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Transition matrices and Pieri-type rules for
polysymmetric functions

Aditya Khanna & Nicholas A. Loehr

Abstract Asvin G and Andrew O’Desky recently introduced the graded algebra PΛ of polysym-
metric functions as a generalization of the algebra Λ of symmetric functions. This article de-
velops combinatorial formulas for some multiplication rules and transition matrix entries for
PΛ that are analogous to well-known classical formulas for Λ. In more detail, we consider pure
tensor bases {s⊗

τ }, {p⊗
τ }, and {m⊗

τ } for PΛ that arise as tensor products of the classical Schur
basis, power-sum basis, and monomial basis for Λ. We find expansions in these bases of the
non-pure bases {Pδ}, {Hδ}, {E+

δ
}, and {Eδ} studied by Asvin G and O’Desky. The answers

involve tableau-like structures generalizing semistandard tableaux, rim-hook tableaux, and the
brick tabloids of Eğecioğlu and Remmel. These objects arise by iteration of new Pieri-type rules
that give expansions of products such as s⊗

σ Hδ, p⊗
σ Eδ, etc.

1. Introduction
The ring Λ of symmetric functions is an object of great interest in modern algebraic
combinatorics. Recently, Asvin G and Andrew O’Desky introduced a generalization
PΛ called the ring of polysymmetric functions [4]. Our goal in this paper is to extend
some of the rich combinatorial theory for symmetric functions to the new setting of
polysymmetric functions. In particular, we develop combinatorial formulas for some
multiplication rules and transition matrix entries for PΛ that are analogous to well-
known classical formulas for Λ.

1.1. Review of symmetric functions. We assume the reader has some prior fa-
miliarity with symmetric functions; background material may be found in texts such
as [5, 7, 9]. We briefly recall some fundamental notation and terminology. An inte-
ger partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . . , λℓ) of positive
integers with sum n. We call λi the ith part of λ, and let ℓ(λ) = ℓ be the number
of nonzero parts of λ. We write |λ| = n or area(λ) = n or λ ⊢ n to mean that λ
is an integer partition of n. We write λ = (1m12m23m3 · · · ) to indicate that λ is a
partition with m1 parts equal to 1, m2 parts equal to 2, and so on. We denote the
number of times i appears in λ by mi(λ). A symmetric function over Q is a formal
power series of bounded degree in countably many variables with coefficients in Q, say
f = f(x) = f(x1, x2, . . . , xm, . . .), that remains unchanged under any permutation of
the variables xi. Letting each variable xi have degree 1, the set Λn of homogeneous
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symmetric functions of degree n is a vector space of dimension p(n), the number
of integer partitions of n. The set of all symmetric functions is a graded Q-algebra
Λ =

⊕
n⩾0

Λn.

Bases of the vector space Λn are naturally indexed by integer partitions of n. The
monomial symmetric function mλ(x) is the formal sum of all distinct monomials ob-
tained by permuting the subscripts in xλ1

1 xλ2
2 · · · xλℓ

ℓ . The complete symmetric function
hk(x) is the sum of all monomials xi1xi2 · · · xik

where 1 ⩽ i1 ⩽ i2 ⩽ · · · ⩽ ik. The ele-
mentary symmetric function ek(x) is the sum of all monomials xi1xi2 · · · xik

where 1 ⩽
i1 < i2 < · · · < ik. The power-sum symmetric function pk(x) is xk

1 +xk
2 +· · ·+xk

m+· · · .
For any list of positive integers α = (α1, α2, . . . , αs), we define

hα(x) =
s∏

i=1
hαi(x), eα(x) =

s∏
i=1

eαi(x), pα(x) =
s∏

i=1
pαi(x).

The Schur symmetric function sλ(x) can be defined as sλ(x) =
∑

µ Kλ,µmµ(x), where
the Kostka number Kλ,µ is the number of semistandard Young tableaux of shape λ and
content µ. It is known that each of the sets {mλ : λ ⊢ n}, {hλ : λ ⊢ n}, {eλ : λ ⊢ n},
{pλ : λ ⊢ n}, and {sλ : λ ⊢ n} is a basis of Λn. It follows that each of the sets
{hk : k ∈ Z>0}, {ek : k ∈ Z>0}, and {pk : k ∈ Z>0} is algebraically independent over
Q. This leads to an abstract description of Λ as a polynomial ring Λ = Q[hk : k > 0]
in formal indeterminates hk where deg(hk) = k. Similarly, we can think of Λ as a
polynomial ring in the ek or the pk, where deg(ek) = k = deg(pk).

Transition matrices between bases of Λn often exhibit interesting combinatorics [1,
3]. Given indexed bases {fλ : λ ⊢ n} and {gλ : λ ⊢ n} of Λn, the transition matrix
M(f, g) is the unique matrix (with rows and columns indexed by partitions of n) such
that
(1) fµ =

∑
λ⊢n

M(f, g)λ,µgλ.

For example, the definition of Schur functions (given above) states that M(s, m)λ,µ is
the Kostka number Kµ,λ. It is known that M(h, s)λ,µ = Kλ,µ, so that M(s, m) is the
transpose of M(h, s). It is routine to check that matrix inversion switches the roles of
the input basis and the output basis: M(g, f) = M(f, g)−1. If {kλ} is another basis
of Λn, then M(f, k) is the matrix product M(g, k)M(f, g).

1.2. Polysymmetric functions. For each positive integer d, let Λ(d) be a copy of
the ring Λ of symmetric functions where all degrees are multiplied by d. The Q-algebra
of polysymmetric functions may be defined abstractly as the tensor product

PΛ = Λ(1) ⊗ Λ(2) ⊗ · · · ⊗ Λ(d) ⊗ · · · .

To get a more concrete description, we view Λ(d) as the ring of symmetric functions
in a variable set xd∗ = {xd,1, xd,2, . . .}, where deg(xd,i) = d for all i ⩾ 1. Then
PΛ appears as a particular subalgebra of the Q-algebra Q[[x∗∗]] of formal series of
bounded degree in all the variables xd,i for d, i ∈ Z>0. A formal series f = f(x∗∗)
belongs to PΛ iff for each fixed d, f is unchanged by any permutation of the variables
in xd∗. An isomorphism between the abstract and concrete versions of PΛ is defined by
sending the pure tensor f1⊗f2⊗f3⊗· · · to the formal series f1(x1∗)f2(x2∗)f3(x3∗) · · · .
Like Λ, PΛ is a graded algebra: PΛ =

⊕
n⩾0 PΛn, where PΛn is the vector space of

homogeneous polysymmetric functions of degree n.

Remark 1.1. Although Λ may be viewed algebraically as a polynomial ring
Q[e1, . . . , ek, . . .] where deg(ek) = k, the combinatorics arising from bases of Λn is
much richer than the combinatorics of an ordinary polynomial ring Q[x1, . . . , xk, . . .]
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where each xk has degree 1. Similarly, the combinatorial features of PΛ are quite
different from those of the regular tensor product of copies of Λ with no rescaling of
degrees in each factor.

Remark 1.2. Polysymmetric functions have interesting applications to algebraic ge-
ometry and representation theory. In [4], Asvin G and O’Desky study motivic mea-
sures, configuration spaces, and a generalization of the Grothendieck ring of varieties.
Polysymmetric functions emerge naturally from the plethystic exponential which plays
a key role in this generalization. As mentioned in [4], PΛ is also related to the represen-
tation theory of the disconnected reductive wreath products SL2 ≀Sn. See Remark 1.5
for another connection between PΛ and representation theory.

Bases for PΛn are naturally indexed by (splitting) types, which we discuss next. A
block is an ordered pair of positive integers (d, m), which we usually write as dm. We
say dm has degree d, multiplicity m, and weight dm. We order blocks by writing ab ⩾ de

to mean either a > d, or a = d and b ⩾ e. A type of weight n is a weakly decreasing
sequence of blocks τ = (dm1

1 , dm2
2 , . . . , dms

s ) such that d1m1 + d2m2 + · · · + dsms = n.
We write |τ | = n or τ ⊩ n to mean that τ is a type of weight n. We call s the
length of τ and write s = ℓ(τ). For fixed d, let τ |d (sometimes abbreviated as τd) be
the partition formed by taking the multiplicities of the blocks of τ of degree d. For
example, τ = (3434322322212114131311) is a type of weight 55 with τ |3 = (4, 4, 2),
τ |2 = (3, 2, 1, 1), and τ |1 = (4, 3, 3, 1). We may abbreviate any type τ by writing
τ = (1τ |12τ |23τ |3 · · · ). The sign of type τ is sgn(τ) =

∏k
i=1(−1)mi . The power of −1

in sgn(τ) is
∑k

i=1 mi =
∑k

i=1 area(τ |i).

Remark 1.3. Types of weight n encode the possible ways a polynomial p(x) ∈ Q[x]
of degree n can split into irreducible factors. For example, p = (x2 +1)3(x2 −2)3(x2 −
3)(x − 1)2(x − 2)2 has associated type τ = (2323211212).

Suppose {fλ} is any fixed basis for Λ, where λ ranges over integer partitions, and
fλ ∈ Λn whenever λ ⊢ n. By the general theory of tensor products, it follows that the
set of tensor products fλ(1) ⊗ fλ(2) ⊗ fλ(3) ⊗ · · · , where all but finitely many fλ(d) are
equal to 1, is a basis for the vector space PΛ. We can identify the list (λ(1), λ(2), . . .)
with the type τ = (1λ(1)2λ(2) · · · ). Define

f⊗
τ = fτ |1 ⊗ fτ |2 ⊗ · · · =

∏
d⩾1

fτ |d
(xd∗).

This is a homogeneous element of PΛ of degree
∑

d⩾1 d area(τ |d) = |τ |. Letting τ

range over all types, we get a basis {f⊗
τ } of PΛ. For each n ⩾ 0, {f⊗

τ : τ ⊩ n} is a
basis of PΛn. We call these bases of PΛ and PΛn the pure tensor bases associated with
the given basis {fλ} of Λ.

Example 1.4. Given τ = (4443412222212113131111) = (13,3,1,122,2,1,144,3,1),
m⊗

τ = m3311 ⊗ m2211 ⊗ 1 ⊗ m431 ⊗ 1 ⊗ 1 ⊗ · · · = m3311(x1∗)m2211(x2∗)m431(x4∗).
Hereafter, we often omit trailing 1s in the tensor product presentation of a polysym-
metric function.

Remark 1.5. Polysymmetric functions also appear in the recent work [8] in connection
with the representation theory of the uniform block permutation (UBP) algebras. In
the classical setting, the Frobenius characteristic map sends the irreducible character
of the symmetric group indexed by a partition λ to the Schur symmetric function sλ.
In the setting of UBP algebras, the analogue of the Frobenius map sends an irreducible
character of Uk to a tensor of the form sτ |1 [h1] ⊗ sτ |2 [h2] ⊗ · · · ⊗ sτ |d

[hd] ⊗ · · · inside a
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tensor product of copies of Λ, where each copy has its usual (unscaled) grading. For
each k > 1, the map sending f ∈ Λ to f [hk] is an injective algebra homomorphism that
has the effect of rescaling the grading in the kth tensor factor by k. Thus, the image
of the UBP Frobenius map is really another presentation of PΛ. In our notation,
the irreducible characters of Uk correspond to the elements s⊗

τ of the pure tensor
Schur basis. This provides an extra motivation for finding s⊗

τ -expansions of various
polysymmetric functions. In particular, understanding the change-of-basis formulas
between bases arising in algebraic geometry and the s⊗-basis can tell us whether those
bases correspond to a representation of a UBP algebra.

1.3. The bases H, E+, E, and P . The authors of [4] introduced four bases of
PΛ, denoted by {Hτ }, {E+

τ }, {Eτ }, and {Pτ }, that are not pure tensor bases. These
are polysymmetric analogues of the symmetric functions hµ, eµ, and pµ, defined as
follows. Order the subscripts of variables in x∗∗ lexicographically: (i, j) ⩽ (k, ℓ) means
i < k, or i = k and j ⩽ ℓ. For each positive integer d, define

(2) Hd =
∑

(i1,j1)⩽(i2,j2)⩽···⩽(is,js)
i1+i2+···+is=d

xi1,j1xi2,j2 · · · xis,js ,

which is the sum of all distinct monomials of degree d. Define

(3) E+
d =

∑
(i1,j1)<(i2,j2)<···<(is,js)

i1+i2+···+is=d

xi1,j1xi2,j2 · · · xis,js
,

which is the sum of monomials of degree d where no variable xij appears more than
once within any given monomial. Such monomials are called square-free. Define

(4) Ed =
∑

(i1,j1)<(i2,j2)<···<(is,js)
i1+i2+···+is=d

(−1)sxi1,j1xi2,j2 · · · xis,js
,

which is a signed variation of E+
d . Define

(5) Pd =
∑
k|d

k
∑
j⩾1

x
d/k
k,j ,

where “
∑

k|d” indicates a sum over positive divisors k of d. It is routine to check that
Hd, E+

d , Ed, and Pd all belong to PΛd.
For any block dm, define Hdm = Hd(xm

∗∗), which means that every variable xij

appearing in every monomial of Hd gets replaced by xm
ij . Similarly, define E+

dm =
E+

d (xm
∗∗), Edm = Ed(xm

∗∗), and Pdm = Pd(xm
∗∗). These objects are all in PΛdm. Finally,

for any ordered sequence of blocks δ = (dm1
1 , dm2

2 , . . . , dmt
t ), define

Hδ =
t∏

i=1
Hd

mi
i

, E+
δ =

t∏
i=1

E+
d

mi
i

, Eδ =
t∏

i=1
Ed

mi
i

, Pδ =
t∏

i=1
Pd

mi
i

.

