension vector if the coordinates of v are all non-
negative.
Example 2.1. Consider the graph

4 22

1

with vector dimension v whose coordinates are as indicated on the graph. Then if
s0 denotes the reflection at the central vertex, then the coordinate of s0(v) at the
central vertex is 2 + 2 + 1 − 4 = 1 and the coordinates at the other vertices remain
unchanged.

The Weyl group W of Γ is the subgroup of automorphisms ZI → ZI generated
by the fundamental reflections {si | i ∈ I}. A vector v ∈ ZI is called a real root if
v = w(ei) for some i ∈ I and w ∈ W .
Example 2.2. The dimension vector

2 11

1

is a real root as it can be obtained from e0 (where 0 is the labeling of the central
vertex) by applying first to e0 the reflections at the other vertices to get the dimension
vector with coordinate 1 everywhere and then by applying the reflection s0.

The set of fundamental imaginary roots M is defined as the subset of v ∈ ZI\{0}
with connected support such that for all i ∈ I we have

(ei, v) ⩽ 0.

In the next proposition we will give a more explicit necessary and sufficient condition
for a dimension vector to be in M in the case of star-shaped graph.

Algebraic Combinatorics, Vol. 8 #4 (2025) 1121
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Recall that an imaginary root is a vector which is of the form w(v) or w(−v)
for some v ∈ M and w ∈ W . A root is said to be positive if its coordinates are all
non-negative. An imaginary positive root is of the form w(δ) with δ ∈ M . The Weyl
group W preserves thus the set of positive imaginary roots.

From now we assume that Γ is a star-shaped graph with 3 legs as follows

0

[1, 1] [1, 2]
· · ·

[1, r1 − 1] [1, r1]

[2, 1] [2, 2]
· · ·

[2, r2 − 1] [2, r2]

[3, 1] [3, 2]
· · ·

[3, r3 − 1] [3, r3]

where I = {0} ∪ {[i, j] | 1 ⩽ i ⩽ 3, 1 ⩽ j ⩽ ri}.
The reflection s0 at the central vertex 0 acts on v = (vi)i∈I ∈ ZI as

s0(v)i =
{

v[1,1] + v[2,1] + v[3,1] − v0 if i = 0,

vi otherwise

and the other reflections s[i,j] act on v as

s[i,j](v)r =
{

v[i,j−1] + v[i,j+1] − v[i,j] if r = [i, j]
vr otherwise.

with v[i,ri+1] = 0.
For v = (vi)i ∈ ZI define the integer

(1) δ(v) := v0 −
3∑

i=1
(v0 − v[i,1]).

For a triple µ = (µ1, µ2, µ3) of partitions of n of length respectively r1+1, r2+1, r3+1,
we let vµ be the dimension vector of Γ with coordinate n at the central vertex 0 and
n −

∑j
s=1 µi

j at the vertex [i, j].
For example if µ = ((13), (13), (13)), then the coordinates of vµ are as indicated

on the following graph.

3

2 1

2 1

2 1

We have the following proposition.
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Proposition 2.3. [9, Proposition 20] A vector is in M if and only if it is the form
vµ for some triple of partitions µ and
(2) δ(vµ) = n − µ1

1 − µ2
1 − µ3

1 ⩾ 0.

Let NI be the set of dimension vectors of Γ and let (NI)∗ be the subset of dimension
vector with non-increasing coordinates along each leg, and let (NI)∗∗ ⊂ (NI)∗ be the
subset of dimension vectors of the form vµ.

We have the following result.

Proposition 2.4.
(i) The subgroup H of W generated by the set of reflections {si | i ∈ I\{0}}

preserves (NI)∗.
(ii) For any v ∈ (NI)∗, there exists a dimension vector u ∈ (NI)∗∗ such that

v = h(u) for some h ∈ H. More precisely for each i = 1, 2, 3, the sequence
σi(u) := (u0 − u[i,1], u[i,1] − u[i,2], . . . , u[i,ri−1] − u[i,ri], u[i,ri])

is the non-increasing sequence obtained by re-ordering the coordinates of
σi(v).

Proof. (i) It is sufficient to show that s[i,j]((NI)∗) = (NI)∗ for any [i, j]. Note that v ∈
(NI)∗ if and only if the coordinates of σi(v) are non-negative for all i. Furthermore,
from the definition of s[i,j], we see that the coordinates of σi(s[i,j](v)) are obtained
from those of σi(v) by permuting the j-th coordinate with the (j + 1)-th coordinate,
and that σk(s[i,j](v)) = σk(v) for k ̸= i, hence the result.
(ii) As the effect of the reflection s[i,j] on the sequence σi(v) is to permute the j-th
coordinate with the (j + 1)-th coordinate, we can obtain a vector dimension u such
that the sequences σi(u), with i = 1, 2, 3, are partitions. □

For a triple µ = (µ1, µ2, µ3) ∈ P3
n, we denote by Γµ the graph with 3 legs as above

and with ri := ℓ(µi) − 1. Notice that vµ is then a dimension vector of Γµ.

2.2. Representations of the symmetric group and symmetric functions.
For a partition µ of size n we denote by χµ the corresponding irreducible character
of the symmetric group Sn and by χµ

λ its value at an element of cycle-type λ. The
trivial character is χ(n) and the sign character χ(1n).

We denote by Rn the Z-module generated by all irreducible characters of Sn and
we consider the ring

R =
+∞⊕
n=0

Rn

with R0 = Z and with product defined by

fn · fm = IndSn+m

Sn×Sm
(fn × fm).

Then R is a commutative, associative, graded ring with an identity element. It is
equipped with the usual scalar product ⟨ , ⟩ making the basis of irreducible characters
an orthonormal basis.

Let x = {x1, x2, . . . } be an infinite set of variables and let Λ = Λ(x) be the ring of
symmetric functions.

For a partition µ = (µ1, µ2, . . . ) we let
pµ = pµ(x) = (xµ1

1 + xµ1
2 + · · · )(xµ2

1 + xµ2
2 + · · · ) · · ·

be the corresponding power sum symmetric function. It is equipped with a scalar
product (Hall pairing) such that

⟨pλ, pµ⟩ = δλµzλ

Algebraic Combinatorics, Vol. 8 #4 (2025) 1123
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where zλ denotes the size of the centralizer in S|λ| of an element of S|λ| of cycle-type
λ.

The Frobenius characteristic map [11, Chap. I, §7] is a ring isomorphism ch : R → Λ
defined by

ch(f) =
∑

|µ|=n

z−1
µ fµpµ,

for any f ∈ Rn where fµ denotes the value of f at the conjugacy class of cycle-type
µ. Moreover, ch is an isometry with respect to the scalar products.

Recall also that the Frobenius characteristic map of the irreducible character χµ

is the Schur symmetric function sµ = sµ(x).
Recall that the base change matrix between the two base {sµ}µ and {pµ}µ is given

by the character table {χλ
µ} of symmetric groups, more precisely

(3) sλ =
∑

|µ|=|λ|

χλ
µ

pµ

zµ
.

