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More on the corner-vector construction for
spherical designs

Kenji Tanino, Tomoki Tamaru, Masatake Hirao & Masanori
Sawa

Abstract This paper explores a full generalization of the classical corner-vector method for
constructing weighted spherical designs, which we call the generalized corner-vector method.
First we establish a uniform upper bound for the degree of designs obtained from the proposed
method. Our proof is a hybrid argument that employs techniques in analysis and combinatorics,
especially a famous result by Xu (1998) on the interrelation between spherical designs and
simplicial designs, and the cross-ratio comparison method for Hilbert identities introduced by
Nozaki and Sawa (2013). We extensively study conditions for the existence of designs obtained
from our method, and present many curious examples of degree 7 through 13, some of which
are, to our surprise, characterized in terms of integral lattices.

1. Introduction
Delsarte et al. [7] introduces spherical design as a spherical analogue of balanced in-
complete block (BIB) design in applied statistics and combinatorial t-design in discrete
mathematics. A finite subset X of a unit sphere Sn−1 is defined to be a (weighted)
spherical t-design, if for every polynomial of degree at most t, the (weighted) average
of the function values on X is equal to the integration with respect to the surface mea-
sure ρ. Spherical design is closely related to various objects including, but not limited
to, spherical cubature in numerical analysis, isometric embeddings of the classical
finite-dimensional Banach spaces in functional analysis and optimum experimental
designs in applied statistics (see, for example, [14, 27] and [28]).

One of the most fundamental problems in the spherical design theory is the con-
struction as well as existence of designs. Bondarenko et al. [4] shows a general ex-
istence theorem for designs of small sizes, and gives an affirmative answer to the
Korevaar-Meyers conjecture [13]. Although significant progress has been made in the
establishment of existence theorems, recent developments of the construction theory
have been comparatively modest in scale, even for designs of small degrees.

There are two classical approaches to the construction of spherical designs: product
rule and invariant rule. Roughly speaking, the former is a recursive approach that
generates a spherical design from designs on simpler spaces, and the latter is an
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algebraic approach, based on the invariant theory for polynomial spaces, that directly
generates a highly symmetric design from group orbits. A great advantage of the
product rule is its simplicity, however, most of the known product rules strongly
depend on the assumption of the existence of interval designs for Gegenbauer measure
(1− t2)λ−1/2dt, λ > −1/2 (see, for example, [1, 18, 26]). As pointed out by Xiang [26],
the construction of such interval designs is still an open problem. On the other hand,
the invariant rule is a more sophisticated approach, which makes it possible to provide
an explicit construction of spherical designs. We refer the reader to Xiang [26] for
discussion on the explicitness of designs. A major difficulty of the invariant rule is
the selection of finitely many points whose group orbits form a design of a given
degree. A traditional and popular criterion is the utilization of corner vectors for the
hyperoctahedral group Bn.

The aim of this paper is to make further progress on the corner-vector method by
considering designs of more general type

(1) 1
|Sn−1|

∫
Sn−1

f(y)dρ =
k∑

i=1
Wi

∑
x∈vBn

ai,si

f(x) for every polynomial f of degree ⩽ t.

We here denote by vBn
ai,si

the Bn-orbit of generalized corner vector

vai,si
= 1√

a2
i + si

(ai, 1, . . . , 1, 0, . . . , 0) ∈ Sn−1, ai > 0, si ∈ {0, 1, . . . , n− 1}.

A point va,s with a = 1 is just an (s + 1)-dimensional corner vector, namely the
barycentre of an (s+1)-dimensional face of an n-dimensional cross-polytope (see Def-
inition 2.11). The corner-vector method is a traditional way of constructing designs
with only corner vectors. While this method can respond to the preference for sim-
plicity of construction, it has the drawback that the generated designs have degree at
most 7 (see Bajnok [2]).

A classical result on spherical designs is that the vertex set of a regular (t + 1)-
gon is a t-design on S1 (see, for example, [11]). This means that generalized corner
vectors can generate designs of any degree in dimension 2, since if t ≡ 0 (mod 4), the
vertex set consists of the B2-orbits of t/4 generalized corner vectors. Heo and Xu [10,
Theorem 2.1] establishes a systematic treatment of the three-dimensional case, and in
particular shows that the degree of the generated design is uniformly upper bounded
by 17. Schur [8, p.721] makes the first advance for n ⩾ 4, who discovers a weighted
11-design on S3 with a single proper orbit, namely an orbit vB4

a,s with a ̸= 1. The
original version of Schur’s formula appeared in the context of Waring problem in
number theory, as briefly explained in Section 2.2. Sawa and Xu [21] discusses a
higher dimensional extension of Schur’s formula, and proves that the degree of any
design with a single proper orbit is uniformly upper bounded by 11. This bound
is sharp, since many examples of such 11-designs have been found in dimensions 3
through 23. Thus a natural question is to ask what happens to designs with two or
more proper orbits.

This paper is organized as follows. Section 2 gives preliminaries where we review
basic facts on weighted spherical designs, with particular emphasis on the connections
to Hilbert identities and simplicial designs. Sections 3 through 6 are the main body
of this paper. Section 3 demonstrates that for n ⩾ 4, the degree of any design of
type (1) is uniformly upper bounded by 15 (Theorem 3.1). Our proof is a hybrid
argument employing techniques in analysis and combinatorics, especially a famous
theorem by Xu [27] on the interrelation between spherical and simplicial designs,
and the cross-ratio comparison for Hilbert identity (see for example [17, Theorem
6.6]). Section 4 establishes a characterization theorem for 7-designs of type (1) with
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a single proper orbit (Proposition 4.1). As an important corollary of this result, we
first show that there exist finitely many such designs including two sporadic examples
vB16

2,8 and vB23
2,11 (Remark 4.5), and then prove that the degree of all such designs can

never be pushed up to 9 (Proposition 4.6). Section 5 gives a two-orbit version of
Proposition 4.1 (see Propositions 5.2 and 5.5), and thereby obtain some theoretical
results, e.g. a classification of such 9-designs for n = 3 (see Table 3). Section 6 explores
the exhibition of interesting examples of 11- and 13-designs with more than 2 proper
orbits. Finally, Section 7 is the Conclusion, where some connections between our
designs and integral lattices will be also made.

2. Preliminary
In this section we review basic facts concerning spherical designs, with particular
emphasis on the connection with Hilbert identity and cubature on simplex, and then
quickly overview the background of the corner vector method. Some of the materials
appearing in this section are available in [19, 20].

2.1. Polynomial space. Let n be a positive integer with n ⩾ 2. Let Sn−1 be the
(n− 1)-dimensional unit sphere centered at the origin, namely,

Sn−1 =
{

(x1, . . . , xn) ∈ Rn |
n∑

i=1
x2

i = 1
}
.