In particular, this defines Hτ (etc.) when τ is a type. It is shown in [4] that each of
the sets {Hτ : τ ⊩ n}, {E+

τ : τ ⊩ n}, {Eτ : τ ⊩ n}, and {Pτ : τ ⊩ n} is a linear
basis of PΛn. As in the case of Λ, this leads to an alternate algebraic characterization
of PΛ as an abstract polynomial ring. Starting with formal indeterminates Hdm for
each block dm, we can think of PΛ as Q[Hdm : d, m > 0], where Hdm has degree dm.
Similarly, PΛ = Q[E+

dm : d, m > 0] = Q[Edm : d, m > 0] = Q[Pdm : d, m > 0].
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1.4. Transition matrices for PΛ. Our main goal in this paper is to develop the
combinatorics of certain transition matrices between bases of PΛn. We use notation
analogous to the symmetric case. Given bases {Fτ : τ ⊩ n} and {Gτ : τ ⊩ n} of PΛn,
the transition matrix M(F, G) is the unique matrix (with rows and columns indexed
by types of weight n) such that

(6) Fσ =
∑
τ⊩n

M(F, G)τ,σGτ .

In the special case of pure tensor bases, we can immediately find transition matrices
for PΛ if we know the corresponding transition matrices for Λ.

Proposition 1.6. Let {fλ} and {gλ} be bases of Λ such that fλ, gλ ∈ Λn whenever
λ ⊢ n. Let Fτ = f⊗

τ and Gτ = g⊗
τ be the corresponding pure tensor bases. For all

types σ, τ ,
M(F, G)τ,σ =

∏
d⩾1

M(f, g)τ |d,σ|d
.

Proof. For σ ⊩ n, we compute

Fσ = f⊗
σ =

∏
d⩾1

fσ|d
(xd∗) =

∏
d⩾1

∑
λ(d)⊢area(σ|d)

M(f, g)λ(d),σ|d
gλ(d)(xd∗)

=
∑

λ(1)⊢area(σ|1)

· · ·
∑

λ(d)⊢area(σ|d)

· · ·
∏
d⩾1

M(f, g)λ(d),σ|d
gλ(d)(xd∗)

=
∑
τ⊩n

∏
d⩾1

M(f, g)τ |d,σ|d

 g⊗
τ .

where in the last step we set τ = (1λ(1)2λ(2) · · · dλ(d) · · · ). So the coefficient of Gτ in
Fσ is

∏
d⩾1 M(f, g)τ |d,σ|d

, as needed. □

1.5. Main results. Transition matrices involving the bases H, E, E+, and P are
more subtle. In this paper, we find formulas for entries in the following transition
matrices:

• M(P, s⊗), M(H, s⊗), M(E+, s⊗), M(E, s⊗) (Section 2).
• M(P, p⊗), M(H, p⊗), M(E+, p⊗), M(E, p⊗) (Section 3).
• M(P, m⊗), M(H, m⊗), M(E+, m⊗), M(E, m⊗) (Section 4).

Our s⊗-expansions involve tableau-like structures that arise by iteration of certain
rules analogous to the Pieri rules (giving the Schur expansions of sµhk and sµek)
and the Murnaghan–Nakayama rule (giving the Schur expansion of sµpk). Letting
δ = (dm1

1 , dm2
2 , . . . , dmt

t ) be any ordered sequence of blocks, we prove Pieri-type rules
for the s⊗-expansions of s⊗

σ Pδ, s⊗
σ Hδ, s⊗

σ E+
δ , and s⊗

σ Eδ. Our p⊗-expansions have a
more algebraic flavor and reveal some identities for PΛ analogous to corresponding
power-sum identities for Λ. Our m⊗-expansions complement some comparable results
in [4]. We give combinatorial descriptions of transition matrix entries using objects
generalizing the brick tabloids studied by Eğecioğlu and Remmel [3]. We also prove
Pieri-like rules for the p⊗-expansions of p⊗

σ Fδ and the m⊗-expansions of m⊗
σ Fδ where

F is P , H, E+, or E.

2. Expansions in the s⊗ basis
Recall that {sλ} is the Schur basis of Λ, and {s⊗

τ } is the associated pure tensor basis
of PΛ. This section provides combinatorial formulas for the coefficients in the s⊗-
expansions of s⊗

σ F where F is Pdm , Hdm , E+
dm , Edm , or any product of such factors.
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As special cases, we find the transition matrices M(P, s⊗), M(H, s⊗), M(E+, s⊗),
and M(E, s⊗).

2.1. Rule for s⊗
σ Pdm . Before stating the rule for the s⊗-expansion of s⊗

σ Pdm , we
review the analogous classical rule for the Schur expansion of sµpk. Given an integer
partition µ = (µ1 ⩾ µ2 ⩾ · · · ⩾ µs), the diagram of µ is the set dg(µ) = {(i, j) ∈
Z2 : 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ µi}. We visualize the diagram of µ by drawing s rows of
left-justified unit boxes with µi boxes in the ith row from the top. The conjugate
partition µ′ is the partition whose diagram is obtained from dg(µ) by interchanging
rows and columns. Given µ and another integer partition ν such that dg(µ) ⊆ dg(ν),
the skew shape ν/µ is the set difference dg(ν) ∖ dg(µ). We visualize a skew shape as
the collection of boxes in the diagram for ν that are outside the diagram for µ. A skew
shape ν/µ is a k-ribbon (or a k-rim-hook or a k-border strip) if it consists of k boxes
that can be labeled b1, . . . , bk so that, for 1 < i ⩽ k, bi is one unit left of bi−1 or one
unit below bi−1. Equivalently, this means that ν/µ is a connected strip of k boxes on
the southeast border of dg(ν) that contains no 2 × 2 square. The sign of a k-ribbon
ν/µ that has boxes in r different rows is sgn(ν/µ) = (−1)r−1. The next result is often
called the Murnaghan–Nakayama Rule, the Pieri Rule for Power-Sums, or the Slinky
Rule.

Proposition 2.1 ([5, Theorem 10.46]). For any integer partition µ and positive inte-
ger k,

sµpk =
∑

ν: ν/µ is a k-ribbon
sgn(ν/µ)sν .

Example 2.2. We compute s(3,2)p4 = s(7,2) − s(5,4) − s(3,3,3) + s(3,2,2,1,1) − s(3,2,1,1,1,1)
using the following diagrams, where the boxes in the 4-ribbon ν/µ are shaded in gray.

Turning to the polysymmetric case, let σ = (1σ|12σ|2 · · · iσ|i · · · ) be a fixed type.
The tensor diagram of σ is the formal symbol

dg(σ) = dg(σ|1) ⊗ dg(σ|2) ⊗ · · · ⊗ dg(σ|i) ⊗ · · · .

We draw dg(σ) as a succession of partition diagrams joined by tensor signs; we draw
∅ in any position i where σ|i is the empty partition. For example, the diagram of
σ = (13,3,122,1,1,143,2,2,1) is

⊗ ⊗ ∅ ⊗

The next theorem computes s⊗
σ Pdm by adding certain signed weighted ribbons to

dg(σ) according to particular rules. If R is a ribbon added to the shape in position i
of the tensor diagram, we let wt(R) = i.

Theorem 2.3. For any type σ and block dm,

s⊗
σ Pdm =

∑
τ

sgn(R) wt(R)s⊗
τ ,

Algebraic Combinatorics, Vol. 8 #4 (2025) 1090
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where we sum over types τ that arise from σ by adding a (dm/k)-ribbon R to dg(σ|k)
for some k > 0 that divides d.

Proof. Combining (5) with the subsequent definition of Pdm , we find

(7) Pdm =
∑
k|d

k
∑
j⩾1

x
dm/k
k,j =

∑
k|d

kpdm/k(xk∗) =
∑
k|d

1 ⊗ · · · ⊗ 1 ⊗ kpdm/k ⊗ 1 ⊗ · · · ,

where kpdm/k occurs in the kth tensor factor. Multiplying s⊗
σ by this expression, we

get
s⊗

σ Pdm =
∑
k|d

sσ|1 ⊗ sσ|2 ⊗ · · · ⊗ sσ|k
· kpdm/k ⊗ sσ|k+1 ⊗ · · · .

For a fixed choice of k dividing d, the classical Pieri rule replaces the factor sσ|k
pdm/k

by the sum of sgn(ν/(σ|k))sν over all ν such that ν/(σ|k) is a (dm/k)-ribbon. We
weight such a ribbon by k to account for the extra factor of k. Adding over all choices
of k gives the formula in the theorem. □

Example 2.4. Let σ = (32211413). We compute s⊗
σ P32 using the following nine dia-

grams, where the boxes in the newly added ribbons are shaded in gray.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

The answer is

s⊗
(3221110,3) − s⊗

(322118,5) + s⊗
(322114,4,4,1) − s⊗

(322114,3,3,1,1,1) + s⊗
(322114,3,2,1,1,1,1)

− s⊗
(322114,3,1,1,1,1,1,1) + 3s⊗

(342114,3) + 3s⊗
(32,22114,3) − 3s⊗

(32,1,12114,3).

In contrast, when computing s⊗
σ P23 , we keep the first six diagrams but replace the

last three diagrams by these:
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

The new terms are +2s⊗
(322414,3) − 2s⊗

(3222,214,3) + 2s⊗
(3221,1,1,114,3).

2.2. Rule for s⊗
σ Pδ and M(P, s⊗). Let α = (α1, . . . , αs) be a list of positive in-

tegers. Iteration of Proposition 2.1 leads to the classical Schur expansion of sµpα in
terms of rim hook tableaux, which we now describe. A rim hook tableau (RHT) of
shape λ/µ and content α is a sequence of partitions µ = ν0, ν1, ν2, . . . , νs = λ such
that νi/νi−1 is an αi-ribbon for 1 ⩽ i ⩽ s. We visualize this skew RHT by drawing
the skew shape λ/µ and filling the boxes in the ribbon νi/νi−1 with the value i. The
sign of the RHT is the product of the signs of all the ribbons appearing in it. The
coefficient of sλ in sµpα is the signed sum of all RHT of shape λ/µ and content α.
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For example, here is one RHT that contributes +1 to the coefficient of s(4,4,4,4,1) in
s(3,2)p(4,2,3,3).

2
1 2

1 1 1 4
3 3 4 4
3

We get an analogous result for polysymmetric functions by iterating Theorem 2.3.
Let δ = (dm1

1 , . . . , dms
s ) be an ordered sequence of blocks. A tensor rim hook tableau

(TRHT) of shape τ/σ and content δ is a sequence of types σ = τ0, τ1, τ2, . . . , τ s = τ
such that, for 1 ⩽ i ⩽ s, τ i arises from τ i−1 by adding a dimi/ki-ribbon Ri to
dg(τ i−1|ki

) for some ki dividing di. Let TRHT(τ/σ, δ) be the set of such objects.
Write TRHT(τ, δ) when σ is the empty type. The sign (resp. weight) of a TRHT is
the product of the signs (resp. weights) of all ribbons appearing in it. If the TRHT
has rk ribbons in the shape in tensor position k for each k, then the weight of the
TRHT is

∏
k⩾1 krk . As with RHT, we visualize a TRHT by filling all cells in ribbon

Ri with the value i. This discussion proves the following theorem.

Theorem 2.5. For any type σ and sequence δ = (dm1
1 , . . . , dms

s ),

s⊗
σ Pδ =

∑
τ

 ∑
T ∈TRHT(τ/σ,δ)

sgn(T ) wt(T )

 s⊗
τ .

Example 2.6. The TRHT shown below contributes (−1)3 · 2 · 32 · 4 = −72 to the
coefficient of s⊗

(12,2,222,2,232,243,2) in s⊗
(12,121,142,2)P(42,32,61,31,41).

4
4 4

⊗ 1
1

1 1

⊗ 2 2
3 3

⊗ 5

Starting with s⊗
0 = 1 and multiplying by Pσ, we obtain the following transition

matrix.

Corollary 2.7. For all types σ, τ ⊩ n, the coefficient of s⊗
τ in the s⊗-expansion of

Pσ is

M(P, s⊗)τ,σ =
∑

T ∈TRHT(τ,σ)

sgn(T ) wt(T ).

Example 2.8. We compute the s⊗-expansion of P(21,12). Creating the tensor rim hook
tableaux according to the rules above, we get the following eight objects.

1 1
2
2

⊗ ∅ 1 1 2 2 ⊗ ∅ 1 2
1 2

⊗ ∅ 1
1
2
2

⊗ ∅

1 1
2 2

⊗ ∅ 1 2 2
1

⊗ ∅ 2 2 ⊗ 1 2
2

⊗ 1

These give us the expansion

P(2112) = −s⊗
(12,1,1) + s⊗

(14) + 2s⊗
(12,2) + s⊗

(11,1,1,1) − s⊗
(13,1) + 2s⊗

(1221) − 2s⊗
(11,121).
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2.3. Rule for s⊗
σ Hdr . In order to understand the effect of multiplying s⊗

σ by Hdr ,
we express Hdr in terms of h⊗ and then use the plethystic Murnaghan–Nakayama
Rule. We recall that plethysm is a binary operation, mapping an ordered pair (f, g) of
symmetric functions to an output f [g] ∈ Λ, which satisfies the Monomial Substitution
Rule: for any power-sum pn and f = f(x) ∈ Λ, f [pn] = f(xn). Plethysm appears in
our discussion of PΛ since Hdr (x∗∗) = Hd(xr

∗∗). We shall only need the Monomial
Substitution Rule here, but readers interested in knowing more about plethysm may
refer to [6]. Note that f [pn] = pn[f ] for all n.

Proposition 2.9. For nonnegative integers d and r, the following expansions hold.

(a) Hd =
∑
λ⊢d

hm1(λ)(x1∗)hm2(λ)(x2∗) · · · hmk(λ)(xk∗) · · ·

=
∑
λ⊢d

hm1(λ) ⊗ hm2(λ) ⊗ . . . ⊗ hmk(λ) ⊗ · · · .

(b) Hdr =
∑
λ⊢d

hm1(λ)(xr
1∗)hm2(λ)(xr

2∗) · · · hmk(λ)(xr
k∗) · · ·

=
∑
λ⊢d

hm1(λ)[pr] ⊗ hm2(λ)[pr] ⊗ · · · ⊗ hmk(λ)[pr] ⊗ · · · .