Given two partitions λ and µ respectively of size n and m, and a partition ν of
n + m, the Littlewood-Richardson coefficient cν

λµ is defined by

cν
λµ : =

〈
χν , IndSn+m

Sn×Sm
(χλ ⊠ χµ)

〉
(4)

= ⟨sν , sλsµ⟩ .(5)
Choose a total order on the set of all partitions and denote by To the set of non-

increasing sequences of partitions ωo = ω1ω2 · · · ωr. The size of ωo is defined as

|ωo| =
r∑

i=1
|ωi|

and we denote by To
n the elements of size n.

It will be convenient to write the elements of To in the form (ω1)n1(ω2)n2 · · · (ωs)ns

with ω1 > ω2 > · · · > ωs.
We will need the following generalization of the Littlewood-Richardson coefficients:
For ωo = (ω1)n1(ω2)n2 · · · (ωs)ns ∈ To

n and for a partition ν of n, we generalize (4)
as

cν
ωo :=

〈
χν , IndSn

Sωo

(
(χω1

)⊠n1 ⊠ · · · ⊠ (χωs

)⊠ns

)〉
where

Sωo =
s∏

i=1
(S|ωi|)ni ⊂ Sn.

For a partition µ we denote by Vµ an irreducible representation of S|µ| affording the
character χµ and we put

Vωo =
s⊗

i=1
(Vωi)⊗ni .

This is an Sωo-module.
For a partition µ of |ωo| we have

cµ
ωo = dim HomSn

(
Vµ, IndSn

Sωo
(Vωo

)
)

= dim HomSωo (Vµ, Vωo) .

The last equality is by Frobenius reciprocity.
Now the group

Wωo :=
s∏

i=1
Sni

Algebraic Combinatorics, Vol. 8 #4 (2025) 1124
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acts on the space Vωo by the permutation action of Sni
on (Vαi)⊗ni and can be

regarded as a subgroup of the normalizer of Sωo in Sn (which is the semi-direct
product Sωo ⋊ Wωo).

Therefore it acts on the space
Cµ

ωo := HomSωo (Vµ, Vωo
)

as
w · f(v) := w · f(w−1 · v)

for f ∈ Cµ
ωo , v ∈ Vωo and w ∈ Wωo .

We now explain how to express the term
Tr (w , Cµ

ωo)
with w ∈ Wωo in terms of Schur functions.

We consider a total ordering on the set of pairs (d, λ) where d is a strictly positive
integer and where λ is a non-zero partition. Define T to be the set of types, namely
the set of sequences

(d1, ω1)m1(d2, ω2)m2 · · · (ds, ωs)ms

with (d1, ω1) > (d2, ω2) > · · · > (ds, ωs). The size of a type ω = {(di, ωi)ni}i is

|ω| :=
s∑

i=1
nidi|ωi|

and we denote by Tn the set of types of size n.
Given a family {fλ}λ of symmetric functions indexed by partitions, we define for

any type ω = {(di, ωi)ni}i, a symmetric function

fω :=
∏

i

fωi(xdi)ni

where xd stands for the set {xd
1, xd

2, . . . }.
Notice that giving ωo = (ω1)n1 · · · (ωs)ns ∈ To

n and a conjugacy class of Wωo (or
equivalently a partition of ni for all i) defines a type ω ∈ Tn.

Example 2.5. If ωo = (12)4(31)6 ∈ To
26, then Wωo = S4 × S6 and if we choose the

partitions (2, 2) and (3, 2, 1), then the associated type is
ω = (2, (12))2(3, (31))(2, (31))(1, (31)) ∈ T26.

We have the following proposition which generalizes Formula (5).

Proposition 2.6. [8, Proposition 6.2.5] Let ωo = (ω1)n1 · · · (ωs)ns ∈ To
n and w ∈

Wωo , then
Tr (w , Cµ

ωo) = ⟨sµ, sω⟩
where ω is the type defined from the pair (ωo, w).

Example 2.7. Consider ωo = (12)(1)2 and µ = (3, 1). Then Wωo = S2 since the
unique partition (1) of 1 has multiplicity 2.

Using the above proposition, we wish to compute

Tr
(

σ,C(3,1)
(12)(1)2

)
where σ is the non-trivial element of S2.

Notice that the type ω associated to (ωo, σ) is ω = (1, (12))(2, 1) and so
sω = s(12)(x)s(1)(x2)

= s(12)p2(x).

Algebraic Combinatorics, Vol. 8 #4 (2025) 1125
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Using Formula (3) to express p2 in terms of Schur functions together with
Littlewood-Richardson coefficients, we compute〈

s(3,1)(x), sω

〉
=
〈
s(3,1)(x), s(12)(x)s(2)(x) − s(12)(x)s(12)(x)

〉
=
〈
s(3,1)(x), s(3,1)(x) − s(22)(x) − s(14)(x)

〉
= 1.

This shows that Tr
(

σ,C(3,1)
(12)(1)2

)
= 1, equivalently, C(3,1)

(12)(1)2 is the trivial representa-
tion.

2.3. Unipotent characters of GLn(Fq). Denote by B the subgroup of GLn of
upper triangular matrices and denote by C[GLn(Fq)/B(Fq)] the C-vector space with
basis the set GLn(Fq)/B(Fq). The group GLn(Fq) acts by left multiplication on the
latter set and so acts on C[GLn(Fq)/B(Fq)].

The unipotent representations of GLn(Fq) are defined as the irreducible con-
stituents of C[GLn(Fq)/B(Fq)] and they are naturally parametrized by the irreducible
characters of Sn and so by the partitions of n.

We will denote by Uµ the unipotent character corresponding to the partition µ.
Then

U (n1) = IdGLn(Fq), U (1n) = St

where St denotes the Steinberg character of GLn(Fq).
Given a triple µ = (µ1, µ2, µ3) partitions of size n, we consider the multiplicities

gµ =
〈

χµ1
⊗ χµ2

⊗ χµ3
, 1
〉

Sn

, Uµ(q) :=
〈

Uµ1
⊗ Uµ2

⊗ Uµ3
, 1
〉

GLn(Fq)
.

Recall that the first one is a non-negative integer known as a Kronecker coefficient
while the second one is a polynomial in q with non-negative integer coefficients (see
[9, Theorem 4]).

Theorem 2.8. [9, Proposition 6] If gµ ̸= 0 then Uµ(q) ̸= 0. In fact the term gµ

contributes to the constant term of Uµ(q) (i.e. gµ ⩽ Uµ(0)).

The converse of the above theorem is false. For instance if µ = ((1n), (1n), (1n)),
then gµ = 0 but Uµ(q) ̸= 0 (see [9, §3.6] for n = 3).