We denote by |Sn−1| the surface area of Sn−1, and by ρ the surface measure on
Sn−1. For convention, we write yλ for yλ1

1 · · · yλn
n , where y = (y1, . . . , yn) ∈ Rn and

λ = (λ1, . . . , λn) ∈ Zn
⩾0. Then we have

1
|Sn−1|

∫
Sn−1

yλdρ =

 Γ( n
2 )

2|λ|1 Γ( |λ|1+n
2 )

·
∏n

i=1
(λi)!∏n

i=1
( λi

2 )!
λ1 ≡ · · · ≡ λn ≡ 0 (mod 2),

0 otherwise,

where |λ|1 = λ1 + · · · + λn for λ ∈ Zn
⩾0.

We denote by P(Rn) the space of all polynomials with real coefficients on Rn,
and by Pt(Rn) the subspace of all polynomials of degree at most t. We also de-
note by Homt(Rn) or Harmt(Rn), the subspace of Pt(Rn) consisting of homogeneous
polynomials or harmonic homogeneous polynomials (sometimes called h-harmonics)
respectively. In summary,

Pt(Rn) =
{ ∑

(λ1,...,λn)∈Zn
⩾0

λ1+···+λn⩽t

cλ1,...,λn
xλ1

1 · · ·xλn
n | cλ1,...,λn

∈ R
}
,

Homt(Rn) =
{ ∑

(λ1,...,λn)∈Zn
⩾0

λ1+···+λn=t

cλ1,...,λnx
λ1
1 · · ·xλn

n | cλ1,...,λn ∈ R
}
,

Harmt(Rn) =
{
f ∈ Homt(Rn) |

n∑
i=1

∂2

∂x2
i

f = 0
}
.

It is then obvious that It is not entirely obvious but shown Pt(Rn) = ⊕t
ℓ=0 Homℓ(Rn).

We use the notation P(A) for the restriction of P(Rn) to A ⊆ Rn, and similarly for
P(A), Homt(A) and Harmt(A).

The following proposition is classical in spherical harmonics (see, e.g., [9, 15]),
which is a basic tool in the study of spherical designs (see, e.g., [3, 7]), and is related
to the dimension formula for a special subspace of P(Sn−1) (see Proposition 2.14).

Algebraic Combinatorics, Vol. 8 #5 (2025) 1389



Kenji Tanino, Tomoki Tamaru, Masatake Hirao & Masanori Sawa

Proposition 2.1 (cf. [7, 15]). It holds that
(2) P(Sn−1) =

⊕
i⩾0

Harmi(Sn−1).

Moreover (2) is the orthogonal direct sum with respect to the inner product (ϕ, ψ) =
1

|Sn−1|
∫
Sn−1 ϕψdρ.

2.2. Spherical design, Hilbert identity, simplicial design. Delsarte et al. [7]
introduces the notion of spherical design.

Definition 2.2 (Spherical cubature and design). Let X be a finite subset of Sn−1,
with a weight function w : X → R>0. An integration formula of type

(3) 1
|Sn−1|

∫
Sn−1

f(y)dρ =
∑
x∈X

w(x)f(x) for every f ∈ Pt(Sn−1)

is called a cubature of degree t on Sn−1. The pair (X,w) is called an (equi-weighted)
spherical t-design if w(x) takes the constant 1/|X|, and a weighted spherical t-design
otherwise.

We shall look at some examples.

Example 2.3 (cf. [3, 7]). For any positive integer k, let X be the vertex set of a
regular (4k)-gon inscribed in S1. An equi-weighted formula of type

1
|S1|

∫
S1
f(y1, y2)dρ = 1

4k

4k−1∑
i=0

f
(

cos (2i+ 1)π
4k , sin (2i+ 1)π

4k

)
is a cubature of degree 4k − 1 on S1.

Example 2.4. An equi-weighted formula of type

(4)
1

|S2|

∫
S2
f(y1, y2, y3)dρ = 1

6
∑

x∈(1,0,0)B3

f(x)

is a cubature of degree 3 on S2. Here xB3 denotes the orbit of x ∈ R3 under the action
of the octahedral group B3. In the present example, we have
(5) (1, 0, 0)B3 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.
This is the vertex set of a regular octahedron in R3, which is a class of the corner
vectors of the group B3 (see Section 2.3 for the detail). An equi-weighted formula of
type

1
|S2|

∫
S2
f(y1, y2, y3)dρ = 1

6
∑

x∈( 1√
2

, 1√
2

,0)B3

f(x)

is also a cubature of degree 3 on S2. In this example, we have

(6)
( 1√

2
,

1√
2
, 0

)B3
=

{(
± 1√

2
,± 1√

2
, 0

)
,
(

0,± 1√
2
,± 1√

2

)
,
(

± 1√
2
, 0,± 1√

2

)}
,

which is just the set of the midpoints of the edges of a regular octahedron, again a
class of the corner vectors of B3.

Example 2.5 (Schur’s formula). The following is a cubature of degree 11 on S3:

(7)

1
|S3|

∫
S3
f(y1, y2, y3, y4)dρ = 9

640
∑

x∈( 2√
6

, 1√
6

, 1√
6

,0)B4

f(x)

+ 1
60

∑
x∈(1,0,0,0)B4

f(x) + 1
96

∑
x∈( 1√

2
, 1√

2
,0,0)B4

f(x) + 1
60

∑
x∈( 1

2 , 1
2 , 1

2 , 1
2 )B4

f(x).
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This point configuration is not equi-weighted.

Formula (7) originally stems from Schur (cf. [8, p.721]), who finds a certain poly-
nomial identity called Hilbert identity and thereby makes a significant contribution to
Waring problem for 10th powers of integers.

Definition 2.6. A polynomial identity of type

(X2
1 + · · · +X2

n)t =
N∑

i=1
ci(ai1X1 + · · · + ainXn)2t

where ci ∈ R>0 and aij ∈ R, is called a Hilbert identity. In particular this is called a
rational (Hilbert) identity if ci ∈ Q>0 and aij ∈ Q.

The following result by Lyubich and Vaserstein [14] directly relates spherical cu-
bature to Hilbert identity. We also refer the reader to [22] for a brief explanation of
the Lyubich-Vaserstein theorem.

Theorem 2.7 (Lyubich-Vaserstein theorem). Let n, t be positive integers and

cn,t = 1
|Sn−1|

∫
Sn−1

y2t
1 dρ.

Let xi = (xi,1, . . . , xi,n) ∈ Sn−1 and ci ∈ R>0 for i = 1, . . . , N . The following are
equivalent:

(i) The points xi and weights ci give a (weighted) spherical design of index 2t on
Sn−1, namely

1
|Sn−1|

∫
Sn−1

f(y)dρ =
N∑

i=1
cif(xi) for every f ∈ Hom2t(Sn−1);

(ii)

cn,t(X2
1 + · · · +X2

n)t =
N∑

i=1
ci(xi,1X1 + · · · + xi,nXn)2t.