Proof. To prove part (a), consider the summand on the right side indexed by the par-
tition λ = (1m1(λ)2m2(λ) . . . kmk(λ) . . .). We know that for each i, any monomial that
appears in hmi(λ)(xi∗) is a product of mi(λ) variables chosen (with repetition allowed)
from the variable set xi∗. Thus, any monomial in hm1(λ)(x1∗)hm2(λ)(x2∗) . . . is a prod-
uct of mk(λ) variables from xk∗ (for each k) and has degree

∑
k⩾1

kmk(λ) = |λ| = d. This

shows that each term in the sum on the right side of (a) appears in the expansion of
Hd. To show that these are the only possible terms, we observe that any monomial f of
degree d in variables {xij}i,j⩾1 can be expressed as a product f1(x1∗)f2(x2∗) · · · where
each fk is a monomial in the variables xk∗ of degree dk. Define λ = (1d12d2 · · · kdk · · · ).
Then f appears as a monomial in the product hm1(λ)(x1∗)hm2(λ)(x2∗) · · · in the sum-
mand indexed by λ on the right side of (a).

Part (b) follows from the definition of Hdr , part (a), and the Monomial Substitution
Rule for plethysm. □

Example 2.10. The partitions of 4 are (14), (1221), (1131), (22), and (41). So H4 =
h4 ⊗ 1 ⊗ 1 ⊗ 1 + h2 ⊗ h1 ⊗ 1 ⊗ 1 + h1 ⊗ 1 ⊗ h1 ⊗ 1 + 1 ⊗ h2 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ h1.

To compute s⊗
σ Hdr , we need to understand the combinatorial objects that appear

in the Schur expansion of sµ · hn[pr]. The formula appears in [2, pg. 29] and a com-
binatorial interpretation in terms of r-decomposable partitions was given by Wildon
in [11]. We give a formula based on the notion of rn-polyribbons following the de-
scription in Turek [10]. The notation rn does not signify exponentiation or a block
but is meant to evoke the n-fold iteration of the operation of adding an r-ribbon.

Here is the formal definition. Let γ/ρ be a k-ribbon. The top row of γ/ρ, denoted
by ⊤(γ/ρ), is the least row containing a cell of γ/ρ. A skew shape λ/µ is called an
rn-polyribbon if there exist partitions γ(0), γ(1), . . ., γ(n) such that:
(8) µ = γ(0) ⊆ γ(1) ⊆ · · · ⊆ γ(n) = λ,

γ(i)/γ(i−1) is an r-ribbon for 1 ⩽ i ⩽ n, and ⊤(γ(i)/γ(i−1)) ⩾ ⊤(γ(i+1)/γ(i)) for
1 ⩽ i ⩽ n − 1. If λ/µ is an rn-polyribbon, then (as is readily checked) only one
list γ(0), . . . , γ(n) satisfies the conditions stated here. Thus, we may define the sign of
this rn-polyribbon, written sgnr(λ/µ), to be

∏n
i=1 sgn(γ(i)/γ(i−1)). If λ/µ is not an

rn-polyribbon for any n, then we set sgnr(λ/µ) = 0.
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Remark 2.11. The condition on top rows is equivalent to saying that the north-
easternmost box of each inserted ribbon lies weakly north and strictly east of the
northeasternmost box of the previously inserted ribbon.

Example 2.12. For µ = (5, 5, 1) and λ = (7, 6, 6, 4), λ/µ is a skew shape denoted by
the gray cells in the figure below.

The skew shape λ/µ is a 43-polyribbon as it can be constructed by adding three
4-ribbons according to the aforementioned rules as shown here:

→ → →

µ = γ(0) γ(1) γ(2) γ(3) = λ

If we write ti for ⊤
(
γ(i)/γ(i−1)

)
, then t1 = 3, t2 = 3, and t3 = 1. This polyribbon has

sign sgn4(λ/µ) = (−1) · (−1) · 1 = 1.

Remark 2.13. The next examples illustrate some common pitfalls that may occur.
(a) The shape (1, 1, 1, 1, 1, 1) is not a 32-polyribbon as the only way to construct

it is as follows:
∅ → →

γ(0) γ(1) γ(2)

Here ⊤(γ(1)/γ(0)) = 1, which is smaller than ⊤(γ(2)/γ(1)) = 4.
(b) The list of component ribbons of an rn-polyribbon is unique when nonnegative

integers r and n are fixed. For instance, (3, 3) is a 23-polyribbon constructed via
∅ → (1, 1) → (2, 2) → (3, 3). On the other hand, (3, 3) is a 32-polyribbon constructed
via ∅ → (2, 1) → (3, 3); note that the alternate construction ∅ → (3) → (3, 3) is
invalid.

(c) An rn-polyribbon may not be connected, in the sense that the skew shape
might be the union of two subsets of boxes with no shared edges. For instance,
(6, 1, 1, 1, 1)/(3, 1) is a disconnected 32-polyribbon, as one can see from this diagram:

.

(d) We use the phrase “adding an rn-polyribbon to µ to give λ” to mean λ/µ
is an rn-polyribbon. If µ is given, we create a new rn-polyribbon λ/µ by adding n
r-ribbons moving northeast along the border of the growing shape. If instead λ/µ is
given at the outset, we can test whether this shape is an rn-polyribbon by trying to
delete n r-ribbons moving southwest along the border as the shape λ shrinks to µ
through intermediate partition shapes. For example, this test shows that (2, 2, 2) is a
32-polyribbon but not a 23-polyribbon.

Here is the promised combinatorial description of the Schur expansion of sµ ·hn[pr].
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Theorem 2.14 ([11, Equation (2)]). Let µ be a partition and r, n be nonnegative
integers. Then

sµ · hn[pr] = sµ · pr[hn] =
∑

λ

sgnr(λ/µ)sλ

where the sum is over all partitions λ obtained by adding an rn-polyribbon to µ.

Remark 2.15. In the case n = 1, h1[pr] = pr, and the rule in the theorem reduces
to the Slinky Rule stated in Proposition 2.1. In the case r = 1, hn[p1] = hn, and the
theorem reduces to the classical Pieri rule. This says that sµhn =

∑
ν sν where we

sum over partitions ν such that ν/µ is a horizontal n-strip, namely a collection of n
boxes in distinct columns.

Applying Theorem 2.14 to the polysymmetric case leads to the following theorem.

Theorem 2.16. Let σ be any type and dr be a block. Then

s⊗
σ Hdr =

∑
τ

sgn⊗
r (τ/σ)s⊗

τ ,

where we sum over all types τ obtained from σ as follows: for some partition λ ⊢ d,
τ |k is obtained by adding an rmk(λ)-polyribbon to σ|k for all k ⩾ 1; and sgn⊗

r (τ/σ) =∏
k⩾1

sgnr((τ |k)/(σ|k)).

When τ is related to σ as described in this theorem, we say that τ/σ is a dr-tensor
polyribbon.

Proof. By Proposition 2.9(b),

s⊗
σ Hdr =

∑
λ⊢d

sσ|1 · hm1(λ)[pr] ⊗ sσ|2 · hm2(λ)[pr] ⊗ · · · ⊗ sσ|k
· hmk(λ)[pr] ⊗ · · · .

The kth factor in the tensor product expands into
∑
ν(k)

sgnr(ν(k)/(σ|k))sν(k) where the

sum is over all partitions ν(k) obtained by adding an rmk(λ)-polyribbon to σ|k. Using
the distributive property of tensor products over addition gives the signed sum of s⊗

τ

for the types τ described in the theorem. □

Example 2.17. Let σ = (323223211211) = (12,123,132,2), which has the tensor diagram
shown here:

⊗ ⊗

We describe one object in the expansion s⊗
σ H143 . First, we pick the partition λ =

(3, 3, 2, 2, 2, 1, 1) = (122332) of 14. The theorem tells us to add a 32-polyribbon to
the first diagram, a 33-polyribbon to the second diagram, and a 32-polyribbon to the
third diagram in all possible ways. One possible object is

⊗ ⊗

Here the gray cells show the added polyribbons, and the shading shows the constituent
ribbons within each polyribbon. The sign of this object is (−1·−1)·(1·1·−1)·(−1·1) =
1, and the corresponding term is +s⊗

(37332424222221141312).
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2.4. Rule for s⊗
σ Hδ and M(H, s⊗). We can iterate Theorem 2.16 to obtain the

s⊗-expansions of s⊗
σ Hδ and Hσ. Let τ and σ be types. Let δ = (dr1

1 , . . . , drs
s ) be

an ordered sequence of blocks. A tensor polyribbon tableau (TPRT) T of shape τ/σ
and content δ is a sequence of types σ = τ(0), τ(1), . . . , τ(s) = τ such that, for all i
between 1 and s, τ(i)/τ(i−1) is a dri

i -tensor polyribbon. Let TPRT(τ/σ, δ) be the set of
such objects. We visualize T by drawing the tensor diagram of τ and filling all cells in
dg(τ(i))∖dg(τ(i−1)) with the value i. The sign of T is sgn(T ) =

∏s
i=1 sgn⊗

ri
(τ(i)/τ(i−1)).

Theorem 2.18. Given a type σ and a sequence of blocks δ = (dr1
1 , . . . , drs

s ),

s⊗
σ Hδ =

∑
τ

 ∑
T ∈TPRT(τ/σ,δ)

sgn(T )

 s⊗
τ .

Proof. This follows by iterating Theorem 2.16 in the same way that Theorem 2.5 is
deduced from Theorem 2.3. □

Corollary 2.19. For all σ, τ ⊩ n, the coefficient of s⊗
τ in the s⊗-expansion of Hσ is

M(H, s⊗)τ,σ =
∑

T ∈TPRT(τ,σ)

sgn(T ).

Example 2.20. We find the coefficient of s⊗
221513 in the s⊗-expansion of H3232 . Here,

d1 = d2 = 3 and r1 = r2 = 2. We first pick λ ⊢ 3 and add a 2mk(λ)-polyribbon to an
empty diagram in each position k. Then we pick µ ⊢ 3 and add a 2mk(µ)-polyribbon
to the current diagram in each position k. We make such choices in all possible ways
that lead to the target tensor diagram with dg(5, 3) in position 1 and dg(2) in position
2. Since position 3 is empty, we cannot choose λ or µ to be (31).

Choosing λ = (13) and µ = (1121) leads to these two TPRTs, both with sign −1:

1 1 1 2 2
1 1 1

⊗ 2 2 ⊗ ∅ 1 1 1 1 1
1 2 2

⊗ 2 2 ⊗ ∅

Choosing λ = (1121) and µ = (13) leads to these two TPRTs, both with sign −1:

1 1 2 2 2
2 2 2

⊗ 1 1 ⊗ ∅ 1 2 2 2 2
1 2 2

⊗ 1 1 ⊗ ∅

No other choice of λ, µ leads to the required tensor diagram. Thus the coefficient of
s⊗

221513 in H3232 is −4.

Remark 2.21. Let σ = (11,1,...,1) ⊩ n. The coefficient of s⊗
τ in the s⊗-expansion of

Hσ is

M(H, s⊗)τ,σ =
{

fλ if τ = (1λ),
0 otherwise,

where fλ is the number of standard Young tableaux of shape λ. This extends the
analogous result for the symmetric function transition matrix M(h, s)λ,1n .

2.5. Rules for s⊗
σ E+

dm and s⊗
σ Edm . The rules for E+ and E follow from the rule

for H. In this section, we make use of the involution ω on the algebra of symmetric
functions. Under this map, ω(hλ) = eλ, ω(sµ) = sµ′ , and ω(pλ) = (−1)|λ|−ℓ(λ)pλ. For
more information about this involution, refer to Section 9.20 of [5]. In this section, we
use the following result.

Proposition 2.22 ([7, I.8, Ex 1(c)]). Given nonnegative integers r and n,

ω(hn[pr]) = (−1)n(r−1)en[pr].
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Using the proof technique from Proposition 2.9 and the idea of square-free mono-
mials, we can find the e⊗-expansions of E+

d and Ed.

Proposition 2.23. For nonnegative integers d and r, the following expansions of E+

and E hold.

(a) E+
d =

∑
λ⊢d

em1(λ)(x1∗)em2(λ)(x2∗) · · · emk(λ)(xk∗) · · ·

=
∑
λ⊢d

em1(λ) ⊗ em2(λ) ⊗ · · · ⊗ emk(λ) ⊗ · · · .

(b) Ed =
∑
λ⊢d

(−1)ℓ(λ)em1(λ)(x1∗) · · · emk(λ)(xk∗) · · ·

=
∑
λ⊢d

(−1)ℓ(λ)em1(λ) ⊗ · · · ⊗ emk(λ) ⊗ · · · .

(c) E+
dr =

∑
λ⊢d

em1(λ)(xr
1∗) · · · emk(λ)(xr

k∗) · · ·

=
∑
λ⊢d

em1(λ)[pr] ⊗ · · · ⊗ emk(λ)[pr] ⊗ · · · .

(d) Edr =
∑
λ⊢d

(−1)ℓ(λ)em1(λ)(xr
1∗) · · · emk(λ)(xr

k∗) · · ·

=
∑
λ⊢d

(−1)ℓ(λ)em1(λ)[pr] ⊗ · · · ⊗ emk(λ)[pr] ⊗ · · · .