2.4. Generalities on tensor products of unipotent characters. We con-
sider the set P of triples of partitions of the same size and we repeat what we did in
§2.2 with P instead of P.

Namely we choose a total ordering on P and we denote by To

n the set of se-
quences ωo = (ω1)n1(ω2)n2 · · · (ωs)ns of elements of P with ω1 > · · · > ωs such that∑

i ni|ωi| = n.
Define

Sωo :=
s∏

i=1
(S|ωi|)ni ⊂ Sn, Vωo :=

s⊗
i=1

(Vωi)⊗ni , Wωo :=
s∏

i=1
Sni

where for n ∈ N∗ and µ = (µ1, µ2, µ3) ∈ P we put

Sn = Sn × Sn × Sn, Vµ = Vµ1 ⊠ Vµ2 ⊠ Vµ3 .

Define the Wωo-module

Cµ
ωo := HomSωo (Vωo , Vµ) .

Algebraic Combinatorics, Vol. 8 #4 (2025) 1126



An analogue of the Saxl conjecture

Remark 2.9. Notice that we have a natural map To

n → (To
n)3, ωo 7→ (ωo

1, ωo
2, ωo

3)
where ωo

i is obtained by mapping each ωj ∈ P in ωo = (ω1)n1 · · · (ωs)ns to its i-th
coordinate.

Notice that the multiplicities of partitions in ωo
i may be larger than n1, n2, . . . , ns :

For instance if we take ωo = ((12), (21), (21))((21), (12), (21)), then ωo
1 = ωo

2 = (12)(21)
and ωo

3 = (21)2.
As vector spaces, we have

Cµ
ωo =

3⊗
i=1

Cµi

ωo
i

where µ = (µ1, µ2, µ3). Via the diagonal embedding of Wωo in Wωo
1

× Wωo
2

× Wωo
3
,

this is an isomorphism of Wωo-modules.

We have the following result.

Theorem 2.10. [9, Corollary 5] Let µ = (µ1, µ2, µ3) ∈ P be of size n (i.e. |µ1| =
|µ2| = |µ3| = n). Assume that there exists ωo = (ω1)n1 · · · (ωs)ns ∈ To

n such that the
two following conditions are satisfied:

(1) The dimension vector vωi is a root of Γωi for all i = 1, . . . , s,
(2) ⟨Cµ

ωo , 1⟩Wωo
̸= 0.

Then Uµ(q) ̸= 0.

Lemma 2.11. Theorem 2.10 implies Theorem 2.8.

Proof. If we take ωo = ((1), (1), (1))n, then the condition (1) of the above theorem
is satisfied as the graph is the Dynkin diagram A1 with dimension vector 1 at the
unique vertex.

Moreover Sωo = (S1)n is the trivial subgroup of Sn, Wωo = Sn and Vωo = C.
Therefore for µ = (µ1, µ2, µ3) of size n,

Cµ
ωo = Hom(C, Vµ1 ⊠ Vµ2 ⊠ Vµ3) = Vµ1 ⊠ Vµ2 ⊠ Vµ3

as Sn-modules (for the diagonal action). Therefore ⟨Cµ
ωo , 1⟩Wωo

= gµ and so if it is
non-zero then so is Uµ(q) by Theorem 2.10. □

Remark 2.12. Theorem 2.10 also implies that if vµ is a root then Uµ(q) ̸= 0 as in
this case we can take µ for ωo.

Example 2.13. Let us give an example where the condition of Theorem 2.10 is satis-
fied but vµ is not a root and gµ = 0. Moreover this example will be used later.

Consider
µ = ((22), (22), (3, 1)).

Then (Γµ, vµ) is as follows
4 22

1

We can check that the corresponding Kronecker coefficient gµ vanishes (and so the
condition of Theorem 2.8 is not satisfied) and that vµ is not a root (by applying first
the central reflection to vµ and then reflections at other vertices). Let us see that the
condition of Theorem 2.10 is satisfied.

Algebraic Combinatorics, Vol. 8 #4 (2025) 1127
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Take ωo = ω1(ω2)2 with ω1 = ((12), (12), (12)) and ω2 = ((1), (1), (1)). Then vα1

is the longest root of the Dynkin diagram D4 and ω2 is the unique positive root of
A1. We have

C(22)
(12)(1)2 = C, C(3,1)

(12)(1)2 = C.

We need to compute the action of Wωo = S2 on these two spaces. Denote by σ the
non-trivial element of S2, by Example 2.7 we have

Tr
(

σ , C(3,1)
(12)(1)2

)
= 1.

Therefore the action of S2 on C(3,1)
(12)(1)2 is trivial and so S2 acts trivially on

Cµ
ωo = C(22)

(12)(1)2 ⊗ C(22)
(12)(1)2 ⊗ C(3,1)

(12)(1)2

as the tensor square of C(22)
(12)(1)2 must be the trivial S2-module (in fact a calculation

shows that C(22)
(12)(1)2 is the sign representation of S2). We thus deduce that

⟨Cµ
ωo , 1⟩Wωo

= 1.

The condition of Theorem 2.10 is thus satisfied and so we have Uµ(q) ̸= 0. The result
of [9] is more precise and tells us that

Uµ(q) = ⟨Cµ
ωo , 1⟩Wωo

= 1
which is consistent with the experimental data.

3. An analogue of the Saxl conjecture for unipotent
characters

Fix a positive integer d, put n =
∑d

i=1 i and consider the partition ξd = (d, d−1, . . . , 1)
of n.

Recall that the Saxl conjecture says that for any partition τ of n we have
g(ξd,ξd,τ) ̸= 0.

The Saxl conjecture implies the following theorem which is the main theorem of this
paper.

Theorem 3.1. For any partition τ of n we have
U(ξd,ξd,τ)(q) ̸= 0.

Let us choose a partition τ = (τ1, τ2, . . . , τs) of n. The proof of this theorem is
divided into three cases :

(1) τ1 ⩽ n − d and d ⩾ 7,
(2) τ1 ⩽ n − d and d < 6,
(3) τ1 > n − d.
To ease the notation we will denote the multipartition (ξd, ξd, τ) by τ .

3.1. The case τ1 ⩽ n−d and d ⩾ 7. The aim of this section is to prove the following
result.

Proposition 3.2. If τ1 ⩽ n − d and d ⩾ 7 then the dimension vector vτ is an
imaginary root of Γτ .

Together with Remark 2.12, this implies that Theorem 3.1 is true when τ1 ⩽ n − d
and d ⩾ 7.

Lemma 3.3. If τ1 ⩽ n − 2d, then vτ is a fundamental imaginary root of Γτ .
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Proof. From Equation (2), we have δ(vτ ) = n − (2d + τ1).
If τ1 ⩽ n − 2d, then

δ(vτ ) = n − (2d + τ1) ⩾ 0
from which we deduce that vτ is a fundamental imaginary root by Proposition 2.3. □

To prove Proposition 3.2 we are thus reduced to prove the following result:

Proposition 3.4. If n − 2d < τ1 ⩽ n − d and d ⩾ 7 then the dimension vector vτ is
an imaginary root of Γτ .