Example 2.8 (Schur’s identity). By Theorem 2.7, the spherical cubature (7) is equiv-
alent to the rational Hilbert identity

(8)
22680(X2

1 +X2
2 +X2

3 +X2
4 )5 =

∑
48

(2Xi ±Xj ±Xk)10

+9
∑

4
(2Xi)10 + 180

∑
12

(Xi ±Xj)10 + 9
∑

8
(X1 ±X2 ±X3 ±X4)10,

where each summation is taken among all combinations of sign changes and permu-
tations of X1, X2, X3, X4.

A spherical cubature is closely connected to a simplicial cubature. We consider the
standard orthogonal simplex in Rn, namely

Tn = {y = (y1, . . . , yn) ∈ Rn | y1 ⩾ 0, . . . , yn ⩾ 0, |y|1 ⩽ 1},

where |y|1 = y1 + · · · + yn. For y ∈ Tn, we define

W (y1, . . . , yn) = 1√
(1 − |y|1)

( ∏n
i=1 yi

) .
The following result can be found in Xu [27].
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Theorem 2.9 ([27]). If for every f ∈ Pt(Tn−1),∫
T n−1

f(y1, . . . , yn−1)W (y1, . . . , yn−1) dy1 · · · dyn−1∫
T n−1

W (y1, . . . , yn−1) dy1 · · · dyn−1

=
N∑

i=1
cif(xi,1, . . . , xi,n−1),

then for every f ∈ P2t+1(Sn−1),∫
Sn−1

f(y1, . . . , yn−1, yn) dρ =
N∑

i=1

ci

2wt(xi)

∑
±
f(±√

xi,1, . . . ,±
√
xi,n−1,±

√
1 − |xi|1),

where wt(xi) = |{j | xi,j ̸= 0}| for i = 1, . . . , N . Moreover, the converse direction also
holds.

Example 2.10 (Example 2.4, revisited). By Theorem 2.9, the formula (4) of degree
3 on S2 is equivalent to a simplicial cubature of type

1∫
T 2 W (y1, y2)dy1dy2

∫
T 2
f(y1, y2)W (y1, y2)dy1dy2

= 1
3 (f(1, 0) + f(0, 1) + f(0, 0)) for every f ∈ P1(T 2).

We note that the 6 vertices of a regular octahedron (see (5)) is transformed to the
vertex set of the standard orthogonal simplex T 2. Meanwhile, the formula of type

1
|S2|

∫
S2
f(y1, y2, y3)dρ = 1

6
∑

x∈( 1√
2

, 1√
2

,0)B3

f(x)

is also a cubature of degree 3 on S2, which is equivalent to a simplicial cubature of
type

1∫
T 2 W (y1, y2)dy1dy2

∫
T 2
f(y1, y2)W (y1, y2)dy1dy2

= 1
3

(
f

(1
2 , 0

)
+ f

(
0, 1

2
)

+ f
(1

2 ,
1
2

))
for every f ∈ P1(T 2).

Again, we note that the midpoints of the edges of a regular octahedron (see (6))
is transformed to those of the standard orthogonal simplex T 2. Theorem 2.9 pre-
serves geometric information about corner vectors; more details will be available in
Remark 2.21.

2.3. The corner-vector method. A most classical method of constructing spher-
ical designs is the corner-vector method for the symmetry group Bn of a regular hy-
peroctahedron in Rn. Hereafter we write xBn for the orbit of x ∈ Rn under the action
of the hyperoctahedral group Bn.

Definition 2.11. Let e1, . . . , en be the standard basis vectors in Rn. For k = 1, . . . , n,
let vk be a vector of type

vk = 1√
k

k∑
i=1

ei ∈ Sn−1.

The corner vectors (for Bn) are the elements of vBn
1 , . . . , vBn

n .

Example 2.12 (Example 2.4, revisited). For n = 2, the corner vectors are given by

vB2
1 = {(±1, 0), (0,±1)}, vB2

2 =
{(

± 1√
2
,± 1√

2

)}
,

Algebraic Combinatorics, Vol. 8 #5 (2025) 1392



More on the corner-vector construction for spherical designs

which are the vertices and midpoints of edges of a square in R2, respectively. For
n = 3, the corner vectors are given by

vB3
1 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

vB3
2 =

( 1√
2
,

1√
2
, 0

)B3
=

{(
± 1√

2
,± 1√

2
, 0

)
,
(

0,± 1√
2
,± 1√

2

)
,
(

± 1√
2
, 0,± 1√

2

)}
,

vB3
3 =

{(
± 1√

3
,± 1√

3
,± 1√

3

)}
.

The first and second sets are the vertices and midpoints of edges of a regular octahe-
dron in R3 respectively, and the third is the set of barycenters of faces.

The utility of the corner vector construction is verified from the following more
sophisticated result. Below we denote by Pt(A)Bn the space consisting of all Bn-
invariant polynomials in Pt(A), and similarly for Harmi(A)Bn .

Theorem 2.13 (Sobolev’s theorem). Let xBn
1 , . . . , xBn

m ⊂ Sn−1. Let w :
⋃m

i=1 x
Bn
i →

R>0 be a weight function such that w(x) = w(x′) for every x, x′ ∈ xBn
i and i =

1, . . . ,m. Then the following are equivalent:
(i) (X,w) is a (weighted) spherical t-design on Sn−1;
(ii)

1
|Sn−1|

∫
Sn−1

f(y)dρ =
∑
x∈X

w(x)f(x) for every f ∈ Pt(Sn−1)Bn .

A great advantage of Theorem 2.13 is the reduction of the computational cost in
order to check the defining property (3) of weighted spherical designs. With Proposi-
tion 2.1 in mind, we have to compute the dimension of Harmi(Sn−1)Bn .
Proposition 2.14 (cf. Appendix of [19]). The harmonic Molien series

∑∞
i=0 piλ

i

where pi = dim Harmi(Sn−1)Bn , is given by
∞∑

i=0
piλ

i = 1
(1 − λ4)(1 − λ6) · · · (1 − λ2n) .

In particular,
∞∑

i=0
piλ

i = 1
(1 − λ4)(1 − λ6) · · · (1 − λ2n)

=

 1 + λ4 + λ6 + λ8 + λ10 + · · · if n = 3;
1 + λ4 + λ6 + 2λ8 + λ10 + · · · if n = 4;
1 + λ4 + λ6 + 2λ8 + 2λ10 + · · · if n ⩾ 5.

Corollary 2.15. It holds that
dim Harm4(Sn−1)Bn = dim Harm6(Sn−1)Bn = 1 for n ⩾ 3,

dim Harm8(Sn−1)Bn =
{

1 for n = 3,
2 for n ⩾ 4,

dim Harm10(Sn−1)Bn =
{

1 for n = 3, 4,
2 for n ⩾ 5,

dim Harm2k+1(Sn−1)Bn = 0 for k = 0, 1, . . .
Let Sn be the symmetric group of order n. It is convenient to use the notation

sym(f) for a symmetric polynomial as defined by

(9) sym(f) = 1
|(Sn)f |

∑
γ∈Sn

f(xγ(1), . . . , xγ(n))

Algebraic Combinatorics, Vol. 8 #5 (2025) 1393
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where

(Sn)f = {γ ∈ Sn | f(xγ(1), . . . , xγ(n)) = f(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn}.