Proof. We prove (a) and (b), and the rest follows from the Monomial Substitution
Rule. We proceed as in the proof of Proposition 2.9, but in this case each variable
appears at most once. This gives us the expression for E+

d . For Ed, the sign of a
monomial f is given by (−1)len(f), where len(f) is the number of indeterminates in f .
Each ek has exactly k indeterminates and thus has the sign (−1)k. This shows that
the sign for the monomial em1(λ)(x1∗) · · · emk(λ)(xk∗) · · · is (−1)m1(λ)+···+mk(λ)+··· =
(−1)ℓ(λ). □

Before we present the analogue of Theorem 2.14 for multiplying a Schur func-
tion by en[pr], we introduce a notion dual to that of an rn-polyribbon. For any
skew shape λ/µ, let ⊥(λ/µ) denote the least index of a column that contains a
cell of λ/µ. A skew shape λ/µ is called an (rn)′-polyribbon or a dual rn-polyribbon
if there exists a (necessarily unique) list of partitions γ(0), γ(1), . . . , γ(n) such that
µ = γ(0) ⊆ γ(1) ⊆ · · · ⊆ γ(n) = λ, γ(i)/γ(i−1) is an r-ribbon for 1 ⩽ i ⩽ n, and
⊥(γ(i)/γ(i−1)) ⩾ ⊥(γ(i+1)/γ(i)) for 1 ⩽ i ⩽ n − 1. Define the sign of an (rn)′-

polyribbon to be sgn′
r(λ/µ) =

n∏
i=1

sgn(γ(i)/γ(i−1)).

Remark 2.24. Equivalently, λ/µ is a dual rn-polyribbon if we can go from dg(µ) to
dg(λ) by adding n r-ribbons in succession, where the southwesternmost box of each
new r-ribbon lies strictly south and weakly west of the southwesternmost box of the
previously added r-ribbon.

Remark 2.25. If λ/µ is an rn-polyribbon, then λ′/µ′ is an (rn)′-polyribbon, and
conversely.
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Example 2.26. For µ = (3, 1) and λ = (4, 4, 2, 2, 2, 2), λ/µ is the following skew
shape:

The skew shape λ/µ is a dual 43-polyribbon since it can be constructed as follows:

→ → →

µ = γ(0) γ(1) γ(2) γ(3) = λ

The values of ⊥
(
γ(i)/γ(i−1)

)
for i = 1, 2, 3 are 2, 1, and 1. This polyribbon has sign

sgn′
4(λ/µ) = (−1) · 1 · 1 = −1.

Proposition 2.27. Given a partition µ and nonnegative integers n and r,

sµ · en[pr] =
∑

λ

sgn′
r(λ/µ)sλ,

where the sum is over all partitions λ obtained by adding a dual rn-polyribbon to µ.

Proof. Recall from Theorem 2.14 that

sµ · hn[pr] =
∑

ν

sgnr(ν/µ)sν ,

where the sum is over all partitions ν obtained by adding an rn-polyribbon to µ.
Acting on both sides by ω and then using Proposition 2.22 gives

sµ′ · (−1)n(r−1)en[pr] =
∑

ν

sgnr(ν/µ)sν′ .

Replacing µ′ by µ gives

sµ · en[pr] = (−1)n(r−1)
∑

ν

sgnr(ν/µ′)sν′ ,

where the sum is over partitions ν obtained by adding an rn-polyribbon to µ′, the
conjugate partition of µ. Equivalently, by Remark 2.25, ν′ is obtained by adding
the dual rn-polyribbon ν′/µ to µ. Defining λ = ν′, it suffices to show sgn′

r(λ/µ) =
(−1)n(r−1) sgnr(ν/µ′). If a skew shape α/β is a r-ribbon covering ℓ rows, then its
sign is (−1)ℓ−1. The number of columns spanned by this ribbon is r + 1 − ℓ which
determines the sign of α′/β′, i.e. sgn(α′/β′) = (−1)r−ℓ. Let the rn-polyribbon ν/µ′

have the decomposition γ(0), γ(1), . . . , γ(n) as in eq. (8), where each γ(i)/γ(i−1) covers
ℓi rows and r + 1 − ℓi columns. This gives us

sgn′
r(λ/µ) = (−1)(r−ℓ1)+(r−ℓ2)+...+(r−ℓn)

= (−1)nr(−1)(ℓ1−1)+(ℓ2−1)+···+(ℓn−1)+n

= (−1)n(r−1) sgnr(ν/µ′). □
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For types τ and σ, we say that τ/σ is a dual dr-tensor polyribbon if, for some par-
tition λ of d, each τ |k is obtained from σ|k by adding a dual rmk(λ)-polyribbon.
We call the partition λ the associated partition of τ/σ. In this situation, define
sgn+

r (τ/σ) =
∞∏

k=1
sgn′

r((τ |k)/(σ|k)) and sgn−
r (τ/σ) = (−1)ℓ(λ)

∞∏
k=1

sgn′
r((τ |k)/(σ|k)),

where λ is the associated partition of τ/σ. The extra power (−1)ℓ(λ) is the total
number of r-ribbons (within the various polyribbons) that are added to σ to reach τ .

Theorem 2.28. Let σ be any type and dr be a block. Then

s⊗
σ E+

dr =
∑

τ

sgn+
r (τ/σ)s⊗

τ and s⊗
σ Edr =

∑
τ

sgn−
r (τ/σ)s⊗

τ ,

where the sums range over types τ such that τ/σ is a dual dr-tensor polyribbon.

Proof. We prove it for the case of E+
dr , and the same proof works for Edr with an

appropriate change of sign. From Proposition 2.23, we obtain

s⊗
σ · E+

dr =
∑
λ⊢d

sσ|1 · em1(λ)[pr] ⊗ · · · ⊗ sσ|k
· emk(λ)[pr] ⊗ · · · .

Applying Proposition 2.27 to the above expression, the kth component of the tensor
product expands to

∑
γ

sgn′
r(γ/(σ|k))sγ , where the sum is over partitions γ that arise

by adding a dual rmk(λ)-polyribbon to σ|k. Using the distributive law gives us our
result. □

2.6. Rules for s⊗
σ E+

δ , s⊗
σ Eδ, M(E+, s⊗), and M(E, s⊗). To obtain the entries of

the next transition matrices, we define a dual version of the tableaux in Section 2.4.
Let τ and σ be types. Let δ = (dr1

1 , . . . , drs
s ) be an ordered sequence of blocks. A dual

tensor polyribbon tableau (dual TPRT ) T of shape τ/σ and content δ is a sequence of
types σ = τ(0), τ(1), . . . , τ(s) = τ such that, for all i between 1 and s, τ(i)/τ(i−1) is a
dual dri

i -tensor polyribbon. Let TPRT′(τ/σ, δ) be the set of such objects. We visualize
T by drawing the tensor diagram of τ and filling all cells in dg(τ(i))∖ dg(τ(i−1)) with
the value i. Define the two corresponding signs associated with T to be sgn+(T ) =∏s

i=1 sgn+
ri

(τ(i)/τ(i−1)) and sgn−(T ) =
∏s

i=1 sgn−
ri

(τ(i)/τ(i−1)).

Theorem 2.29. Given a type σ and a sequence of blocks δ = (dr1
1 , . . . , drs

s ),

s⊗
σ E+

δ =
∑

τ

 ∑
T ∈TPRT′(τ/σ,δ)

sgn+(T )

 s⊗
τ and

s⊗
σ Eδ =

∑
τ

 ∑
T ∈TPRT′(τ/σ,δ)

sgn−(T )

 s⊗
τ .

Proof. These follow by iterating Theorem 2.28 in the same way that Theorem 2.5 is
deduced from Theorem 2.3. □

Example 2.30. Let us construct one of the objects of shape τ = 143251222515353221 that
appears in the s⊗-expansions of s⊗

σ Eδ and s⊗
σ E+

δ for σ = 1231,1,1 and δ = (115, 56).
We first pick the partition λ = 122331 ⊢ 11. Starting with the tensor diagram of τ , we
insert a dual 52-polyribbon in the first diagram, a dual 53-polyribbon in the second
diagram, and a dual 51-polyribbon in the third diagram. We label the cells in these
polyribbons by 1. Next we pick the partition µ = 1231 ⊢ 5. We continue by adding a
dual 62-polyribbon to the first diagram and a dual 61-polyribbon to the third diagram,
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with all new cells labeled by 2. Here is one possible object T ∈ TPRT(τ/σ, δ) arising
from these insertions:

1 1
1 1 1 2
1 2 2 2
1 2
1 2
1 2
1 2
2 2
2
2

⊗ 1 1
1 1
1 1
1 1
1 1
1
1
1
1
1

⊗ 1 1 1 1
1 2
2 2

2 2
2

We compute sgn+(T ) = 1 and sgn−(T ) = (−1)ℓ(λ)+ℓ(µ) sgn+(T ) = (−1)6+3 = −1.

Corollary 2.31. For all types σ, τ ⊩ n, the coefficients of s⊗
τ in the s⊗-expansions

of E+
σ and Eσ are

M(E+, s⊗)τ,σ =
∑

T ∈TPRT′(τ,σ)

sgn+(T ) and M(E, s⊗)τ,σ =
∑

T ∈TPRT′(τ,σ)

sgn−(T ).

3. Expansions in the p⊗ basis
3.1. Algebraic development of p⊗-expansions. Given integer partitions λ =
(1m1(λ)2m2(λ) · · · ) and µ = (1m1(µ)2m2(µ) · · · ), define their union to be λ ∪ µ =
(1m1(λ)+m1(µ)2m2(λ)+m2(µ) · · · ), which is the partition obtained by combining all the
parts of λ and µ (with multiplicities) into a new weakly decreasing list. By defini-
tion of power-sums, we have pλpµ = pλ∪µ. More generally, given integer partitions
λ(1), . . . , λ(s),

∏s
i=1 pλ(i) = pλ(1)∪···∪λ(s) .

Similar results hold for types and the p⊗-basis of PΛ. For any types σ and ρ, let
σ ∪ ρ be the type obtained by merging all the blocks in σ and ρ (with multiplicities)
into a new list of blocks. Equivalently, using the union operation on integer partitions,
we can define σ ∪ρ by (σ ∪ρ)|k = σ|k ∪ρ|k for all k ⩾ 1. It follows from this definition
that p⊗

σ∪ρ = p⊗
σ p⊗

ρ . More generally, for all types τ (1), . . . , τ (s),

(9)
s∏

i=1
p⊗

τ(i) =
s∏

i=1

⊗
k⩾1

pτ(i)|k
=

⊗
k⩾1

pτ(1)|k∪···∪τ(s)|k
= p⊗

τ(1)∪···∪τ(s) .

Combining this formula with the distributive law, we get an algebraic prescription
for the p⊗-expansion of a product G1G2 · · · Gs assuming we already know the
p⊗-expansions of each Gi. In particular, to get the transition matrices M(P, p⊗),
M(H, p⊗), M(E+, p⊗), and M(E, p⊗), it suffices to find the p⊗-expansions of Pdr ,
Hdr , E+

dr , and Edr .
Before presenting these expansions, we introduce some notation. For each inte-

ger partition λ, define zλ =
∏
i⩾1

imi(λ)mi(λ)!. The factor zλ appears when find-

ing p-expansions of certain symmetric functions. In particular, hn =
∑

λ⊢n

pλ

zλ
and

en =
∑

λ⊢n

(−1)n−ℓ(λ) pλ

zλ
(see [5, §9.19]). The polysymmetric analog of zλ is defined

by z⊗
τ =

∏
k⩾1

zτ |k
for a type τ .

Example 3.1. For τ = (32322322221412), we have associated partitions τ |1 = (4, 2) =
4121, τ |2 = (3, 2, 2) = 3122, and τ |3 = (2, 2) = 22. We compute z⊗

τ = (411!211!) ·
(311!222!) · (222!) = 1536.
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For a type τ = (d m1
1 d m2

2 . . . d ms
s ) and an integer r > 0, define the type

τ r = (d rm1
1 d rm2

2 . . . d rms
s ). Recall from §1.2 that sgn(τ) =

∏s
i=1(−1)mi =∏

k⩾1(−1)area(τ |k) and ℓ(τ) = s =
∑

k⩾1 ℓ(τ |k). The net exponent of −1 in sgn(τ)
is the number of blocks of τ with odd multiplicity, while the net exponent of −1 in
(−1)ℓ(τ) sgn(τ) is the number of blocks of τ with even multiplicity.

Proposition 3.2. For positive integers d and r, the following p⊗-expansions hold.

(a) Pdr =
∑
k|d

k p⊗
krd/k .

(b) Hdr =
∑

τ⊩d

p⊗
τr

z⊗
τ

.

(c) E+
dr =

∑
τ⊩d

(−1)ℓ(τ) sgn(τ)p⊗
τr

z⊗
τ

.

(d) Edr =
∑

τ⊩d

(−1)ℓ(τ) p⊗
τr

z⊗
τ

.

Proof. Suppose we have found a required expansion when r = 1, say Fd =
∑

τ aτ p⊗
τ

where F is P or H or E+ or E and aτ ∈ Q. The plethysm property pm[pr] = prm

(for positive integers m, r) extends to pλ[pr] = prλ (for a partition λ and integer r),
where rλ is λ with all parts scaled by r. Then the p⊗-expansion for general r is

(10) Fdr =
∑

τ

aτ pτ |1 [pr] ⊗ pτ |2 [pr] ⊗ . . . =
∑

τ

aτ prτ |1 ⊗ prτ |2 ⊗ . . . =
∑

τ

aτ p⊗
τr .

(a) The sum
∑
j⩾1

x
d/k
k,j is the power-sum symmetric function pd/k(xk∗) = p⊗

kd/k .

Thus, eq. (5) can be rephrased as Pd =
∑
k|d

k p⊗
kd/k . Part (a) now follows from (10).

(b) By Proposition 2.9, Hd =
∑
λ⊢d

hm1(λ) ⊗hm2(λ) ⊗· · · . Using hn =
∑

µ⊢n

pµ

zµ
on each

factor gives

(11) Hd =
∑
λ⊢d

∑
µ(1)⊢m1(λ)

∑
µ(2)⊢m2(λ)

· · ·
∑

µ(d)⊢md(λ)

pµ(1)

zµ(1)
⊗

pµ(2)

zµ(2)
⊗ · · · ⊗

pµ(d)

zµ(d)
.