Proof. Let us first explain the strategy of the proof. We assume that

n − 2d < τ1 ⩽ n − d

and we write τ1 = n − 2d + k for some integer 1 ⩽ k ⩽ d.
Notice that

δ(vτ ) = n − 2d − τ1 = −k

and so vτ is not a fundamental imaginary root. To see that vτ is an imaginary root,
we will construct an element w ∈ W such that

δ(w(vτ )) ⩾ 0,

and w(vτ ) has the form vµ i.e. such that w(vτ ) is a fundamental imaginary root. As
W preserves positive imaginary roots, this will prove that vτ is a positive imaginary
root.

To construct such a w we will use the following process. We apply the central
reflection s0 to vµ. This will have the good effect of increasing the δ value but will
have the wrong effect of creating a dimension vector which is not in the form vµ,
for some µ, anymore. Therefore we will apply reflections at other vertices to get a
dimension vector of the form vµ using Proposition 2.4(ii). At the end of the first
step of the process we will have a dimension vector v(1)

τ of the form vµ such that
δ(v(1)

τ ) > δ(vτ ). If δ(v(1)
τ ) < 0, we repeat the process with v(1)

τ and we keep going
until we get a dimension vector v(m)

τ with a non-negative δ.
We now explain this in detail. We first assume that d ⩾ 8. Notice that (Γτ , vτ ) is

as follows

n

n−d n−2d+1 n−3d+3
· · ·

1

n−d n−2d+1 n−3d+3
· · ·

1

2d−k 2d−k−τ2 2d−k−τ2−τ3
· · ·

τr

d−1 d−2 d−3 2

d−1 d−2 d−3 2

τ2 τ3 τ4 τr−1

d

d

n−2d+k

where the black color integers indicate the coordinates of vτ and the red color integers
on the edges denote the successive differences between the coordinates of vτ , i.e.
σi(vτ ).

We now apply the central reflection s0 and we get (Γτ , s0(vτ ))
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n−k

n−d n−2d+1 n−3d+3
· · ·

1

n−d n−2d+1 n−3d+3
· · ·

1

2d−k 2d−k−τ2 2d−k−τ2−τ3
· · ·

τr

d−1 d−2 d−3 2

d−1 d−2 d−3 2

τ2 τ3 τ4 τr−1

d−k

d−k

n−2d+k

We have s0(vτ ) ∈ (NI)∗ and δ(s0(vτ )) = 0 but s0(vτ ) is not anymore in (NI)∗∗ as
we now see in detail.

Since τ is a partition of n we have τ1 + τ2 ⩽ n and so 2d − k ⩾ τ2. Moreover as
d ⩾ 8, we have

(6) n = d(d + 1)
2 ⩾ 4d

from which we get n − 2d ⩾ 2d − k. Therefore the successive differences between the
coordinates of the dimension vector on the last leg define a partition as n − 2d ⩾
2d − k ⩾ τ2, i.e.

σ3(s0(vτ )) = (n − 2d + k, τ2, τ3, . . . , τr)
is a partition. This is not the case for the first two legs if k > 1, i.e.

σ1(s0(vτ )) = σ2(s0(vτ )) = (d − k, d − 1, d − 2, . . . , 2, 1)
is not a partition if k > 1. But we may apply some element in H to obtain a dimension
vector v(1)

τ in (NI)∗∗, i.e. move the first d − k to come after d − k + 1, so that the
sequence becomes (d − 1, d − 2, . . . , d − k + 1, d − k, d − k, d − k − 1, . . . , 1) (see proof
of Proposition 2.4(ii)). More explicitly, we apply s[2,k−1] · · · s[2,1]s[1,k−1] · · · s[1,1] to
s0(vτ ) to get (Γτ , v(1)

τ ) with v(1)
τ ∈ (NI)∗∗:

n−k

n−k−d+1 n−k−2d+3 n−k−3d+6
· · · · · ·

1

n−k−d+1 n−k−2d+3 n−k−3d+6
· · · · · ·

1

2d−k 2d−k−τ2 2d−k−τ2−τ3
· · · · · ·

τr

d−kd−2 d−3 d−4 2

d−2 d−3 d−4 2d−k

τ3 τ4 τr−1

d−1

d−1

n−2d

τ2

As shown just before the graph, in the first two legs there are two consecutive edges
labelled by d − k and we have

δ(v(1)
τ ) = −k + 2.

Therefore if k = 1 or 2 then v(1)
τ is a fundamental imaginary root and we are done. If

k ⩾ 3 we keep going with the process, i.e. we apply s0 first and then use the reflections
of H to re-order the labels of the edges in a non-decreasing way from right to left
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since s0(v(1)
τ ) ∈ (NI)∗. Then we get a dimension vector v(2)

τ ∈ (NI)∗∗ and (Γτ , v(2)
τ )

as follows

n−2k+2

n−d−2k+4n−2d−2k+7 n−3d−2k+11
· · · · · ·

1

n−d−2k+4n−2d−2k+7 n−3d−2k+11
· · · · · ·

1

2d−k 2d−k−τ2 2d−k−τ2−τ3
· · · · · ·

τr

d−k+1d−3 d−4 d−5 2

d−3 d−4 d−5 2d−k+1

τ3 τ4 τr−1

d−2

d−2

n−2d−k+2

τ2

Notice that from (6) we have
n − 2d − k + 2 ⩾ 2d − k

and so n − 2d − k + 2 ⩾ τ2 and so the successive differences of the coordinates on the
last leg form a partition, i.e. σ3(v(1)

τ ) = (n − 2d − k + 2, τ2, τ3, . . . , τr) is a partition.
We have

δ(v(2)
τ ) = −k + 4.

So if k ⩽ 4 then v(2)
τ is a fundamental imaginary root and the process stops. If k > 4

we start again the process and for 0 ⩽ m ⩽ ⌈k/2⌉ we end up, after m iterations of
our labelling algorithm, with a dimension vector v(m)

τ ∈ (NI)∗∗ which has the form

n−mk
+m(m−1)

n−d
−mk+m2

· · · · · ·
1

n−d
−mk+m2

· · · · · ·
1

2d−k 2d−k−τ2
· · · · · ·

τr

d−k+m−1

2d−k+m−1

τ3 τ4 τr−1

d−m

d−m

n−2d
−(m−1)k+m(m−1)

τ2

Note that we can check that s0(v(j)
τ ) ∈ (NI)∗ for all j = 0, 1, 2, . . . , ⌈k/2⌉ inductively.