The following lemmas will be utilized for further arguments in the main body of
this paper (see, for example, Lemma 3.5).

Lemma 2.16 ([19]). We define homogeneous polynomials f4, f6, f8,1, f8,2, f10,1, f10,2
as

f4(x) = sym(x4
1) − 6

n− 1sym(x2
1x

2
2) for n ⩾ 3,

f6(x) = sym(x6
1) − 15

n− 1sym(x2
1x

4
2) + 180

(n− 1)(n− 2)sym(x2
1x

2
2x

2
3) for n ⩾ 3,

f8,1(x) = sym(x8
1) − 28

n− 1sym(x2
1x

6
2) + 70

n− 1sym(x4
1x

4
2) for n ⩾ 3,

f8,2(x) = sym(x4
1x

4
2) − 6

n− 2sym(x2
1x

2
2x

4
3)

+ 108
(n− 2)(n− 3)sym(x2

1x
2
2x

2
3x

2
4) for n ⩾ 4,

f10,1(x) = sym(x10
1 ) − 45

n− 1sym(x2
1x

8
2) + 42

n− 1sym(x4
1x

6
2)

+ 1008
(n− 1)(n− 2)sym(x2

1x
2
2x

6
3) − 1260

(n− 1)(n− 2)sym(x2
1x

4
2x

4
3) for n ⩾ 3,

f10,2(x) = sym(x4
1x

6
2) − 6

n− 2sym(x2
1x

2
2x

6
3) − 30

n− 2sym(x2
1x

4
2x

4
3)

+ 450
(n− 2)(n− 3)sym(x2

1x
2
2x

2
3x

4
4)

− 10800
(n− 2)(n− 3)(n− 4)sym(x2

1x
2
2x

2
3x

2
4x

2
5) for n ⩾ 5.

Then f4, f6, f8,1, f8,2, f10,1, f10,2 are Bn-invariant h-harmonics.

Lemma 2.17. Let

f̃4(va,s) := (a2 + s)2f4(va,s), f̃6(va,s) := (a2 + s)3f6(va,s)
f̃8,1(va,s) := (a2 + s)4f8,1(va,s), f̃8,2(va,s) := (a2 + s)4f8,2(va,s)
f̃10,1(va,s) := (a2 + s)5f10,1(va,s), f̃10,2(va,s) := (a2 + s)5f10,2(va,s).
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It holds that

f̃4(va,s) = a4 + s− 6a2 s

n− 1 − 3s(s− 1)
n− 1 for n ⩾ 3,

f̃6(va,s) = a6 + s− 15(a4 + a2 + s− 1) s

n− 1 + 90a2 s(s− 1)
(n− 1)(n− 2)

+ 30s(s− 1)(s− 2)
(n− 1)(n− 2) for n ⩾ 3,

f̃8,1(va,s) = a8 + s− 28(a6 + a2 + s− 1) s

n− 1 + 70(a4 + s− 1
2 ) s

n− 1 for n ⩾ 3,

f̃8,2(va,s) = a4 + s− 1
2 − 3(a4 + 2a2 + s− 2) s− 1

n− 2

+ 9
2(4a2 + s− 3) (s− 1)(s− 2)

(n− 2)(n− 3) for n ⩾ 4,

f̃10,1(va,s) = a10 + s− 3(15a8 − 14a6 − 14a4 + 15a2 + s− 1) s

n− 1

+ 126(4a6 − 10a4 + 3a2 − s+ 2) s(s− 1)
(n− 1)(n− 2) for n ⩾ 3,

f̃10,2(va,s) = a4s+ a6s+ s(s− 1) − 3(a6 + 10a4 + 7a2 + 6s− 12)s(s− 1)
(n− 2)

+ 75(a4 + 3a2 + s− 3)s(s− 1)(s− 2)
(n− 2)(n− 3)

− 90(5a2 + s− 4)s(s− 1)(s− 2)(s− 3)
(n− 2)(n− 3)(n− 4) for n ⩾ 5.

Now, a crucial demerit of the corner-vector construction is that it cannot generate
spherical cubature of degree larger than 8, as shown in the following result.

Theorem 2.18 (Bajnok’s theorem, Proposition 15 in [2]). Let n ⩾ 3 be a positive
integer. Assume that

⋃m
i=1 v

Bn

ki
is a Bn-invariant weighted spherical t-design. Then it

holds that t ⩽ 7.

To push up the maximum degree of design, we give a generalization of the notion
of corner vectors.

Definition 2.19. Let e1, . . . , en be the standard basis vectors in Rn. Let a be a positive
real number and s = 0, . . . , n− 1. Let

va,s = 1√
a2 + s

(ae1 +
s∑

i=1
ei+1) ∈ Sn−1.

A generalized corner vector (for Bn) is an element of vBn
a,s . In particular when a = 1,

v1,s exactly coincides with the corner vector vs+1. Moreover, when a ̸= 1, we refer to
vBn

a,s as a proper orbit.

Example 2.20. For n = 2, take generalized corner vectors of type

vB2
1 = {(±1, 0), (0,±1)}, vB2√

3,1 =
{(

± 1
2 ,±

√
3

2

)
,
(

±
√

3
2 ,±1

2

)}
.

As already seen in Example 2.3, these are the vertices of a regular dodecagon inscribed
in S1, respectively.

The following explains a geometric interpretation of generalized corner vectors.
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Remark 2.21 (See, for example, Heo-Xu [10]). For n = 3, we consider the map
ψ : S2 → T 2, ψ(x1, x2, x3) = (x2

1, x
2
2).

For a finite subset X of S2, we write ψ(X) for {ψ(x) | x ∈ X}. Then ψ(vB3
a,0) is the

vertex set of T 2, namely, ψ(vB3
a,0) = {(0, 0), (1, 0), (0, 1)}. Moreover, ψ(vB3

a,1) is included
in the boundary of T 2, namely

ψ(vB3
a,1) ⊂ {(x1, x2) ∈ R2 | x2 = −x1 + 1, 0 ⩽ x1 ⩽ 1}

∪{(x1, x2) ∈ R2 | x2 = 0, 0 ⩽ x1 ⩽ 1}
∪{(x1, x2) ∈ R2 | x1 = 0, 0 ⩽ x2 ⩽ 1}.

Also, ψ(vB3
a,2) is included in the medians of T 2, and more precisely

ψ(vB3
a,2) ⊂ {(x1, x2) ∈ R2 | x2 = x1, 0 ⩽ x1 ⩽ 1/2}

∪{(x1, x2) ∈ R2 | x2 = −2x1 + 1, 0 ⩽ x1 ⩽ 1/2}
∪{(x1, x2) ∈ R2 | x1 = −2x2 + 1, 0 ⩽ x2 ⩽ 1/2}.