The iterated sum here can be rewritten as a sum over types τ ⊩ d via the bijection
sending (λ, µ(1), µ(2), . . . , µ(d)) to the type τ with τ |k = µ(k) for all k ⩾ 1. We obtain

Hd =
∑

τ⊩d

p⊗
τ

z⊗
τ

. Part (b) now follows from (10). (c) The proof for E+
d is like the proof

for Hd, but with bookkeeping for signs. The kth tensor factor in (11) contributes the
sign (−1)area(µ(k))−ℓ(µ(k)). Converting to a sum over τ as described above, the kth sign
factor becomes (−1)area(τ |k)−ℓ(τ |k). Taking the product over k ⩾ 1 gives an overall sign
of sgn(τ)(−1)ℓ(τ) for the coefficient of p⊗

τ .
(d) For Ed, each summand on the right side of (11) now has the sign

(−1)ℓ(λ)
∏
k⩾1

(−1)mk(λ)
∏
k⩾1

(−1)ℓ(µ(k)).

But ℓ(λ) =
∑

k⩾1 mk(λ), so that part of the sign disappears. We are left with a sign
of (−1)ℓ(τ) for the coefficient of p⊗

τ . □

Algebraic Combinatorics, Vol. 8 #4 (2025) 1101



Aditya Khanna & Nicholas A. Loehr

Example 3.3. In this example, we illustrate Proposition 3.2 for the types 23 and 32.
We compute:

P23 = p⊗
16 + 2p⊗

23 , P32 = p⊗
16 + 3p⊗

32 ,

H23 =
p⊗

16

2 +
p⊗

1313

2 + p⊗
23 , H32 =

p⊗
16

3 +
p⊗

1412

2 +
p⊗

121212

6 + p⊗
2212 + p⊗

32 ,

E+
23 = −

p⊗
16

2 +
p⊗

1313

2 + p⊗
23 , E+

32 =
p⊗

16

3 −
p⊗

1412

2 +
p⊗

121212

6 + p⊗
2212 + p⊗

32 ,

E23 = −
p⊗

16

2 +
p⊗

1313

2 − p⊗
23 , E32 = −

p⊗
16

3 +
p⊗

1412

2 −
p⊗

121212

6 + p⊗
2212 − p⊗

32 .

For instance, we compute the coefficient of p⊗
1412 in E+

32 as follows. The type producing
this term is τ = (1211). Here, ℓ(τ) = (−1)2 = 1, sgn(τ) = (−1)2+1 = −1, and
z⊗

τ = z(2,1) = 2. So the required coefficient is −1/2.

Combining Proposition 3.2 with the remark following (9) leads to algebraic formu-
las for p⊗-expansions of various products of polysymmetric functions. In the following
subsections, we supplement these algebraic formulas with combinatorial formulas that
express the final answers in terms of tableau-like structures.

3.2. Rule for p⊗
σ Pδ and M(P, p⊗).

Proposition 3.4. For any type σ and block dm,

p⊗
σ Pdm =

∑
τ

wt(σ, τ)p⊗
τ ,

where we sum over all types τ that arise from σ by choosing a positive divisor k of d
and inserting one new part of size dm/k into σ|k; and wt(σ, τ) = k for each such τ .

Proof. Recall from (7) that Pdm =
∑

k|d 1 ⊗ · · · ⊗ 1 ⊗ kpdm/k ⊗ 1 ⊗ · · · , where kpdm/k

occurs in position k. Multiplying p⊗
σ = pσ|1 ⊗ pσ|2 ⊗ · · · by this expression, we get

p⊗
σ Pdm =

∑
k|d

pσ|1 ⊗ · · · ⊗ pσ|k
kpdm/k ⊗ pσ|k+1 ⊗ · · · .

Multiplying pσ|k
by pdm/k produces pτ |k

where τ is related to σ as described in the
proposition. The resulting term p⊗

τ in the expansion has coefficient k. □

Fix a type σ = (1σ|12σ|2 · · · ) and an ordered sequence of blocks δ = (dm1
1 , . . . , dms

s ).
Iteration of the rule in Proposition 3.4 leads to the p⊗-expansion of p⊗

σ Pδ. Starting
with the tensor diagram of σ, we choose ki dividing di (for 1 ⩽ i ⩽ s) and add a
new part (weighted by ki) of size dimi/ki to the current partition diagram in tensor
position ki. This produces the term p⊗

τ with the weight coefficient wt(σ, τ) = ki. We
get the required expansion by adding all such terms generated by making all possible
choices of divisors (k1, . . . , ks).

We now describe the answer in a different way, giving a combinatorial formula
for the net coefficient of each p⊗

τ in the output. To do this, we define combinatorial
structures (similar to TRHTs) that encode the required bookkeeping. We call these
objects increasing constant-row P -tableaux (ICRPTs). Given σ and δ as above, let
τ = (1τ |12τ |2 · · · ) be a type such that for all k, r, mr(τ |k) ⩾ mr(σ|k). Intuitively, this
condition means that the tensor diagram for τ arises from the tensor diagram for σ by
adding new parts in various components. An ICRPT of shape τ and extended content
(σ; δ) is a filling T of the cells in the tensor diagram of τ with integers 0, 1, . . . , s
satisfying these conditions:

• Each row of each τ |k is constant (having the same value in each cell).
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• For 1 ⩽ i ⩽ s, exactly one row in the tensor diagram of τ contains the value
i. If that row appears in τ |k and has length r, then rk = dimi.

• The cells containing 0 in T form a sub-tensor diagram that equals the tensor
diagram of σ.

• For each r, k, the values in the rows of τ |k of length r weakly increase reading
down the first column.

The weight of the ICRPT T is wt(T ) =
∏

k⩾1 knk(T ), where nk(T ) is the number of
rows in the diagram of τ |k containing a nonzero value. Let ICRPT(τ, (σ; δ)) be the
set of fillings T satisfying these conditions. When σ is empty, we write ICRPT(τ, δ)
for this set and call δ the content of T .

Example 3.5. For σ = (13,1,124,244), τ = (14,3,1,124,4,4,23144,2), and δ = (4231412442),
the two objects in ICRPT(τ, (σ; δ)) are shown here and explained below:

3 3 3 3
0 0 0
0
0

⊗ 0 0 0 0
1 1 1 1
4 4 4 4
0 0

⊗ 2 ⊗ 0 0 0 0
5 5

3 3 3 3
0 0 0
0
0

⊗ 0 0 0 0
4 4 4 4
5 5 5 5
0 0

⊗ 2 ⊗ 0 0 0 0
1 1

For each block dmi
i of δ with 1 ⩽ i ⩽ 5, denote by ki the tensor factor where the

brick labeled i is inserted and let ri be the brick’s length. To build the first object,
choose k1 = 2 with r1 = 4, which gives us the brick of length 4 in the second factor.
Then choose k2 = 3 with r2 = 1 thus inserting the box labeled 2 in the third tensor
factor. We continue until choosing k5 = 4, giving r5 = 2, and we insert the brick
labeled 5 of length 2 in the fourth tensor factor. Similarly, we construct the other
diagram. Both objects have weight 1 · 2 · 2 · 3 · 4 = 48 and thus the coefficient of p⊗

τ

in p⊗
σ Pδ is 96. In general, the weight of T ∈ ICRPT(τ, (σ; δ)) depends only on τ and

σ, not δ.

Theorem 3.6. For any type σ and sequence δ = (dm1
1 , . . . , dms

s ),

p⊗
σ Pδ =

∑
τ

 ∑
T ∈ICRPT(τ,(σ;δ))

wt(T )

 p⊗
τ .

Proof. The entries in each ICRPT record the sequence of part additions caused by
starting at p⊗

σ and successively multiplying by Pd
m1
1

, . . . , Pdms
s

in accordance with
Proposition 3.4. We start with the tensor diagram of σ, which is filled with 0s to
indicate this is the initial shape. For i = 1, 2, . . . , s, the unique row containing value
i is the new row inserted into the tensor diagram due to the multiplication by Pd

mi
i

.
This row must appear in tensor position ki, for some ki dividing di, and must have
length r = dimi/ki. Each new row is inserted in the proper position within the kith
diagram so that parts still appear in weakly decreasing order. If parts of length r
already exist in the kith diagram, the new part is placed just below them. This is
why values of T must increase as we scan down through equal-length parts in a given
component of the tensor diagram. The net result of all the part additions is a term
p⊗

τ . Each new row added to the kth diagram multiplies this term by k, so the net
coefficient of this term is wt(T ). □

Corollary 3.7. For all types σ, τ ⊩ n, the coefficient of p⊗
τ in the p⊗-expansion of

Pσ is
M(P, p⊗)τ,σ =

∑
T ∈ICRPT(τ,σ)

wt(T ).

Example 3.8. We find the p⊗-expansion of p⊗
2213P(22,41,22). We compute one ICRPT

step-by-step and present the rest in a figure. Here, dm1
1 = 22, dm2

2 = 41, and dm3
3 = 22.
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Choose k1 = 2, k2 = 2, and k3 = 1. First, since k1 = 2, we place a row of length
d1m1/k1 = 2 with cells labeled 1 in the second diagram. Second, since k2 = 2, we
place another row of length d2m2/k2 = 2 with cells labeled 2 in the second diagram.
Third, since k3 = 1, we place a row of length d3m3/k3 = 4 with cells labeled 3 in the
first diagram. is added in the first tensor factor owing to the choice k3 = 1. This gives
the ICRPT

3 3 3 3
0 0 0

⊗ 0 0
1 1
2 2

⊗ ∅ ⊗ ∅

with weight 2 · 2 · 1 = 4. Figure 1 shows all ICRPTs arising in Theorem 3.6 when
σ = 2213 and δ = (22, 41, 22). Below each ICRPT, we show the tuple (k1, k2, k3)
producing it and the weight of the ICRPT. Combining all of this, we find the p⊗-
expansion of p⊗

1322P(22,41,22) to be

p⊗
14,4,4,322+6p⊗

14,4,322,2+12p⊗
14,322,2,2+8p⊗

1322,2,2,2+4p⊗
14,4,32241+16p⊗

14,322,241+16p⊗
1322,2,241 .

1 1 1 1
2 2 2 2
3 3 3 3
0 0 0

⊗ 0 0 ⊗ ∅ ⊗ ∅ 1 1 1 1
2 2 2 2
0 0 0

⊗ 0 0
3 3

⊗ ∅ ⊗ ∅ 2 2 2 2
3 3 3 3
0 0 0

⊗ 0 0
1 1

⊗ ∅ ⊗ ∅

(1, 1, 1), wt = 1 (1, 1, 2), wt = 2 (2, 1, 1), wt = 2

1 1 1 1
3 3 3 3
0 0 0

⊗ 0 0
2 2

⊗ ∅ ⊗ ∅ 1 1 1 1
0 0 0

⊗ 0 0
2 2
3 3

⊗ ∅ ⊗ ∅ 2 2 2 2
0 0 0

⊗ 0 0
1 1
3 3

⊗ ∅ ⊗ ∅

(1, 2, 1), wt = 2 (1, 2, 2), wt = 4 (2, 1, 2), wt = 4

3 3 3 3
0 0 0

⊗ 0 0
1 1
2 2

⊗ ∅ ⊗ ∅ 0 0 0 ⊗ 0 0
1 1
2 2
3 3

⊗ ∅ ⊗ ∅ 1 1 1 1
3 3 3 3
0 0 0

⊗ 0 0 ⊗ ∅ ⊗ 2

(2, 2, 1), wt = 4 (2, 2, 2), wt = 8 (1, 4, 1), wt = 4

1 1 1 1
0 0 0

⊗ 0 0
3 3

⊗ ∅ ⊗ 2 3 3 3 3
0 0 0

⊗ 0 0
1 1

⊗ ∅ ⊗ 2 0 0 0 ⊗ 0 0
1 1
3 3

⊗ ∅ ⊗ 2

(1, 4, 2), wt = 8 (2, 4, 1), wt = 8 (2, 4, 2), wt = 16

Figure 1. ICRPTs in Example 3.8.

3.3. Rule for p⊗
σ Hδ and M(H, p⊗).

Proposition 3.9. For any type σ and block dm,

p⊗
σ Hdm =

∑
τ⊩d

1
z⊗

τ
p⊗

σ∪τm .

Proof. The formula follows immediately from Proposition 3.2(b), (9), and linearity.
□

Here is a pictorial description of the rule in Proposition 3.9. To compute the p⊗-
expansion of p⊗

σ Hdm
, start with the tensor diagram dg(σ). Choose any type τ ⊩ d. For

all k ⩾ 1, merge the partition diagrams dg(σ|k) and dg(mτ |k) to get a new partition
diagram in position k. Weight the new tensor diagram by 1/z⊗

τ =
∏

k⩾1 z−1
τ |k

. Add the
resulting terms over all choices of the type τ .
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Iteration of this rule leads to the p⊗-expansion of p⊗
σ Hδ, where σ is a type and

δ = (dm1
1 , . . . , dms

s ) is a sequence of blocks. Define an increasing constant-row H-
tableau (ICRHT) of shape τ and extended content (σ; δ) to be a filling T of the cells
in the tensor diagram dg(τ) with integers 0, 1, . . . , s satisfying these conditions:

• Each row of each diagram dg(τ |k) is constant.
• The cells containing 0 in T form a sub-tensor diagram equal to dg(σ).
• For 1 ⩽ i ⩽ s, the cells containing i in T form a sub-tensor diagram equal to

dg(miρ
(i)) for some type ρ(i) ⊩ di.

• For each r, k, the values in the rows of τ |k of length r weakly increase reading
down the first column.

Let ICRHT(τ, (σ; δ)) be the set of all such objects. The weight of an object T in
this set is

∏s
i=1 1/z⊗

ρ(i) . Define sgn+(T ) =
∏s

i=1(−1)ℓ(ρ(i)) sgn(ρ(i)) and sgn−(T ) =∏s
i=1(−1)ℓ(ρ(i)). The exponent of −1 in sgn−(T ) is the number of rows with positive

labels in the tensor diagram of T . To compute sgn+(T ) from the tensor diagram we
do the following: for every label i > 0, find the sub-tensor diagram formed by cells
with label i, and divide the length of each row by mi. Remove one cell from each row
and call the total number of remaining cells ci. Then sgn+(T ) = (−1)c1+c2+...+cs .