The key point in the induction process is that we never need to use reflections in
H on the last leg to re-organise the labels on the edges in a non-increasing way, i.e.
when m ⩽ ⌈k/2⌉ we always have

n − 2d − (m − 1)k + m(m − 1) ⩾ 2d − k ⩾ τ2,

equivalently, σ3(v(m)
τ ) = (n − 2d − (m − 1)k + m(m − 1), τ2, . . . , τr) is a partition.

Indeed, as the sequence (n − mk + m(m − 1))m⩽⌈k/2⌉ is decreasing, we only need to
check the above inequality for m = ⌈k/2⌉, i.e. we need to check that

(7) 2d2 − 14d ⩾

{
k2 − 6k if k is even,
k2 − 6k + 1 if k is odd.

But these inequalities are true under our assumption 0 ⩽ k ⩽ d and d ⩾ 8.
We have

δ(v(m)
τ ) = −k + 2m
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and so for m = ⌈k/2⌉ we get that v(m)
τ is a fundamental imaginary root which proves

the theorem for d ⩾ 8.
The first part of the proof works as the inequality (6) still holds for d = 7. However

the end of the proof needs to be modified as the inequalities (7) are not verified
anymore for d = 7 and k = 7. We can check this case by hand as follows: δ(v(5)

τ ) = 1
for τ = (21, 7), δ(v(4)

τ ) = 0 for τ = (21, 6, 1) and δ(v(4)
τ ) = 1 for all τ = (21, τ2, . . . , τl)

such that τ2 ⩽ 5. □

3.2. Remaining case τ1 ⩽ n − d and d ⩽ 6. It remains to verify the theorem for
the cases where d ⩽ 6 and τ1 ⩽ n−d. In this range, there exist elements vτ which are
not imaginary roots; rather, they are real roots or correspond to a non-zero Kronecker
coefficient. Recall that if vτ is a root (respectively, if gτ ̸= 0), then by Remark 2.12
(respectively, by Theorem 2.8), Uτ (q) ̸= 0.

The findings are summarized in the following table.

d n τ = (τ1, τ2, . . . ) vτ Uτ (q) ̸= 0 because
6 21 τ1⩽15 except (15,6) Imaginary root vτ is a root

6 21 (15,6)
Under reflections,

equivalent to the real root
((13),(13),(2,1))

vτ is a root

5 15 τ1⩽10
except (9,6),(10,4,1),(10,5) Imaginary root vτ is a root

5 15 (10,4,1)
Under reflections,

equivalent to the real root
((12),(12),(12))

vτ is a root

5 15 (10,5) Not a root gτ = 141

5 15 (9,6)
Under reflections,

equivalent to the real root
((13),(13),(2,1))

vτ is a root

4 10 τ1⩽5 except (5,4,1),(52) Imaginary root vτ is a root

4 10 (5,4,1)
Under reflections,

equivalent to the real root
((12),(12),(12))

vτ is a root

4 10 (52) Not a root gτ = 6
4 10 (6,14) Imaginary root vτ is a root

4 10 (6,2,12)
Under reflections,

equivalent to the real root
((12),(12),(12))

vτ is a root

4 10 (6,22) Not a root gτ = 39
4 10 (6,3,1) Not a root gτ = 54
4 10 (6,4) Not a root gτ = 15
3 6 τ1=1,2 except (22,12),(23) Imaginary root vτ is a root

3 6 (22,12)
Under reflections,

equivalent to the real root
((12),(12),(12))

vτ is a root

3 6 (23) Not a root gτ = 2
3 6 (3,13) Not a root gτ = 4
3 6 (3,2,1) Not a root gτ = 5
3 6 (32) Not a root gτ = 2
2 3 (13) Not a root gτ = 1
1 1 (1) Real root vτ is a root

3.3. The case τ1 > n − d. Recall that the dominance order ⊴ is defined as follows:
for two partitions λ and µ of size n, λ ⊴ µ if λ1 + · · · + λi ⩽ µ1 + · · · + µi for all i.

In [6], it is proved that if ξd is comparable with τ , namely τ ⊴ ξd or ξd ⊴ τ , then
the Kronecker coefficient δτ ̸= 0 and so by Theorem 2.8, Uτ (q) ̸= 0.
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Hence in the case τ1 > n − d, to prove Theorem 3.1 it is sufficient to prove the
following result.

Lemma 3.5. If τ1 > n − d, then ξd ⊴ τ .

Proof. We need to prove that

τ1 + · · · + τi ⩾ d + (d − 1) + · · · + (d − i + 1)

for all i. By assumption on τ1 note that

τ1 + · · · + τi ⩾ (n − d + 1) + (i − 1) = d(d − 1)
2 + i.

Therefore it is enough to prove that
d(d − 1)

2 + i ⩾
i(2d − i + 1)

2
which is equivalent to

(d − i)2 ⩾ d − i.

Note that because of the assumption τ1 > n − d, the length of τ is at most d and so
d − i ⩾ 0 from which we deduce the above inequality. □

4. The tensor square of unipotent characters
In this section we are interested in the unipotent characters of GLn(Fq) whose tensor
square contains as a direct summand all the unipotent characters of GLn(Fq). We
saw in the previous section that this is the case of the unipotent characters attached
to the staircase partitions. We also know that the Steinberg characters satisfy this
property [9, Proposition 33] (see also [4] for other groups). In this section we give a
conjectural necessary and sufficient condition for a unipotent character to verify this
property.

4.1. Main result and conjecture. The aim of this section is to bring some evi-
dences for the following conjecture.

Conjecture 4.1. Let µ = (µ1, µ2, . . . ) be a partition of n, then
(i) U(µ,µ,τ)(q) ̸= 0 for all partitions τ of n if and only if µ1 ⩽ ⌈n/2⌉.
(ii) If µ1 > ⌈n/2⌉, then

U(µ,µ,(1n))(q) = 0.

We can check that the above conjecture is correct for n ⩽ 8 from Mattig’s experi-
mental data [12].

Notice that if µ′ ⊴ µ and if µ1 ⩽ ⌈n/2⌉ then µ′
1 ⩽ ⌈n/2⌉ and so the first assertion

of Conjecture 4.1 implies the conjecture below.

Conjecture 4.2. If for some partition µ of n we have

U(µ,µ,τ)(q) ̸= 0, for all partitions τ,

then for all partitions µ′ ⊴ µ, we have

U(µ′,µ′,τ)(q) ̸= 0, for all partitions τ.

Notice that the set {µ | µ1 ⩽ ⌈n/2⌉} has a maximal element µmax with respect to
the dominance order. If n = 2k is even, µmax is the partition with two parts (k, k)
and if n = 2k + 1 is odd, it is the partition (k + 1, k).
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Theorem 4.3. For any partition µ ⊴ µmax we have
U(µ,µ,(1n))(q) ̸= 0.

Proof. Put

ωo :=
{

((12), (12), (12))k if n = 2k,

((12), (12), (12))k((1), (1), (1)) if n = 2k + 1.