ψ(vB3
1,s) coincides with the set of the barycenters of s-dimensional faces of T 2 (see

Figure 1 below). These observations can also be found in Heo-Xu [10], where the
situation is explained for regular triangles embedded in R3. A more general treatment
of Remark 2.21 will be established in Section 3.

Figure 1. ψ(vB3
a,s) (s = 0, 1, 2)

Hereafter we restrict our attention to the case where n ⩾ 3. Let s1, . . . , sk be
integers with 0 ⩽ si ⩽ n − 1 for all i, and let a1, . . . , ak be positive real numbers.
Then, as a generalization of the corner-vector method, we consider a design of type

(10) 1
|Sn−1|

∫
Sn−1

f(y)dρ =
k∑

i=1
Wi

∑
x∈vBn

ai,si

f(x) for every f ∈ Pt(Sn−1)

Example 2.22. (Example 2.5, revisited). For n = 4, Schur’s formula (8) can be rewrit-
ten in terms of generalized corner vectors as follows:

1
|S3|

∫
S3
f(y1, y2, y3, y4)dρ

= 9
640

∑
x∈v

B4
2,2

f(x) + 1
60

∑
x∈v

B4
1

f(x) + 1
96

∑
x∈v

B4
2

f(x) + 1
60

∑
x∈v

B4
4

f(x).

This can be checked by applying Theorem 2.13 to f4, f6, f8,1, f8,2 and f10,1.
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What is remarkable here is that Schur’s formula has degree 11, contrary to the situ-
ation of Bajnok’s theorem. More generally, Sawa and Xu [21] establishes that the max-
imum degree of a Bn-invariant design with only one proper orbit vBn

a,s can be pushed
up to 11. Then what about designs with two or more proper orbits vBn

a1,s1
, vBn

a2,s2
, . . .?

This is the main subject of this paper, although in Section 4, some new results are
established for designs with a single proper orbit vBn

a,s .

3. A uniform upper bound for the degree of our designs
Let n, si be integers with n ⩾ 3 and 0 ⩽ si ⩽ n− 1, and let ai > 0. In this section we
prove an upper bound for the degree of a weighted spherical design of type (10). The
presentation in this section is conscious of algebraic and geometric interpretations of
generalized corner vectors.

3.1. Uniform bound.

Theorem 3.1. Let n ⩾ 4. Suppose that

(11) 1
|Sn−1|

∫
Sn−1

f(y)dρ =
k∑

i=1
Wi

∑
x∈vBn

ai,si

f(x) for every f ∈ Pt(Sn−1).

Then it holds that t ⩽ 15.

Remark 3.2. As shown by Heo and Xu [10, Theorem 2.1], the maximum degree of
weighted spherical designs on S2 of type (11) is upper bounded by 17.

Since designs of type (11) are centrally symmetric, it suffices to take care of even
degrees 2, 4, . . . , 2⌊t/2⌋. As a corollary of Theorems 3.1 and 2.7, we obtain the following
result.

Corollary 3.3. Suppose that

(12) cn,r(X2
1 + · · · +X2

n)r =
k∑

i=1
λi

∑
σ,±

(aiXσ(1) ±Xσ(2) ± · · · ±Xσ(si+1))2r

where the second summation is taken over all permutations σ ∈ Sn and all sign
changes ±. Then it holds that r ⩽ 7.

The proof of Theorem 3.1 is substantially divided into three parts. The first part
is an application of the cross-ratio comparison that was first introduced by Nozaki
and Sawa [17, Theorem 6.6]. The remaining two parts involve elementary calculus on
Bn-invariant h-harmonics of degree 8 and Xu’s characterization theorem (see Theo-
rem 2.9), respectively.

3.2. Proof of Theorem 3.1. As briefly mentioned in Section 3.1, we need three
preliminary lemmas, each including a key idea that can also be applied in the study
of design of a different type than (11).

Lemma 3.4. Let n ⩾ 4. Suppose that there exists a weighted t-design of type (11) with
si ⩾ 3 for some i. Then it holds that t ⩽ 15.

Proof. The proof is based on the cross-ratio comparison for monomials X2
1X

2
2X

6
3X

6
4 ,

X2
1X

4
2X

4
3X

6
4 and X4

1X
4
2X

4
3X

4
4 .

First we compare the ratio of the coefficients of X2
1X

2
2X

6
3X

6
4 and X2

1X
4
2X

4
3X

6
4 on

the both sides of (12). On the left side, we have(
8
1

)(
7
3

)(
4
1

)
:
(

8
1

)(
7
3

)(
4
2

)
=

(
4
1

)
:
(

4
2

)
= 2 : 3.
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Whereas, on the right side, we have(
16
2

)(
14
6

)(
8
2

) ∑
i

Ai(2a2
i +2a6

i +si−3) :
(

16
2

)(
14
6

)(
8
4

) ∑
i

Ai(a2
i +2a4

i +a6
i +si−3)

= 2
∑

i

Ai(2a2
i + 2a6

i + si − 3) : 5
∑

i

Ai(a2
i + 2a4

i + a6
i + si − 3)

where Ai = λi2si
(

n−4
si−3

)
for i = 1, . . . , k. Then

3
∑

i

Ai(2a2
i + 2a6

i + si − 3) = 5
∑

i

Ai(a2
i + 2a4

i + a6
i + si − 3)

and therefore

(13)
∑

i

Ai(a6
i − 10a4

i + a2
i ) = 2

∑
i

Ai(si − 3).

Next we compare the ratio of the coefficients of X2
1X

4
2X

4
3X

6
4 and X4

1X
4
2X

4
3X

4
4 on

the both sides of (12). On the left side, we have(
8
2

)(
6
2

)(
4
3

)
:
(

8
2

)(
6
2

)(
4
2

)
=

(
4
3

)
:
(

4
2

)
= 2 : 3.

Whereas on the right side, we have(
16
4

)(
12
4

)(
8
6

) ∑
i

Ai(a2
i + 2a4

i + a6
i + si − 3) :

(
16
4

)(
12
4

)(
8
4

) ∑
i

Ai(4a4
i + si − 3)

= 2
∑

i

Ai(a2
i + 2a4

i + a6
i + si − 3) : 5

∑
i

Ai(4a4
i + si − 3).

Then
5

∑
i

Ai(4a4
i + si − 3) = 3

∑
i

Ai(a2
i + 2a4

i + a6
i + si − 3)

and therefore

(14)
∑

i

Ai(3a6
i − 14a4

i + 3a2
i ) = 2

∑
i

Ai(si − 3).

In summary, by subtracting (14) from (13), we have

0 =
∑

i

Ai(a6
i − 2a4

i + a2
i ) =

∑
i

Aia
2
i (a2

i − 1)2,

which implies ai ∈ {0, 1}. This is a contradiction to Bajnok’s theorem (see Theo-
rem 2.18). □

Lemma 3.5. Let n ⩾ 8. Suppose that there exists a weighted t-design of type (11) with
si ∈ {0, 1, 2} for all i. Then it holds that t ⩽ 7.