Theorem 3.10. For any type σ and sequence δ = (dm1
1 , . . . , dms

s ),

p⊗
σ Hδ =

∑
τ

 ∑
T ∈ICRHT(τ,(σ;δ))

wt(T )

 p⊗
τ .

Proof. Start with p⊗
σ , modeled by the tensor diagram dg(σ) with all cells containing

0. For i = 1, 2, . . . , s, use Proposition 3.9 to modify the current diagram to enact
multiplication by the next factor Hd

mi
i

. Do this by choosing a type ρ(i) ⊩ di and
adding new parts given by miρ

(i)|k to the kth diagram for all k ⩾ 1. Put i in all
cells in these new parts to record which factor created them. As before, new parts
of size r are placed immediately below existing parts of size r in each diagram. This
explains the weakly increasing condition in the definition of ICRHTs. The factor wt(T )
accounts for all the weights produced by each insertion step. Making these choices in
all possible ways leads to the weighted set ICRHT(τ, (σ; δ)) appearing in the theorem
statement. □

Corollary 3.11. For all types σ, τ ⊩ n, the coefficient of p⊗
τ in the p⊗-expansion of

Hσ is

M(H, p⊗)τ,σ =
∑

T ∈ICRHT(τ,σ)

wt(T ).

Example 3.12. In this example, we compute the coefficient of p⊗
τ in the p⊗-expansion

of Hσ, where τ = (32,122,2,114) and σ = (91614122). We construct the following six
objects, each labeled by the tuple of types (ρ(1) ⊩ 9, ρ(2) ⊩ 6, ρ(3) ⊩ 4, ρ(4) ⊩ 2) that
produced it.
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T1 = 4 4 4 4 ⊗ 2 2
3 3
2

⊗ 1 1
1

T2 = 3 3 3 3 ⊗ 2 2
4 4
2

⊗ 1 1
1

((32,1), (22,1), (22), (12)) ((32,1), (22,1), (14), (21))

T3 = 4 4 4 4 ⊗ 1 1
3 3
1

⊗ 2 2
1

T4 = 3 3 3 3 ⊗ 1 1
4 4
1

⊗ 2 2
1

((3122,1), (32), (22), (12)) ((3122,1), (32), (14), (21))

T5 = 2 2 2 2 ⊗ 3 3
4 4
2

⊗ 1 1
1

T6 = 1 1 1 1 ⊗ 3 3
4 4
1

⊗ 2 2
1

((32,1), (2114), (22), (21)) ((312114), (32), (22), (21))

The weight of the first ICRHT is wt(T1) = z−1
(2,1)z

−1
(2,1)z

−1
(2)z−1

(2) =
( 1

2
)4 = 1

16 . Similarly,
all six ICRHTs shown here have weight 1

16 . So M(H, p⊗)τ,σ = 3
8 .

Remark 3.13. In general, not all objects in ICRHT(τ, σ) have the same weight. For
example, let τ = (11,1,121,1,1) and σ = (5141). Two objects in ICRHT(τ, σ) are T ′ =
1
1
1

⊗
1
2
2

and T ′′ =
1
2
2

⊗
1
1
2

, arising from type choices ((11,1,121), (21,1)) for T ′ and

((1121,1), (11,121)) for T ′′. We compute wt(T ′) = z−1
(13)z

−1
(1)z−1

(12) = 1/12 and wt(T ′′) =
z−1

(1)z−1
(12)z

−1
(12)z

−1
(1) = 1/4.

3.4. Rule for p⊗
σ E+

δ , p⊗
σ Eδ, M(E+, p⊗), and M(E, p⊗). The next three results

follow immediately by adapting the proofs in the previous subsection, keeping in mind
Proposition 3.2(c) and (d).

Proposition 3.14. For any type σ and block dm,

p⊗
σ E+

dm =
∑
τ⊩d

(−1)ℓ(τ) sgn(τ)
z⊗

τ
p⊗

σ∪τm and p⊗
σ Edm =

∑
τ⊩d

(−1)ℓ(τ)

z⊗
τ

p⊗
σ∪τm .

Theorem 3.15. For any type σ and sequence δ = (dm1
1 , . . . , dms

s ),

p⊗
σ E+

δ =
∑

τ

 ∑
T ∈ICRHT(τ,(σ;δ))

sgn+(T ) wt(T )

 p⊗
τ ;

p⊗
σ Eδ =

∑
τ

 ∑
T ∈ICRHT(τ,(σ;δ))

sgn−(T ) wt(T )

 p⊗
τ .

Corollary 3.16. For all types σ, τ ⊩ n, the coefficient of p⊗
τ in the p⊗-expansion of

E+
σ is

M(E+, p⊗)τ,σ =
∑

T ∈ICRHT(τ,σ)

sgn+(T ) wt(T ).

The coefficient of p⊗
τ in the p⊗-expansion of Eσ is

M(E, p⊗)τ,σ =
∑

T ∈ICRHT(τ,σ)

sgn−(T ) wt(T ).

Example 3.17. We continue with Example 3.12 where τ = (32,122,2,114) and σ =
(91614122). For i between 1 and 6, sgn−(Ti) = (−1)6 since there are 6 rows in dg(τ),
all filled with positive labels. So the coefficient of p⊗

τ in the p⊗-expansion of Eσ is
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3
8 . On the other hand, sgn+(T1) = sgn+(T3) = (−1)10−6 = 1, while sgn+(T2) =
sgn+(T4) = sgn+(T5) = sgn+(T6) = (−1)11−6 = −1. So the coefficient of p⊗

τ in the
p⊗-expansion of E+

σ is − 1
8 .

4. Expansions in the m⊗ basis
4.1. Rule for m⊗

σ Pδ and M(P, m⊗). Before stating our combinatorial rule for
the m⊗-expansion of mσPδ, we describe an analogous rule (cf. [3]) for the monomial
expansion of mµpα, where µ = (µ1, . . . , µℓ) is an integer partition and α = (α1, . . . , αs)
is a sequence of positive integers. We create s horizontal bricks, namely, a brick
containing α1 boxes labeled 1, a brick containing α2 boxes labeled 2, . . ., and a brick
containing αs boxes labeled s. We also create ℓ horizontal bricks of lengths µ1, . . . , µℓ

with all boxes in these bricks labeled 0. For a given partition λ, draw the diagram of
λ and place these bricks in this diagram so that every box in the diagram is covered
by exactly one brick, and the brick labels strictly increase reading left to right in each
row. (Strict increase means that a row can contain at most one brick labeled 0.) Two
bricks of the same length, with boxes labeled 0, are considered indistinguishable. Call
such a configuration a p-brick tabloid of shape λ and extended content (µ; α).

Proposition 4.1. For any partitions λ, µ and list of positive integers α, the coefficient
of mλ in mµpα is the number of p-brick tabloids of shape λ and extended content (µ; α).

Proof. The coefficient of mλ in the m-expansion of mµpα equals the coefficient of
the particular monomial xλ = xλ1

1 xλ2
2 · · · xλk

k · · · in the polynomial mµ(x)pα(x). The
p-brick tabloids described in the proposition record all the ways the monomial xλ can
be generated by choosing particular monomials from each factor mµ(x), pα1(x), . . .,
pαs

(x) and multiplying those monomials together in accordance with the distributive
law.

In more detail, the placement of all the bricks labeled 0 in distinct rows i1, i2, . . . , iℓ

records a monomial xµ1
i1

xµ2
i2

· · · xµℓ

iℓ
coming from mµ(x). The placement of the brick

of length α1 labeled 1 in some row j1 records a monomial xα1
j1

coming from pα1(x).
The placement of the brick of length α2 labeled 2 in some row j2 records a monomial
xα2

j2
coming from pα2(x). And so on. Since the p-brick tabloid covers each cell in row

k of the diagram of λ with exactly one brick, we see that the power of xk in the
generated monomial is λk for all k, as needed. Brick labels increase from left to right
in each row since we place the bricks in the diagram in the same order that the choices
of monomials are made from mµ(x) (bricks labeled 0), pα1(x) (brick labeled 1), . . .,
pαs

(x) (brick labeled s). □

Example 4.2. Let µ = (3, 3, 1) and α = (2, 4, 2). We find the coefficient of m(5,4,3,3)
in mµpα to be 6 by counting the following p-brick tabloids.

0 0 0 1 1
2 2 2 2
0 0 0
0 3 3

0 0 0 1 1
2 2 2 2
0 3 3
0 0 0

0 0 0 3 3
2 2 2 2
0 0 0
0 1 1

0 0 0 3 3
2 2 2 2
0 1 1
0 0 0

0 1 1 3 3
2 2 2 2
0 0 0
0 0 0

0 2 2 2 2
1 1 3 3
0 0 0
0 0 0

Turning to the polysymmetric case, fix types τ and σ, and fix an ordered sequence
of blocks δ = (de1

1 , . . . , des
s ). We seek the coefficient of m⊗

τ in the m⊗-expansion of
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m⊗
σ Pδ. We describe this coefficient as the weighted sum of P -tensor brick tabloids

constructed as follows. We fill the tensor diagram of τ with certain horizontal bricks
labeled 0, 1, 2, . . . , s so that every box is covered by exactly one brick. The brick
labels in each row of each component diagram must strictly increase reading left to
right. In each tensor component k, we use ℓ(σ|k) bricks labeled 0, with lengths given
by the parts of the partition σ|k. Next, fix i between 1 and s. Recall from (7) that
Pd

ei
i

=
∑

ki|di
kipdiei/ki

(xki∗). When building a particular P -tensor brick tabloid,
we may use exactly one brick labeled i, chosen as follows: pick a positive divisor
ki of di; make a brick labeled i containing diei/ki cells; and place that brick in the
kith component diagram of dg(τ). Every positively-labeled brick placed in component
diagram k has a weight of k, while bricks labeled 0 have weight 1.

Any filling T of dg(τ) satisfying all rules stated here is called a P -tensor brick
tabloid (PTBT) of shape τ and extended content (σ; δ). Let PTBT(τ, (σ; δ)) be the
set of all such objects. When σ is empty, we write PTBT(τ, δ) and speak of PTBT
of shape τ and content δ. The weight of a PTBT T , written wt(T ), is the product of
the weights of all the bricks in it. Equivalently, if component diagram k in T contains
nk(T ) bricks with positive labels, then wt(T ) =

∏
k⩾1 knk(T ).

Theorem 4.3. For any type σ and sequence of blocks δ,

m⊗
σ Pδ =

∑
τ

 ∑
T ∈PTBT(τ,(σ;δ))

wt(T )

 m⊗
τ .

Proof. We expand m⊗
σ (x∗∗)Pδ(x∗∗) by choosing one monomial from each factor, mul-

tiplying those monomials, and adding over all possible choices of monomials. The
weighted P -tensor brick tabloids in PTBT(τ, (σ; δ)) record all possible ways the mono-
mial xτ = xτ |1

1∗ xτ |2
2∗ · · · xτ |k

k∗ · · · can arise by such choices. The choice of a monomial
from m⊗

σ (x∗∗) =
∏

k⩾1 mσ|k
(xk∗) is recorded by the placement of all the bricks la-

beled 0. For 1 ⩽ i ⩽ s, the choice of a monomial from Pd
ei
i

(x∗∗) is recorded by the
placement of the brick labeled i in some component diagram ki, including the ap-
propriate weight ki. The monomial choices correspond bijectively to the objects in
PTBT(τ, (σ; δ)) as explained in the proof of Proposition 4.1. □

Corollary 4.4. For all types σ, τ ⊩ n, the coefficient of m⊗
τ in the m⊗-expansion of

Pσ is

M(P, m⊗)τ,σ =
∑

T ∈PTBT(τ,σ)

wt(T ).

Example 4.5. We compute the m⊗-expansion of P2222 by drawing the following
PTBTs. Each PTBT T is labeled by the divisor pair (k1, k2) that produced it and its
weight, namely wt(T ) = k1k2.

1 1 1 1
2 2 2 2 ⊗∅ 2 2 2 2

1 1 1 1 ⊗∅ 1 1 1 1 2 2 2 2 ⊗∅ 1 1 1 1 ⊗ 2 2
(1, 1), wt = 1 (1, 1), wt = 1 (1, 1), wt = 1 (1, 2), wt = 2

2 2 2 2 ⊗ 1 1 ∅⊗ 1 1
2 2 ∅⊗ 2 2

1 1 ∅⊗ 1 1 2 2
(2, 1), wt = 2 (2, 2), wt = 4 (2, 2), wt = 4 (2, 2), wt = 4

This gives P2222 = 2m⊗
1414 + m⊗

18 + 4m⊗
2214 + 8m⊗

2222 + 4m⊗
24 .
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4.2. Rule for m⊗
σ Hδ and M(H, m⊗). In [4], the authors show that the coefficient

of m⊗
τ in Hσ is the number of arrangements of one type into another. They write

aτ,σ for what we call M(H, m⊗)τ,σ, so Hσ =
∑

τ⊩|σ|
aτ,σm⊗

τ . Here we develop alternate

combinatorial formulas for these coefficients based on tensor versions of brick tabloids,
by extending classical results for the symmetric case (cf. [3]) to the polysymmetric
case.

Let µ and λ be partitions, and let α = (α1, . . . , αs) be a sequence of positive
integers. Define an h-brick tabloid of shape λ and extended content (µ; α) as follows.
Construct αi 1 × 1 bricks labeled i and ℓ(µ) bricks labeled 0 of lengths µ1, µ2, . . .. An
h-brick tabloid is a non-overlapping cover of dg(λ) using these bricks such that each
brick labeled 0 appears at most once in a row while brick labels weakly increase along
rows.
Example 4.6. The next picture shows all h-brick tabloids of shape (4, 4) with ex-
tended content ((2, 1); (2, 1, 2)).