By Theorem 2.10 it is enough to prove that

(8)
〈

C(µ,µ,(1n))
ωo , 1

〉
̸= 0.

Put

ωo :=
{

(12)k if n = 2k,

(12)k(1) if n = 2k + 1
so we have

C(µ,µ,(1n))
ωo = Cµ

ωo ⊗ Cµ
ωo ⊗ C(1n)

ωo .

To prove (8) it is enough to prove the following two statements :
(1) For all partitions µ of n such that µ ⊴ µmax, we have Cµ

ωo ̸= 0,
(2) C(1n)

ωo is the trivial Sk-module.
By Proposition 2.6 we have

cµ
ωo := dimCµ

ωo = ⟨sµ, sωo⟩ .

Notice that

sωo :=
{

(s(12))k if n = 2k,

(s(12))ks(1) if n = 2k + 1.

We focus on proving (1) and (2) for even n = 2k; the case of odd n will be addressed
briefly, as the method is essentially the same.

By Pieri’s formula, for two partitions λ and µ of size r we have
Cµ

λ(1r) ̸= 0

if µ can be obtained from λ by adding r boxes with no two in the same row. In this
case it is of dimension 1.

We now prove (1) by induction on k. The case k = 1, 2 are easy to verify. We thus
assume that (1) is true for k < m.

Let us prove it for k = m. We have

sωo = sm
(12) = sm−1

(12) · s(12) =
(∑

τ

cτ
(12)m−1sτ

)
· s(12),

where by induction hypothesis the coefficient cτ
(12)m−1 is > 0 when τ ⊴ (m−1, m−1).

Let µ be a partition of 2m such that µ ⊴ (m, m). Then µ is one of the following
kind :

(i) µ = (m, m),
(ii) µ = (m, µ2, . . . , µℓ) with µ2 < m,
(iii) µ = (µ1, µ2, · · · , µℓ−1, µℓ) with µ1 < m (in which case ℓ ⩾ 3).
Any partition µ as above can be obtained from a partition smaller than (m−1, m−

1) by adding two boxes no two in the same row: in cases (i) and (iii), µ is obtained from
(µ1, µ2, . . . , µℓ−1 − 1, µℓ − 1), and in case (ii) it is obtained from (m − 1, . . . , µℓ − 1).
Hence it follows from Pieri’s formula and the induction hypothesis that sµ appears
non-trivially in sωo .
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When n is odd, for any partition µ ⊴ (m + 1, m), µ must be of one of the following
forms:

µ = (m + 1, m), µ = (m + 1, µ2, . . . , µℓ) with µ2 < m,

or
µ = (µ1, µ2, . . . , µℓ−1, µℓ) with µ1 < m,

in which case ℓ ⩾ 3. As in the even case, each such µ can be obtained from a
partition smaller or equal to (m, m) by adding one box: specifically, from (m, m),
(m, µ2, . . . , µℓ), or (µ1, µ2, . . . , µℓ−1, µℓ − 1). Hence, by Pieri’s formula and the induc-
tion hypothesis, it follows that sµ appears non-trivially in sωo .

Let us now prove (2).
Using Pieri’s formula it is clear that s(1n) appears in sωo with multiplicity 1 and

so C(1n)
ωo is one-dimensional.

Let us prove that C(1n)
ωo is the trivial module. As it is one-dimensional, it can be

either the trivial module or the sign module. To determine whether it is trivial or
sign, it is enough to compute the trace of an odd permutation.

Let us assume that k is even, then k-cycle σ = (1, 2, 3, . . . , k) ∈ Sk is an odd
permutation. From Proposition 2.6, we have

Tr
(

σ , C(1n)
ωo

)
=
〈
s(1n)(x), s(12)(xk)

〉
=
〈

s(1n)(x), 1
2
(
p(12)(xk) − p(21)(xk)

)〉
=
〈

s(1n)(x), 1
2
(
p(k2)(x) − p(n)(x)

)〉
= 1

2
(
⟨s(1n)(x), p(k2)(x)⟩ − ⟨s(1n)(x), p(n)(x)⟩

)
.

Since for two partitions λ and µ we have

⟨sλ(x), pµ(x)⟩ = χλ
µ,

we deduce that

Tr
(

σ , C(1n)
ωo

)
= 1

and so we proved that C(1n)
ωo is the trivial module when n = 2k with k even.

If n = 2k with k odd, we take the cycle σ = (1, 2, . . . , k − 1). Analogously to the
case when k is even, we have

Tr
(

σ , C(1n)
ωo

)
=
〈
s(1n)(x), s(12)(xk−1)s(12)(x)

〉
=
〈

s(1n)(x), 1
4
(
p(k−12,12)(x) − p(2k−2,12)(x) − p(k−12,2)(x) + p(2k−2,2)(x)

)〉
= 1

and we proved that C(1n)
ωo is also trivial in this case.

When n = 2k + 1, we again aim to show that

Tr
(

σ, C(1n)
ωo

)
= 1

2
(
⟨s(1n)(x), p(k2,1)(x)⟩ − ⟨s(1n)(x), p(2k,1)(x)⟩

)
= 1
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when k is even, and

Tr
(

σ, C(1n)
ωo

)

=
〈

s(1n)(x), 1
4
(
p(k−12,12,1)(x) − p(2k−2,12,1)(x) − p(k−12,2,1)(x) + p(2k−2,2,1)(x)

)〉
= 1

when k is odd.
Note that a partition (p1, . . . , pℓ) is even (respectively, odd) if and only if the

partition (p1, . . . , pℓ, 1) is even (respectively, odd). This observation implies that
⟨s(1n)(x), p(µ1,...,µℓ)(x)⟩ = ⟨s(1n+1)(x), p(µ1,...,µℓ,1)(x)⟩.

This shows that the representation C(1n)
ωo is again trivial. □

4.2. Examples. From Conjecture 4.2, the assertion
U(µmax,µmax,τ) ̸= 0, for all τ,

is thus an essential case which explains why we will focus on µmax in the next examples.
Remark 4.4. Notice that in the case of the smallest partition µ = (1n), the dimension
vector corresponding to (µ, µ, τ) is a root for any partition τ (see [9, Proof of Propo-
sition 33]) from which we get that U(µ,µ,τ)(q) ̸= 0 for all τ . We already saw that for
larger partitions µ (like the staircase partition) the dimension vector (µ, µ, τ) may not
be always a root and so one needs to mix with other arguments like Ikenmeyer’s result
on Kronecker coefficients ([6, Theorem 2.1]). We thus observe at a computational level
that the proof of the assertion (for µ ⊴ µmax)

U(µ,µ,τ) ̸= 0, for all τ,

gets more complicated as µ gets larger corroborating the idea that µ = µmax would
be the essential case.

We put
Mτ

ωo :=
〈

C(µ,µ,τ)
ωo , 1

〉
Wωo

.