Proof. By combining (11) with Lemma 2.17 for f̃8,1, we have

0 =
∑

i

W̃i

(
a8

i + si + 7(−4a6
i + 10a4

i − 4a2
i + si − 1) si

n− 1

)
,

where W̃i = Wi|vBn
ai,si

| > 0. For i = 1, . . . , k, let

Aai,si
= a8

i + si + 7(−4a6
i + 10a4

i − 4a2
i + si − 1) si

n− 1 .
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Since W̃i > 0 for every i, there exists j such that Aaj ,sj
< 0. Clearly sj ̸= 0. It thus

follows from elementary calculus that

n− 1 <


28a6

j − 70a4
j + 28a2

j

a8
j + 1 < 4 if sj = 1;

56a6
j − 140a4

j + 56a2
j − 14

a8
j + 2 < 7 if sj = 2.

□

Lemma 3.6. Let n ⩾ 3. Suppose that there exists a weighted t-design of type (11) with
si ⩽ n− 2 for all i. Then it holds that t ⩽ 2n− 1.

Proof. Let n ⩾ 3, and suppose that there exists a weighted (2n + 1)-design of type
(11) with si ⩽ n− 2 for all i. As in Remark 2.21, we consider the map

ψ : Sn−1 → Tn−1, ψ(x1, . . . , xn−1, xn) = (x2
1, . . . , x

2
n−1).

Then by Theorem 2.9, the set

S =
{
ψ(x) ∈ Tn−1 | x ∈

k⋃
i=1

vBn
ai,si

}
is a weighted simplicial design of type∑

s∈S

csf(zs) = 1∫
T n−1 W (y)dy1 · · · dyn−1

∫
T n−1

f(y)W (y)dy1 · · · dyn−1

for every f ∈ Pn(Tn−1).

Let x = (x1, . . . , xn) ∈
⋃k

i=1 v
Bn
ai,si

. Since si ⩽ n − 2 for all i, there exists at least
one nonzero coordinate of x. If xn = 0, then ψ(x) is included in the affine hyperplane
π0 : x1 + · · · + xn = 1. If xi = 0 where i = 1, . . . , n − 1, then ψ(x) is included in the
hyperplane πi : xi = 0. Then the polynomial

f(x1, . . . , xn) =
( n−1∏

i=1
xi

)(
1 −

n∑
j=1

xj

)
has degree n, which vanishes at the boundary of Tn−1 but takes positive values at
the interior of Tn−1. Hence it follows that

0 < 1∫
T n−1 W (y)dy1 · · · dyn−1

∫
T n−1

f(y)W (y)dy1 · · · dyn−1 =
∑
s∈S

csf(zs) = 0,

which is a contradiction. □

We are now in a position to complete the proof of Theorem 3.1

Proof of Theorem 3.1. The result is proved by Lemma 3.4 for si ⩾ 3 for some i, and
by Lemmas 3.5, 3.6 for si < 3 for all i. (see Table 1) □

4. Designs with a single proper orbit
Throughout this section we assume n ⩾ 3 and consider a design of type

(15) 1
|Sn−1|

∫
Sn−1

f(y)dρ = 1
|vBn

a,s |

∑
x∈vBn

a,s

f(x) for every f ∈ Pt(Sn−1).
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Table 1. Upper bound for the maximum degree tn of weighted de-
signs on Sn−1 with generalized corner vectors

n 4 5 6 7 8 9
∃i (si ⩾ 3)
Lemma 3.4 tn⩽ 15 tn⩽ 15 tn⩽ 15 tn⩽ 15 tn⩽ 15 tn⩽ 15

∀i (si = 0, 1, 2)
Lemma 3.5 - - - - tn⩽ 7 tn⩽ 7

∀i (si = 0, 1, 2)
Lemma 3.6 tn⩽ 7 tn⩽ 9 tn⩽ 11 tn⩽ 13 tn ⩽ 15 tn ⩽ 17

Proposition 4.1. Let n ⩾ 3. A 7-design of type (15) exists if and only if,

a2 =
3s±

√
(2 + n)s(1 − n+ 3s)

n− 1 ,(16)

h±(n, s) = n3 + (2 − 9s)n2 + (−7 − 9s+ 12s2)n+ 6s2 + 18s+ 4

±(n2 − 3(−2 + s)n− 3s− 7)
√

(2 + n)s(1 − n+ 3s) = 0.(17)

Proof. By Theorem 2.13, Corollary 2.15 and Lemma 2.17, a 7-design of type (15)
exists if and only if f̃4(va,s) = f̃6(va,s) = 0.

Solving f̃4(va,s) = 0 for a2, we obtain (16). Substituting (16) into f̃6(va,s) = 0, we
also obtain (17). □

Remark 4.2. When s = 0 in (17), we have

0 = n3 + 2n2 − 7n+ 4 = (n− 1)2(n+ 4),

whose roots are 1 and −4, contradicting the assumption that n ⩾ 3.

Remark 4.3. Let n ⩾ 3. If a weighted 7-design of type (15) exists, then n2 − 3(−2 +
s)n−3s−7 = 0 or (2+n)s(1−n+3s) is a square number. But n2−3(−2+s)n−3s−7 = 0
does not hold. Suppose contrary. Since n and s are integers, the discriminant of
n2 − 3(−2 + s)n− 3s− 7 = 0 is a square, that is, there exists an integer m such that

(18) 9s2 − 24s+ 64 = m2.

Then, the solutions of (18) are (s,m) = (0,±8), (1,±7), (5,±13), for which n2−3(−2+
s)n− 3s− 7 = 0 has no integer solutions.

Theorem 4.4. There exist only finitely many pairs (n, s) that satisfy the condition
(17).

Proof. Substituting n = x, s = y into (17), we have

h+(x, y)h−(x, y) = {n3 + (2 − 9s)n2 + (−7 − 9s+ 12s2)n+ 6s2 + 18s+ 4}2

− {n2 − 3(−2 + s)n− 3s− 7)
√

(n+ 2)s(1 − n+ 3s)}2

= (−1 + x)2(1 + y)
{
x4 + (6 − 9y)x3 + (27y2 − 30y + 1)x2

− (27y3 − 54y2 − 9y + 24)x− 18y3 − 36y2 + 30y + 16
}

= 0.

By noting x ⩾ 3 and y ⩾ 0, we obtain

(19)
f(x, y) := x4 + (6 − 9y)x3 + (27y2 − 30y + 1)x2 − (27y3 − 54y2 − 9y + 24)x

−18y3 − 36y2 + 30y + 16 = 0.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1400



More on the corner-vector construction for spherical designs

Suppose fy(x, y) = 0. Since

fy(x, y) = −9x3 + 6x2(9y − 5) + x(−81y2 + 108y + 9) − 54y2 − 72y + 30
= −3(x− 3y + 1)(3x2 − 9xy + 7x− 6y − 10),

we have

(20) y = x+ 1
3 or y = −10 + 7x+ 3x2

3(2 + 3x) and x ̸= −2
3 .