0 0 1 1
0 2 3 3

0 0 1 3
0 1 2 3

0 0 3 3
0 1 1 2

0 0 2 3
0 1 1 3

0 0 1 2
0 1 3 3

0 2 3 3
0 0 1 1

0 1 2 3
0 0 1 3

0 1 1 2
0 0 3 3

0 1 1 3
0 0 2 3

0 1 3 3
0 0 1 2

There are 10 h-brick tabloids, and 10 is the coefficient of m(4,4) in the m-expansion
of m(2,1)h(2,1,2). This illustrates the result proved next.
Proposition 4.7. Let λ, µ be partitions and α = (α1, . . . , αs) be a sequence of positive
integers. Then the coefficient of mλ in mµhα is the number of h-brick tabloids of shape
λ and extended content (µ; α).
Proof. As in the proof of Proposition 4.1, the coefficient of mλ in the m-expansion
of mµhα equals the coefficient of xλ in mµ(x)hα(x). In turn, this coefficient is the
number of ordered factorizations of xλ of the form f0f1 · · · fs, where f0 is a monomial
in mµ(x) and fj is a monomial in hαj

(x) for j = 1, 2, . . . , s.
There is a bijection between the set of such factorizations and the set of h-brick

tabloids described in the proposition. On one hand, given such an h-brick tabloid T ,
let nij(T ) be the number of cells in row i of T covered by a brick labeled j. Define
fj =

∏
i⩾1 x

nij(T )
i for j = 0, 1, 2, . . . , s. By the rules for the brick sizes, f0 is one of

the monomials in mµ(x) and fj is a monomial of degree αj , which is one of the terms
in hαj (x). Since every cell in dg(λ) is covered by exactly one brick, f0f1 · · · fs = xλ

follows.
The inverse bijection acts as follows. Given an ordered factorization f0f1 · · · fs of

xλ, make the associated h-brick tabloid as follows. Write fj =
∏

i⩾1 x
rij

i for j =
0, 1, 2, . . . , s. Since brick labels weakly increase in each row, with at most one brick
labeled 0 in each row, there is exactly one way to cover dg(λ) with bricks such that
the resulting tabloid has rij cells in row i covered by a brick labeled j for all i, j. □

By putting µ = ∅ and α = ν (a partition) in Proposition 4.7, we can find the
coefficient of mλ in hν using objects of shape λ and content ν.
Example 4.8. The coefficient of m(3,2) in h(2,2,1) is 5, which is the number of h-brick
tabloids of shape (3, 2) and content (2, 2, 1) shown below.

1 1 2
2 3

1 1 3
2 2

2 2 3
1 1

1 2 2
1 3

1 2 3
1 2

x2
1 · x1x2 · x2 x2

1 · x2
2 · x1 x2

2 · x2
1 · x1 x1x2 · x2

1 · x2 x1x2 · x1x2 · x1
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The ordered factorization under each h-brick tabloid is computed as in the proof: we
have xi appearing in the jth factor as many times as the label j appears in row i. For
instance, for the leftmost h-brick tabloid, the first factor is x2

1 as 1 appears twice in
the first row. The second factor is x1x2 as 2 appears in the first and the second row.
The third factor is x2 because 3 appears once in row 2.

Remark 4.9. It is known that the coefficient of mν in hλ and the coefficient of mλ in
hν are the same. This can be proved by a dual combinatorial construction illustrated
in the next example, where the coefficient of mλ in hν is found using objects of shape
ν and content λ.

Example 4.10. The coefficient of m(3,2) in the expansion of h(2,2,1) is 5, which is the
number of h-brick tabloids of shape (2, 2, 1) and content (3, 2) shown below.

1 1
1 2
2

1 1
2 2
1

2 2
1 1
1

1 2
1 1
2

1 2
1 2
1

x2
1 · x1x2 · x2 x2

1 · x2
2 · x1 x2

2 · x2
1 · x1 x1x2 · x2

1 · x2 x1x2 · x1x2 · x1

In this case, we convert h-brick tabloids to ordered factorizations as follows. For each
brick labeled i in row j, we include a copy of xi in the jth factor.

As seen in the last two examples, we have two bijections mapping h-brick tabloids
to ordered factorizations. The first bijection forms the jth factor by recording the
rows containing the bricks labeled j. The second bijection forms the jth factor by
recording the brick labels in row j. By composing these maps, we get a bijective proof
that M(h, m)λ,ν = M(h, m)ν,λ.

We now extend these results to the polysymmetric case. The objects here are
versions of h-brick tabloids for tensor product diagrams. Let τ and σ be types and δ =
(dr1

1 , . . . , drs
s ) be a sequence of blocks. We define an H-tensor brick tabloid (HTBT)

of shape τ and extended content (σ; δ) as a filling of dg(τ) built as follows. We first
choose partitions λ(i) of di for i = 1, 2, . . . , s. For each k ⩾ 1, we fill the kth component
of dg(τ) using these rules:

• Make mk(λ(i)) bricks labeled i, each of length ri and height 1. Make ℓ(σ|k)
bricks labeled 0, each of height 1 and with lengths given by the parts of σ|k.

• Cover dg(τ |k) with these bricks so that labels weakly increase in each row,
and each row has at most one brick labeled 0.

Denote this set of objects by HTBT(τ, (σ; δ)). This definition constructs objects
similar to h-brick tabloids but with bricks scaled horizontally according to the multi-
plicity ri of the block dri

i . The degree di of the block determines the number of such
bricks we make. More specifically, if the kth tensor diagram has mk,i bricks labeled
i, then

∑
k⩾1 kmk,i = di for i = 1, 2, . . . , s, where mk,i = mk(λ(i)).

Theorem 4.11. Let τ and σ be types and δ = (dr1
1 , . . . , drs

s ) be a sequence of blocks.
Then the coefficient of m⊗

τ in the m⊗-expansion of m⊗
σ Hδ is | HTBT(τ, (σ; δ))|.

Proof. Recall from Proposition 2.9(b) that Hdr =
∑
λ⊢d

∏
k⩾1 hmk(λ)(xr

k∗), so

(12) m⊗
σ Hδ =

∑
λ(1)⊢d1

· · ·
∑

λ(s)⊢ds

∏
k⩾1

[
mσ|k

(xk∗)
s∏

i=1
hmk(λ(i))(xri

k∗)
]

.

The kth component of the tensor diagram dg(τ) is the partition τ |k. We fill this
partition with bricks (using the rules above) to record all possible ways of getting the
monomial xτ |k

k∗ as part of the expression in (12). For a given choice of λ(1), . . . , λ(s)
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indexing the summands in (12) and for a given k, the part of the expression involving
the variables xk∗ is

mσ|k
(xk∗)hmk(λ(1))(xr1

k∗)hmk(λ(2))(xr2
k∗) . . . hmk(λ(s))(xrs

k∗).
The result then follows as in the proof of Proposition 4.7, noting that raising the
variables xk∗ to the power ri can be modeled by horizontally scaling 1 × 1 bricks to
become bricks of length ri. □

Example 4.12. Let τ = 32322413131, σ = 22121 and δ = (8, 32, 32). We compute the
coefficient of m⊗

τ in m⊗
σ Hδ to be 24 as follows.

(1) Corresponding to the choice of partitions (2, 2, 1, 1, 1, 1) ⊢ 8, (3) ⊢ 3 and
(3) ⊢ 3, we get 8 objects in HTBT(τ, (σ; δ)). We list 4 objects below, and
the remaining 4 are obtained by swapping the 2 2 and 3 3 in the third
component diagram.

0 0 1
0 1 1
1

⊗ 0 0 1 1 ⊗
2 2
3 3

0 0 1
1 1 1
0

⊗ 0 0 1 1 ⊗
2 2
3 3

0 1 1
0 0 1
1

⊗ 0 0 1 1 ⊗
2 2
3 3

1 1 1
0 0 1
0

⊗ 0 0 1 1 ⊗
2 2
3 3

(2) Now, we make a choice of partitions (3, 3, 1, 1) ⊢ 8, (2, 1) ⊢ 3 and (3) ⊢ 3 which
again gives us 8 objects. We list four objects and the rest can be obtained by
swapping 1 1 and 3 3 in the third component diagram.

0 0 1
0 2 2
1

⊗ 0 0 2 2 ⊗
3 3
1 1

0 0 1
1 2 2
0

⊗ 0 0 2 2 ⊗
3 3
1 1

0 2 2
0 0 1
1

⊗ 0 0 2 2 ⊗
3 3
1 1

1 2 2
0 0 1
0

⊗ 0 0 2 2 ⊗
3 3
1 1

(3) For the choice of partitions (3, 3, 1, 1) ⊢ 8, (3) ⊢ 3 and (2, 1) ⊢ 3, we construct
8 objects as in part (2) where the labels 2 and 3 are swapped.

(4) It is routine to check that the choices of partitions in (1), (2), and (3) are the
only possibilities leading to collections of bricks that can fill dg(τ) following
the rules for HTBTs.

Corollary 4.13. For all types τ, σ ⊩ n, the coefficient of m⊗
τ in the m⊗-expansion

of Hσ is
aτσ = M(H, m⊗)τ,σ = | HTBT(τ, σ)|.

4.3. Rules for m⊗
σ E+

δ , m⊗
σ Eδ, M(E+, m⊗), and M(E, m⊗). In this section, we

start by finding the m-expansion of the symmetric polynomial mµeα. We then use
similar ideas to obtain the m⊗-expansions of the polysymmetric functions Eσ and
E+

σ .
Define an e-brick tabloid to be an h-brick tabloid with the added condition that in

each row, all bricks have distinct labels.

Example 4.14. The e-brick tabloids of shape (4, 4) with extended content given by
((2, 1); (2, 1, 2)) are
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0 1 2 3
0 0 1 3

0 0 1 3
0 1 2 3

which are 2 of the 10 h-brick tabloids from Example 4.6.

Proposition 4.15. Let λ, µ be partitions and α = (α1, . . . , αs) be a sequence of posi-
tive integers. The coefficient of mλ in mµeα is the number of e-brick tabloids of shape
λ and extended content (µ; α).

Proof. We need to find the coefficient of xλ in mµ(x)eα(x). This is the number of
ordered square-free factorizations of xλ, which have the form xλ = f0f1 . . . fs where
f0 is a monomial appearing in mµ(x) and fj is a monomial appearing in eαj

(x)
for j = 1, 2, . . . , s. We proceed similarly to the proof of Proposition 4.7. For each
j > 0, the condition that each row has at most one brick labeled j ensures that fj is a
square-free monomial of degree αj and thus appears in eαj

(x). The factor f0 =
∏
i⩾1

xri
i

is recorded in the brick tabloid by putting a brick of length ri with label 0 in row i.
For j ⩾ 1, if fj = xi1xi2 . . . xiαj

, then we put one brick labeled j in each row i1, i2,
. . ., iαj . This gives us the e-brick tabloid recording the given square-free factorization
of xλ. □

To get the analogue of Theorem 4.11, we define E-tensor brick tabloids (ETBTs) of
shape τ and extended content (σ; δ), where τ and σ are types and δ = (dr1

1 , . . . , drk

k )
is a sequence of blocks. To build such an ETBT, say T , first choose partitions λ(i) of
di. For k ⩾ 1, the kth component of dg(τ) is filled as follows.

• Make mk(λ(i)) bricks of length ri and height 1, each with label i. Make ℓ(σ|k)
bricks of height 1 and label 0 with lengths corresponding to the parts of σ|k.

• Cover dg(τ |k) with these bricks subject to the condition that brick labels
increase strictly in each row.

Define the sign of the E-tensor brick tabloid thus constructed to be sgn(T ) =
k∏

i=1
(−1)ℓ(λ(i)). Denote the set of such objects by ETBT(τ, (σ; δ)). The power of −1 in

sgn(T ) is the total number of bricks in T with a positive label.

Theorem 4.16. Let τ and σ be types and δ be a sequence of blocks.
(a) The coefficient of m⊗

τ in the m⊗-expansion of m⊗
σ E+

δ is
∑

T ∈ETBT(τ,(σ;δ))
1 =

| ETBT(τ, (σ; δ))|.
(b) The coefficient of m⊗

τ in the m⊗-expansion of m⊗
σ Eδ is

∑
T ∈ETBT(τ,(σ;δ))

sgn(T ).

Proof. We adapt the proof of Theorem 4.11. For (a), Equation (12) becomes

(13) m⊗
σ E+

δ =
∑

λ(1)⊢d1

· · ·
∑

λ(s)⊢ds

∏
k⩾1

[
mσ|k

(xk∗)
s∏

i=1
emk(λ(i))(xri

k∗)
]

.

The part of this expression involving the variables xk∗ is
mσ|k

(xk∗)emk(λ(1))(xr1
k∗)emk(λ(2))(xr2

k∗) . . . emk(λ(s))(xrs

k∗).

Choosing monomials from these factors corresponds to filling dg(τ |k) with bricks
according to the rules in the definition of ETBTs. In particular, brick labels strictly
increase in each row since the monomials in em(xk∗) are square-free.

Part (b) is proved similarly, but now the right side of (13) includes the sign factor∏s
i=1(−1)ℓ(λ(i)) for the summand indexed by λ(1), . . . , λ(s). This sign equals sgn(T )

for any ETBT T built from this choice of the partitions λ(i). □
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Example 4.17. Let σ = 1(2,1), τ = 22,1,115,2,1 and δ = (51, 32, 21). Via the objects
below, we find that the coefficient of m⊗

τ in the m⊗-expansion of m⊗
σ E+

δ is 7, while
the coefficient of m⊗

σ Eδ is −7.
We first choose the partitions (2, 2, 1) ⊢ 5, (2, 1) ⊢ 3 and (1, 1) ⊢ 2. Then we

construct the five ETBTs shown below. Note that certain configurations that give
valid HTBTs are not possible in the setting of ETBTs.

0 0 1 2 2

0 3

3
⊗

2 2

1

1

0 0 2 2 3

0 3

1
⊗

2 2

1

1

0 1 2 2 3

0 0

3
⊗

2 2

1

1

0 0 2 2 3

0 1

3
⊗

2 2

1

1

0 0 2 2 3

1 3

0
⊗

2 2

1

1

All these ETBTs have the same sign, namely (−1)3+2+2 = −1.
We now choose a different set of partitions (2, 1, 1, 1) ⊢ 5, (2, 1) ⊢ 3 and (2) ⊢ 2.