Recall (see below Theorem 2.10) that Mτ
((1),(1),(1))n is the Kronecker coefficient

g(µ,µ,τ).
Example 1 : The case n = 4 and µ = (2, 2)
We have the following table

τ (4) (3, 1) (22) (2, 12) (14)
Mτ

((1),(1),(1))4 = g(µ,µ,τ) 1 0 1 0 1
Mτ

((12),(12),(12))2 0 0 1 0 1
Mτ

((12),(12),(12))((1),(1),(1))2 0 1 0 1 0
Mτ

((13),(13),(13))((1),(1),(1)) 0 0 0 0 0
Mτ

((13),(13),(2,1))((1),(1),(1)) 0 0 0 0 0
U(µ,µ,τ)(q) 1 1 2 1 2

Remark 4.5. In this example the dimension vector associated to (µ, µ, τ), when τ
runs over the partitions of 4, is never a root. Moreover the Kronecker coefficient
does vanish (second and fourth columns) and so we can not use only Theorem 2.8
and Remark 2.12 to prove the non-vanishing of U(µ,µ,τ)(q) as we did in the case of
staircase partitions.
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All the roots involved non-trivially (i.e. the dimension vectors corresponding to
the multipartitions ((12), (12), (12)) and ((1), (1), (1))) being real we get U(µ,µ,τ)(q)
by summing the first five rows (see [9, Formula (17), Proposition 27]). Notice that the
sixth row is consistent with Mattig’s experimental data [12].

We already proved that (see Example 2.13)

M
(3,1)
((12),(12),(12))((1),(1),(1))2 = 1.

The computation of the other entries of the above table is similar.
Example 2 : The case n = 9 and µ = (5, 4)
The computation of U(µ,µ,τ)(q) in [12] are available for n ⩽ 8. In the example we

push the computation to n = 9 to verify that U(µ,µ,τ)(q) ̸= 0 as predicted by our
conjecture.

This example illustrates also the use of Theorem 2.10 for larger values of n : The
following table shows that for any partition τ of 9, we can find an ωo such that
Mτ

ωo ̸= 0 from which we deduce, thanks to Theorem 2.10, that U(µ,µ,τ)(q) ̸= 0 for all
partitions τ of 9 (as predicted by our conjecture).

τ Mτ
((1),(1),(1))9 Mτ

((12),(12),(12))
((1),(1),(1))7

Mτ
((12),(12),(12))3

((1),(1),(1))3

Mτ
((12),(12),(12))4

((1),(1),(1))
(9) 1 0 0 0

(8, 1) 1 1 0 0
(7, 2) 1 1 0 0
(7, 12) 1 2 0 0
(6, 3) 1 1 1 0

(6, 2, 1) 1 3 0 0
(6, 13) 1 2 0 0
(5, 4) 1 1 0 1

(5, 3, 1) 1 3 1 0
(5, 22) 1 2 0 0

(5, 2, 12) 1 4 1 0
(5, 14) 0 2 0 0
(42, 1) 1 2 0 1
(4, 3, 2) 1 3 1 0
(4, 3, 12) 1 4 0 1
(4, 22, 1) 1 4 1 0
(4, 2, 13) 0 3 1 0
(4, 15) 0 1 1 0
(33) 1 1 1 0

(32, 2, 1) 1 4 0 1
(32, 13) 0 3 0 1
(3, 23) 1 2 0 1

(3, 22, 12) 0 3 1 0
(3, 2, 14) 0 1 0 1

To establish the above table we need the decomposition of

C(µ,µ,τ)
((12),(12),(12))((1),(1),(1))7 , C(µ,µ,τ)

((12),(12),(12))3((1),(1),(1))3 , and C(µ,µ,τ)
((12),(12),(12))4((1),(1),(1))

into irreducible S-modules (where S is respectively S7, S3 × S3, and S4). We need
thus the decomposition of the modules Cτ

(12)(1)7 , Cτ
(12)3(1)3 , Cτ

(12)4(1), for any partition
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τ Mτ
((1),(1),(1))9 Mτ

((12),(12),(12))
((1),(1),(1))7

Mτ
((12),(12),(12))3

((1),(1),(1))3

Mτ
((12),(12),(12))4

((1),(1),(1))
(3, 16) 0 0 1 0
(24, 1) 0 1 0 1
(23, 13) 0 1 0 1
(22, 15) 0 0 0 1
(2, 17) 0 0 0 1
(19) 0 0 0 1

τ , into irreducible modules. This is given by the following table (· means that Cτ
(∗)

has zero dimension).

τ Cτ
(12)(1)7 Cτ

(12)3(1)3 Cτ
(12)4(1)

(8, 1) χ(7) · ·
(7, 2) χ(6,1) · ·
(7, 12) χ(7) ⊕ χ(6,1) · ·
(6, 3) χ(5,2) χ(3) ⊠ χ(3) ·

(6, 2, 1) χ(6,1) ⊕ χ(5,2) ⊕ χ(5,12) χ(2,1) ⊠ χ(3) ·
(6, 13) χ(6,1) ⊕ χ(5,12) χ(13) ⊠ χ(3) ·
(5, 4) χ(4,3) χ(3) ⊠ χ(2,1) χ(4)

(5, 3, 1) χ(5,2) ⊕ χ(4,3) ⊕ χ(4,2,1) (χ(3)⊠χ(3))⊕(χ(2,1)⊠χ(3))
⊕(χ(3)⊠χ(2,1))⊕(χ(2,1)⊠χ(2,1))

χ(3,1)

(5, 22) χ(5,12) ⊕ χ(4,2,1) (χ(2,1)⊠χ(3))
⊕(χ(13)⊠χ(3))⊕(χ(2,1)⊠χ(2,1))

χ(2,2)

(5, 2, 12) χ(5,2)⊕χ(5,12)

⊕χ(4,2,1)⊕χ(4,13)

(χ(3)⊠χ(3))⊕2(χ(2,1)⊠χ(3))
⊕(χ(13)⊠χ(3))⊕(χ(2,1)⊠χ(2,1))

⊕(χ(13)⊠χ(2,1))
χ(2,12)

(5, 14) χ(5,12) ⊕ χ(4,13) (χ(2,1)⊠χ(3))
⊕(χ(13)⊠χ(3))⊕(χ(2,1)⊠χ(2,1))

χ(14)

(42, 1) χ(4,3) ⊕ χ(32,1) (χ(3)⊠χ(2,1))
⊕(χ(2,1)⊠χ(2,1))⊕(χ(3)⊠χ(13))

χ(4) ⊕ χ(3,1)

(4, 3, 2) χ(4,2,1) ⊕ χ(32,1) ⊕ χ(3,22)
(χ(3)⊠χ(3))⊕(χ(2,1)⊠χ(3))

⊕(χ(3)⊠χ(2,1))⊕2(χ(2,1)⊠χ(2,1))
⊕(χ(13)⊠χ(2,1))⊕(χ(2,1)⊠χ(13))