Substituting (20) into

fx(x, y) = 4x3 − 9x2(3y − 2) + x(54y2 − 60y + 2) − 27y3 + 54y2 + 9y − 24 = 0,

we obtain (x, y) = (2, 1) or (1, 0). Since f(2, 1) = 0 and f(1, 0) = 0, these are the only
singular points of the curve C defined by (19). It is not entirely obvious but shown
that (2, 1) or (1, 0) are ordinary multiple points of multiplicity 2, and therefore C has
genus one. By Siegel’s theorem [23], there exist finitely many pairs (n, s) for which
(17) holds. □

Remark 4.5. By using Mathematica, we find that a weighted 7-design of type (15)
exists if (n, a, s) = (16, 2, 8), (23, 2, 11).

In Section 7, we characterize vB16
2,8 and vB23

2,11 in terms of shells of integral lattices.

Contrary to the situation of 7-designs, there do not exist 9-designs, as shown in
the following result.

Proposition 4.6. Let n ⩾ 3. A weighted 9-design of type (15) does not exist.

Proof. By Remark 4.2, we may assume s ⩾ 1. If a weighted 9-design of type (15)
exists, then by Theorem 2.13, Corollary 2.15 and Lemma 2.17, we have f̃4(va,s) =
f̃6(va,s) = f̃8,1(va,s) = 0. By computing a Groebner basis for the ideal ⟨f̃4, f̃6, f̃8,1⟩,
we have

−277504 − 32752n− 1412n2 − 200n3 + 3n4 = 0.

However this equation has no integer solutions. □

5. Designs with two proper orbits
Throughout this section we assume that n ⩾ 3. Let a1, a2 > 0, and let s1, s2 be
integers with 0 ⩽ si ⩽ n− 1. We consider a weighted design of type
(21)

1
|Sn−1|

∫
Sn−1

f(y)dρ = W1
∑

x∈vBn
a1,s1

f(x) +W2
∑

x∈vBn
a2,s2

f(x) for every f ∈ Pt(Sn−1).

Let
G4,6(a1, a2, s1, s2) = f4(va1,s1)f6(va2,s2) − f6(va1,s1)f4(va2,s2),
G4,8,i(a1, a2, s1, s2) = f4(va1,s1)f8,i(va2,s2) − f8,i(va1,s1)f4(va2,s2), i = 1, 2,
G6,8,i(a1, a2, s1, s2) = f6(va1,s1)f8,i(va2,s2) − f8,i(va1,s1)f6(va2,s2), i = 1, 2,
G8,1,8,2(a1, a2, s1, s2) = f8,1(va1,s1)f8,2(va2,s2) − f8,2(va1,s1)f8,1(va2,s2).

Remark 5.1. By substituting a1 = a2 = 1, s1 = k1 − 1 and s2 = k2 − 1 into
G4,6(a1, a2, s1, s2), it can be confirmed that this function coincides, up to a constant
multiple, with the function G(k1, k2) defined in Bajnok [2, p.390].
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5.1. Characterization of 7-designs. In this subsection, we show a characteriza-
tion theorem for 7-designs with two orbits.

Proposition 5.2. Let n ⩾ 3. A weighted 7-design of type (21) exists if and only if
one of the following cases (i)-(iii) holds:

(i)
f4(va1,s1)f4(va2,s2) < 0 , G4,6(a1, a2, s1, s2) = 0;

(ii)
f4(va1,s1) = f4(va2,s2) = 0 , f6(va1,s1)f6(va2,s2) < 0;

(iii)

(22) f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0.

Proof. We solve the following system of liner equations

(23)

 1 1
f4(va1,s1) f4(va2,s2)
f6(va1,s1) f6(va2,s2)

 [
W̃1
W̃2

]
=

1
0
0

 ,
where W̃i = Wi|vBn

ai,si
| > 0, (i = 1, 2). We divide the situation into three cases: (a)

f4(va1,s1) ̸= f4(va2,s2), (b) f4(va1,s1) = f4(va2,s2), f6(va1,s1) ̸= f6(va2,s2) and (c)
f4(va1,s1) = f4(va2,s2), f6(va1,s1) = f6(va2,s2).

We first consider Case (a). Applying the row reduction in the standard linear
algebra to the augmented coefficient matrix in (23), we have 1 1 1

f4(va1,s1) f4(va2,s2) 0
f6(va1,s1) f6(va2,s2) 0

 →

1 1 1
0 f4(va2,s2) − f4(va1,s1) −f4(va1,s1)
0 f6(va2,s2) − f6(va1,s1) −f6(va1,s1)



→


1 0 f4(va2,s2 )

f4(va2,s2 )−f4(va1,s1 )

0 1 − f4(va1,s1 )
f4(va2,s2 )−f4(va1,s1 )

0 0 G4,6(a1,a2,s1,s2)
f4(va2,s2 )−f4(va1,s1 )

 .
Thus in this case, a weighted 7-design of type (21) exists if and only if

f4(va1,s1) ̸= f4(va2,s2),
f4(va2,s2 )

f4(va2,s2 )−f4(va1,s1 ) > 0,
− f4(va1,s1 )

f4(va2,s2 )−f4(va1,s1 ) > 0,
G4,6(a1, a2, s1, s2) = 0.

This is equivalent to

(24)
{
f4(va1,s1)f4(va2,s2) < 0,
G4,6(a1, a2, s1, s2) = 0.

Next we consider Case (b). Applying the row reduction arguments again, the aug-
mented coefficient matrix can be reduced to1 0 f6(va2,s2 )

f6(va2,s2 )−f6(va1,s1 )

0 1 − f6(va1,s1 )
f6(va2,s2 )−f6(va1,s1 )

0 0 −f4(va1,s1)

 .
Algebraic Combinatorics, Vol. 8 #5 (2025) 1402



More on the corner-vector construction for spherical designs

Thus in this case, a weighted 7-design of type (21) exists if and only if
f4(va1,s1) = f4(va2,s2) = 0,
f6(va2,s2) ̸= f6(va1,s1),

f6(va2,s2 )
f6(va2,s2 )−f6(va1,s1 ) > 0,
− f6(va1,s1 )

f6(va2,s2 )−f6(va1,s1 ) > 0.

This is equivalent to

(25)
{
f4(va1,s1) = f4(va2,s2) = 0,
f6(va1,s1)f6(va2,s2) < 0.

Finally, we consider Case (c). Applying the same arguments again, the augmented
coefficient matrix can be reduced to1 1 1

0 0 −f4(va1,s1)
0 0 −f6(va1,s1)

 .
Thus, in Case (c), a weighted 7-design of type (21) exists if and only if

(26) f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0.