This gives us the two ETBTs shown below.

0 0 1 2 2

0 1

1
⊗

2 2

1

3

0 0 1 2 2

0 1

1
⊗

2 2

3

1

all with the sign (−1)4+2+1 = −1.
It is routine to check that no other choices of partitions lead to brick collections

that can fill dg(τ) following the rules for ETBTs.

Corollary 4.18.

(a) For all τ, σ ⊩ n, the coefficient of m⊗
τ in the m⊗-expansion of E+

σ is
M(E+, m⊗)τ,σ = | ETBT(τ, σ)|.

(b) For all τ, σ ⊩ n, the coefficient of m⊗
τ in the m⊗-expansion of Eσ is

M(E, m⊗)τ,σ =
∑

T ∈ETBT(τ,(σ;δ))
sgn(T ).

Remark 4.19. This paper is based on results contained in the first author’s forthcom-
ing Ph.D. thesis. That work will also discuss some additional transition matrices not
covered here. The h⊗ and e⊗ expansions can be derived using abacus-based methods
and the combinatorics of permutation statistics. The transition matrices between the
non-classical polysymmetric bases P , E, and H can be derived via recursions similar
to the symmetric case, leading to generalizations of the brick tabloids defined in [3].

Appendix A. Sample transition matrices
Below we give the transition matrices computed in this paper for bases of PΛ4. For
example, the column marked 122 in M(P, s⊗) tells us that

P122 = 1s⊗
14 − 1s⊗

131 + 2s⊗
122 − 1s⊗

1211 + 1s⊗
11111 .
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M(P, s⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 1 1 1 1 1 1
131 −1 0 −1 1 3 −1 1 0 −1 −1 −1
122 0 −1 2 0 2 2 0 −1 0 2 0
1211 1 0 −1 −1 3 −1 −1 0 1 −1 1
11111 −1 1 1 −1 1 1 −1 1 −1 1 −1
2112 0 0 0 0 0 2 2 0 0 4 0
21111 0 0 0 0 0 −2 2 0 0 −4 0
3111 0 0 0 0 0 0 0 3 0 0 0
22 0 0 0 0 0 0 0 0 2 4 2
211 0 0 0 0 0 0 0 0 −2 4 −2
41 0 0 0 0 0 0 0 0 0 0 4



M(H, s⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 1 1 1 1 1 1
131 −1 0 −1 1 3 0 2 1 −1 1 0
122 0 −1 2 0 2 1 1 0 1 1 0
1211 1 0 −1 −1 3 −1 1 0 0 0 0
11111 −1 1 1 −1 1 0 0 0 0 0 0
2112 0 0 0 0 0 1 1 1 0 2 1
21111 0 0 0 0 0 −1 1 1 0 0 0
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 1 1
211 0 0 0 0 0 0 0 0 −1 1 0
41 0 0 0 0 0 0 0 0 0 0 1



M(E+, s⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 0 0 0 0 0 0
131 −1 0 −1 1 3 1 1 0 0 0 0
122 0 −1 2 0 2 −1 1 0 1 1 0
1211 1 0 −1 −1 3 0 2 1 −1 1 0
11111 −1 1 1 −1 1 −1 1 1 1 1 1
2112 0 0 0 0 0 1 1 1 0 0 0
21111 0 0 0 0 0 −1 1 1 0 2 1
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 1 0
211 0 0 0 0 0 0 0 0 −1 1 1
41 0 0 0 0 0 0 0 0 0 0 1



M(E, s⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 −1 1 1 −1 1 0 0 0 0 0 0
131 1 0 −1 −1 3 −1 1 0 0 0 0
122 0 −1 2 0 2 1 1 0 1 1 0
1211 −1 0 −1 1 3 0 2 1 −1 1 0
11111 1 1 1 1 1 1 1 1 1 1 1
2112 0 0 0 0 0 1 −1 −1 0 0 0
21111 0 0 0 0 0 −1 −1 −1 0 −2 −1
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 −1 1 0
211 0 0 0 0 0 0 0 0 1 1 1
41 0 0 0 0 0 0 0 0 0 0 −1


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M(P, p⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 0 0 0 0 0 0 0 1 0 1
131 0 1 0 0 0 0 0 1 0 0 0
122 0 0 1 0 0 1 0 0 0 1 0
1211 0 0 0 1 0 0 1 0 0 0 0
11111 0 0 0 0 1 0 0 0 0 0 0
2112 0 0 0 0 0 2 0 0 0 4 0
21111 0 0 0 0 0 0 2 0 0 0 0
3111 0 0 0 0 0 0 0 3 0 0 0
22 0 0 0 0 0 0 0 0 2 0 2
211 0 0 0 0 0 0 0 0 0 4 0
41 0 0 0 0 0 0 0 0 0 0 4



M(H, p⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 0 0 0 0 0 0 0 1
2 0 1

4
131 0 1 0 0 0 0 0 1

3 0 0 1
3

122 0 0 1 0 0 1
2 0 0 1

2
1
4

1
8

1211 0 0 0 1 0 1
2

1
2

1
2 0 1

2
1
4

11111 0 0 0 0 1 0 1
2

1
6 0 1

4
1

24
2112 0 0 0 0 0 1 0 0 0 1 1

2
21111 0 0 0 0 0 0 1 1 0 1 1

2
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 0 1

2
211 0 0 0 0 0 0 0 0 0 1 1

2
41 0 0 0 0 0 0 0 0 0 0 1



M(E+, p⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 0 0 0 0 0 0 0 − 1
2 0 − 1

4
131 0 1 0 0 0 0 0 1

3 0 0 1
3

122 0 0 1 0 0 − 1
2 0 0 1

2
1
4

1
8

1211 0 0 0 1 0 1
2 − 1

2 − 1
2 0 − 1

2 − 1
4

11111 0 0 0 0 1 0 1
2

1
6 0 1

4
1

24
2112 0 0 0 0 0 1 0 0 0 −1 − 1

2
21111 0 0 0 0 0 0 1 1 0 1 1

2
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 0 − 1

2
211 0 0 0 0 0 0 0 0 0 1 1

2
41 0 0 0 0 0 0 0 0 0 0 1



M(E, p⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 −1 0 0 0 0 0 0 0 − 1
2 0 − 1

4
131 0 1 0 0 0 0 0 1

3 0 0 1
3

122 0 0 1 0 0 1
2 0 0 1

2
1
4

1
8

1211 0 0 0 −1 0 − 1
2 − 1

2 − 1
2 0 − 1

2 − 1
4

11111 0 0 0 0 1 0 1
2

1
6 0 1

4
1

24
2112 0 0 0 0 0 1 0 0 0 1 1

2
21111 0 0 0 0 0 0 −1 −1 0 −1 − 1

2
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 −1 0 − 1

2
211 0 0 0 0 0 0 0 0 0 1 1

2
41 0 0 0 0 0 0 0 0 0 0 −1


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M(P, m⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 1 1 1 1 1 1
131 0 1 0 2 4 0 2 1 0 0 0
122 0 0 2 2 6 2 2 0 0 2 0
1211 0 0 0 2 12 0 2 0 0 0 0
11111 0 0 0 0 24 0 0 0 0 0 0
2112 0 0 0 0 0 2 2 0 0 4 0
21111 0 0 0 0 0 0 4 0 0 0 0
3111 0 0 0 0 0 0 0 3 0 0 0
22 0 0 0 0 0 0 0 0 2 4 2
211 0 0 0 0 0 0 0 0 0 8 0
41 0 0 0 0 0 0 0 0 0 0 4



M(H, m⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 1 1 1 1 1 1
131 0 1 0 2 4 1 3 2 0 2 1
122 0 0 2 2 6 2 4 2 1 3 1
1211 0 0 0 2 12 1 7 3 0 4 1
11111 0 0 0 0 24 0 12 4 0 6 1
2112 0 0 0 0 0 1 1 1 0 2 1
21111 0 0 0 0 0 0 2 2 0 2 1
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 1 1
211 0 0 0 0 0 0 0 0 0 2 1
41 0 0 0 0 0 0 0 0 0 0 1



M(E+, m⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 1 1 1 1 1 0 0 0 0 0 0
131 0 1 0 2 4 1 1 0 0 0 0
122 0 0 2 2 6 0 2 0 1 1 0
1211 0 0 0 2 12 1 5 1 0 2 0
11111 0 0 0 0 24 0 12 4 0 6 1
2112 0 0 0 0 0 1 1 1 0 0 0
21111 0 0 0 0 0 0 2 2 0 2 1
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 1 1 0
211 0 0 0 0 0 0 0 0 0 2 1
41 0 0 0 0 0 0 0 0 0 0 1



M(E, m⊗) :



14 131 122 1211 11111 2112 21111 3111 22 211 41

14 −1 1 1 −1 1 0 0 0 0 0 0
131 0 1 0 −2 4 −1 1 0 0 0 0
122 0 0 2 −2 6 0 2 0 1 1 0
1211 0 0 0 −2 12 −1 5 1 0 2 0
11111 0 0 0 0 24 0 12 4 0 6 1
2112 0 0 0 0 0 1 −1 −1 0 0 0
21111 0 0 0 0 0 0 −2 −2 0 −2 −1
3111 0 0 0 0 0 0 0 1 0 0 1
22 0 0 0 0 0 0 0 0 −1 1 0
211 0 0 0 0 0 0 0 0 0 2 1
41 0 0 0 0 0 0 0 0 0 0 −1


Acknowledgements. We thank the two anonymous referees for carefully reading the
manuscript and providing valuable feedback.

Algebraic Combinatorics, Vol. 8 #4 (2025) 1116



Polysymmetric transition matrices

References
[1] Desiree A. Beck, Jeffrey B. Remmel, and Tamsen Whitehead, The combinatorics of transition

matrices between the bases of the symmetric functions and the Bn analogues, Discrete Math.
153 (1996), no. 1-3, 3–27, Proceedings of the 5th Conference on Formal Power Series and
Algebraic Combinatorics (Florence, 1993).

[2] J. Désarménien, B. Leclerc, and J.-Y. Thibon, Hall-Littlewood functions and Kostka-Foulkes
polynomials in representation theory, Sém. Lothar. Combin. 32 (1994), article no. B32c
(38 pages).

[3] Ömer Eğecioğlu and Jeffrey B. Remmel, Brick tabloids and the connection matrices between
bases of symmetric functions, Discrete Appl. Math. 34 (1991), no. 1-3, 107–120, Combinatorics
and theoretical computer science (Washington, DC, 1989).

[4] Asvin G and Andrew O’Desky, Polysymmetric functions and motivic measures of configuration
spaces, 2024, https://arxiv.org/abs/2207.04529.

[5] Nicholas A. Loehr, Combinatorics, second ed., Discrete Mathematics and its Applications (Boca
Raton), CRC Press, Boca Raton, FL, 2018.

[6] Nicholas A. Loehr and Jeffrey B. Remmel, A computational and combinatorial exposé of plethys-
tic calculus, J. Algebraic Combin. 33 (2011), no. 2, 163–198.

[7] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Classic Texts
in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015.

[8] Rosa Orellana, Franco Saliola, Anne Schilling, and Mike Zabrocki, Plethysm and the algebra of
uniform block permutations, Algebr. Comb. 5 (2022), no. 5, 1165–1203.

[9] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math-
ematics, vol. 208, Cambridge University Press, Cambridge, 2024.

[10] Pavel Turek, Proof of the Plethystic Murnaghan–Nakayama Rule Using Loehr’s Labelled Abacus,
Ann. Comb. 29 (2025), no. 1, 183–195.

[11] Mark Wildon, A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Dis-
crete Math. 30 (2016), no. 3, 1526–1533.

Aditya Khanna, Virginia Tech, Dept. of Mathematics, 225 Stanger St., 460 McBryde Hall,
Blacksburg, VA 24061-0123 (USA)
E-mail : adityakhanna@vt.edu

Nicholas A. Loehr, Virginia Tech, Dept. of Mathematics, 225 Stanger St., 460 McBryde Hall,
Blacksburg, VA 24061-0123 (USA)
E-mail : nloehr@vt.edu

Algebraic Combinatorics, Vol. 8 #4 (2025) 1117

https://arxiv.org/abs/2207.04529
mailto:adityakhanna@vt.edu
mailto:nloehr@vt.edu

	1. Introduction
	1.1. Review of symmetric functions
	1.2. Polysymmetric functions
	1.3. The bases H, E+, E, and P
	1.4. Transition matrices for P Lambda
	1.5. Main results

	2. Expansions in the s^tensor basis
	2.1. Rule for s^tensor_sigma times P_(d^m)
	2.2. Rule for s^tensor_sigma times P_delta and M(P, s^tensor)
	2.3. Rule for s^tensor_sigma times H_(d^r)
	2.4. Rule for s^tensor_sigma times H_delta and M(H, s^tensor)
	2.5. Rules for s^tensor_sigma times E+_(d^m) and s^tensor_sigma times E_(d^m)
	2.6. Rules for s^tensor_sigma times E+_delta, s^tensor_sigma times E_delta, M(E+, s^tensor), and M(E, s^tensor)

	3. Expansions in the p^tensor basis
	3.1. Algebraic development of p^tensor-expansions
	3.2. Rule for p^tensor_sigma times P_delta and M(P, p^tensor)
	3.3. Rule for p^tensor_sigma times H_delta and M(H, p^tensor)
	3.4. Rule for p^tensor_sigma times E+_delta, p^tensor_sigma times E_delta, M(E+, p^tensor), and M(E, p^tensor)

	4. Expansions in the m^tensor basis
	4.1. Rule for m^tensor_sigma times P_delta and M(P, m^tensor)
	4.2. Rule for m^tensor_sigma times H_delta and M(H, m^tensor)
	4.3. Rules for m^tensor_sigma times E+_delta, m^tensor_sigma times E_delta, M(E+, m^tensor), and M(E, m^tensor)

	Appendix A. Sample transition matrices
	References