χ(3,1)

⊕χ(2,2)⊕χ(2,12)

(4, 3, 12) χ(4,3)⊕χ(4,2,1)

⊕χ(32,1)⊕χ(3,2,12)

(χ(2,1)⊠χ(3))⊕(χ(13)⊠χ(3))
⊕2(χ(3)⊠χ(2,1))⊕3(χ(2,1)⊠χ(2,1))

⊕(χ(13)⊠χ(2,1))⊕(χ(3)⊠χ(13))
⊕(χ(2,1)⊠χ(13))

χ(4)⊕2χ(3,1)

⊕χ(2,2)⊕χ(2,12)

(4, 22, 1) χ(4,2,1)⊕χ(4,13)

⊕χ(3,22)⊕χ(3,2,12)

(χ(3)⊠χ(3))⊕2(χ(2,1)⊠χ(3))
⊕(χ(13)⊠χ(3))⊕(χ(3)⊠χ(2,1))

⊕3(χ(2,1)⊠χ(2,1))⊕2(χ(13)⊠χ(2,1))
⊕(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(3,1)⊕χ(2,2)

⊕2χ(2,12)⊕χ(14)

(4, 2, 13) χ(4,2,1)⊕χ(4,13)

⊕χ(3,2,12)⊕χ(3,14)

(χ(3)⊠χ(3))⊕2(χ(2,1)⊠χ(3))
⊕(χ(13)⊠χ(3))⊕(χ(3)⊠χ(2,1))

⊕3(χ(2,1)⊠χ(2,1))⊕2(χ(13)⊠χ(2,1))
⊕(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(3,1)⊕χ(2,2)

⊕2χ(2,12)⊕χ(14)

(4, 15) χ(4,13) ⊕ χ(3,14)
(χ(3)⊠χ(3))

⊕(χ(2,1)⊠χ(3))⊕(χ(2,1)⊠χ(2,1))
⊕(χ(13)⊠χ(2,1))⊕(χ(13)⊠χ(13))

χ(2,12) ⊕ χ(14)

To compute the multiplicity of 1 for instance in

C(µ,µ,(5,14))
((12),(12),(12))((1),(1),(1))7 = Cµ

(12)(1)7 ⊗ Cµ
(12)(1)7 ⊗ C(5,14)

(12)(1)7

= χ(4,3) ⊗ χ(4,3) ⊗
(

χ(5,12) ⊕ χ(4,13)
)
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τ Cτ
(12)(1)7 Cτ

(12)3(1)3 Cτ
(12)4(1)

(33) χ(3,22) (χ(3)⊠χ(3))
⊕(χ(2,1)⊠χ(2,1))⊕(χ(13)⊠χ(13))

χ(2,12)

(32, 2, 1) χ(32,1)⊕χ(3,22)

⊕χ(3,2,12)⊕χ(23,1)

(χ(2,1)⊠χ(3))
⊕2(χ(3)⊠χ(2,1))⊕3(χ(2,1)⊠χ(2,1))
⊕2(χ(13)⊠χ(2,1))⊕(χ(3)⊠χ(13))
⊕2(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(4)

⊕2χ(3,1)⊕χ(2,2)

⊕2χ(2,12)⊕χ(14)

(32, 13) χ(32,1)

⊕χ(3,2,12)⊕χ(22,13)

(χ(13)⊠χ(3))⊕(χ(3)⊠χ(2,1))
⊕3(χ(2,1)⊠χ(2,1))⊕(χ(13)⊠χ(2,1))
⊕2(χ(3)⊠χ(13))⊕2(χ(2,1)⊠χ(13))

χ(4)⊕2χ(3,1)

⊕2χ(2,2)⊕χ(2,12)

(3, 23) χ(3,2,12) ⊕ χ(23,1)

(χ(13)⊠χ(3))
⊕(χ(3)⊠χ(2,1))⊕2(χ(2,1)⊠χ(2,1))
⊕(χ(13)⊠χ(2,1))⊕(χ(3)⊠χ(13))
⊕(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(4)

⊕χ(3,1)⊕χ(2,2)

⊕χ(2,12)⊕χ(14)

(3, 22, 12)
χ(3,22)

⊕χ(3,2,12)⊕χ(3,14)

⊕χ(23,1)⊕χ(22,13)

(χ(3)⊠χ(3)⊕(χ(2,1)⊠χ(3))
⊕2(χ(3)⊠χ(2,1))⊕4(χ(2,1)⊠χ(2,1))
⊕2(χ(13)⊠χ(2,1))⊕(χ(3)⊠χ(13))

⊕3(χ(2,1)⊠χ(13))⊕2(χ(13)⊠χ(13))

3χ(3,1)⊕χ(2,2)

⊕3χ(2,12)⊕χ(14)

(3, 16) χ(3,14) ⊕ χ(2,15)
(χ(3)⊠χ(3))

⊕(χ(3)⊠χ(2,1))⊕(χ(2,1)⊠χ(2,1))
⊕(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(3,1) ⊕ χ(2,12)

(24, 1) χ(23,1) ⊕ χ(22,13)
(χ(3)⊠χ(2,1))

⊕(χ(2,1)⊠χ(2,1))⊕(χ(13)⊠χ(2,1))
⊕(χ(3)⊠χ(13))⊕2(χ(2,1)⊠χ(13))

χ(4)⊕χ(3,1)

⊕χ(22)⊕χ(2,12)

(23, 13) χ(23,1)

⊕χ(22,13)⊕χ(2,15)

(χ(3)⊠χ(2,1))
⊕2(χ(2,1)⊠χ(2,1))⊕2(χ(3)⊠χ(13))
⊕2(χ(2,1)⊠χ(13))⊕(χ(13)⊠χ(13))

χ(4)⊕2χ(3,1)

⊕χ(22)⊕χ(2,12)

(22, 15) χ(22,13)

⊕χ(2,15)⊕χ(17)

(χ(3)⊠χ(2,1))⊕(χ(2,1)⊠χ(2,1))
⊕2(χ(3)⊠χ(13))⊕2(χ(2,1)⊠χ(13))

χ(4)

⊕2χ(3,1)⊕χ(22)

(2, 17) χ(2,15) ⊕ χ(17) (χ(3)⊠χ(2,1))
⊕(χ(3)⊠χ(13))⊕(χ(2,1)⊠χ(13))

χ(4) ⊕ χ(3,1)

(19) χ(17) χ(3) ⊠ χ(13) χ(4)

we use the tables in [2] to see that the trivial character appears with multiplicity 1 in
both

χ(4,3) ⊗ χ(4,3) ⊗ χ(5,12) and χ(4,3) ⊗ χ(4,3) ⊗ χ(4,13),

from which we get M
(5,14)
((12),(12),(12))((1),(1),(1))7 = 2.
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