By summarizing (24)-(26), we obtain all the desired conditions. □

Theorem 5.3. Let n ⩾ 3. Case (iii) of Proposition 5.2 does not occur if s1 ̸= s2.

We prove Theorem 5.3 in Section 5.3.

Remark 5.4. We list W̃1, W̃2 of Cases (i), (ii) listed in Table 2

Table 2. Weights of 7-design

W̃1 W̃2

Case (i) f4(va2,s2 )
f4(va2,s2 )−f4(va1,s1 ) − f4(va1,s1 )

f4(va2,s2 )−f4(va1,s1 )

Case (ii) f6(va2,s2 )
f6(va2,s2 )−f6(va1,s1 ) − f6(va1,s1 )

f6(va2,s2 )−f6(va1,s1 )

5.2. Characterization of 9-designs. We start with a characterization theorem
for 9-designs with two orbits.

Proposition 5.5. Let n ⩾ 3. A weighted 9-design of type (21) exists if and only if
one of the following cases (i)-(v) holds:

(i)

f4(va1,s1)f4(va2,s2) < 0,
G4,6(a1, a2, s1, s2) = G4,8,1(a1, a2, s1, s2) = G4,8,2(a1, a2, s1, s2) = 0.

(ii)

f4(va1,s1) = f4(va2,s2) = 0, f6(va1,s1)f6(va2,s2) < 0,
G6,8,1(a1, a2, s1, s2) = G6,8,2(a1, a2, s1, s2) = 0.

(iii)

f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0,
f8,1(va1,s1)f8,1(va2,s2) < 0 , G8,1,8,2(a1, a2, s1, s2) = 0.
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(iv)

f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = f8,1(va1,s1) = f8,1(va2,s2) = 0,
f8,2(va1,s1)f8,2(va2,s2) < 0.

(v)

f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0,
f8,1(va1,s1) = f8,1(va2,s2) = f8,2(va1,s1) = f8,2(va2,s2) = 0.

Remark 5.6. When n = 3, we may ignore all conditions involving f8,2. For example,
both Case (iv) and Case (v) can be reduced to

f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0, f8,1(va1,s1) = f8,1(va2,s2) = 0.

Theorem 5.7. Cases (iii), (iv) and (v) of Proposition 5.5 do not occur.

We prove Theorem 5.7 in Section 5.3, where a proof of Proposition 5.5 is given in
the Appendix.

We close this subsection by discussing weighted 9-designs of type (vB3
a1,s1

∪
vB3

a2,s2
, {W̃1, W̃2}). Such 9-designs can be classified by two examples listed in Table 3,

where numerical parameters are considered with six significant digits. (Throughout
this paper, numerical results are treated with the same level of precision.) What is
remarkable here is that all these examples belong to Case (ii), which implies that
Case (i) may not occur even for n ⩾ 4.

Table 3. Parameters of weighted 9-design

s1 s2 a1 a2 W1 W2
1 2 0.396751 0.470350 0.0220088 0.0196579
2 2 0.389041 3.89103 0.0193973 0.0222694

The orbit vB3
a,1 can be understood as the vertices of a convex polyhedron obtained

by uniformly removing the 6 square pyramid parts from a regular octahedron, or by
uniformly truncating the 6 vertices of a regular octahedron in such a way that each
edge of the octahedron is divided into the ratio a : 1 − a : a if 0 < a < 1, and
1 : a− 1 : 1 if 1 < a. The values of a1, a2, and W1, appearing in Case 1 (see Figure 2),
satisfy the equations

17 − 92A2 + 78A2
2 − 44A3

2 + 5A4
2 = 0,

24 − 167A1 + 24A2
1 + 57A1A2 − 39A1A

2
2 + 5A1A

3
2 = 0,

−845 − 522A2 + 369A2
2 − 40A3

2 + 1785W1 = 0,

where A1 = a2
1 and A2 = a2

2.
The orbit vB3

a,2 can be characterized in terms of vertex-truncation and edge-
truncation. When 0 < a < 1, the orbit vB3

a,2 can be obtained by uniformly removing
the 8 rectangular triangular pyramids from a cube in such a way that each edge of
the cube is divided into the ratio 1 − a : 2a : 1 − a. If 1 < a, the orbit vB3

a,2 can be
obtained by uniformly cutting off the 8 right-angle isosceles prisms including the
edges of a cube in such a way that each edge of the cube is divided into the ratio
a − 1 : 2 : a − 1. The values of a1, a2, and W1, appearing in Case 2 (see Figure 3),
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Figure 2. vB3
a1,1(left), vB3

a2,2(middle), vB3
a1,1 ∪ vB3

a2,2(right)

satisfy the equations
−19 + 116A2 + 66A2

2 − 20A3
2 +A4

2 = 0,
−175 + 12A1 − 47A2 + 19A2

2 −A3
2 = 0,

−3956 + 2291A2 − 349A2
2 + 13A3

2 + 7770W1 = 0,

where A1 = a2
1 and A2 = a2

2.

Figure 3. vB3
a1,2(left), vB3

a2,2(middle), vB3
a1,2 ∪ vB3

a2,2(right)

Note that all 24-point configurations consisting of each single proper orbit are
3-designs.

5.3. Proofs of Theorems 5.3 and 5.7.

Proof of Theorem 5.3. Suppose that s1 ̸= s2. By the similar argument that used in
Proposition 4.1, it holds that

h(n, si) = n3 + (2 − 9si)n2 + (12s2
i − 9si − 7)n+ 6s2

i + 18si + 4

±(n3 − 3(si − 2) − 3si − 7)
√

(n+ 2)si(1 − n+ 3si) = 0, i = 1, 2.

Since (n3 + (2 − 9si)n2 + (12s2
i − 9si − 7)n + 6s2

i + 18si + 4)2 = ((n3 − 3(si − 2) −
3si − 7)

√
(n+ 2)si(1 − n+ 3si))2 for each i, by noting n ⩾ 3 and si ⩾ 0, we obtain

0 = n4 + (6 − 9si)n3 + (1 − 30si + 27s2
i )n2 − (24 − 9si − 54s2

i + 27s3
i )n

−18s3
i − 36s2

i + 30si + 16, i = 1, 2.
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By subtracting them and then dividing it by 3(s2 − s1), we obtain the Diophantine
equation

(27)
0 = 3n3 + (10 − 9s1 − 9s2)n2 − 3(1 + 6s1 + 6s2 − 3s2

1 − 3s1s2 − 3s2
2)n

−10 + 12s1 + 12s2 + 6s2
1 + 6s1s2 + 6s2

2.

By using Mathematica, the positive integer solutions of (27) are (n, s1, s2) = (8, 3, 3),
(5, 2, 2), (2, 1, 1), each of which does not satisfy the restriction s1 ̸= s2. □

Next we prove Theorem 5.7 by focusing on Cases (iii), (iv), and (v) of Proposi-
tion 5.5.

We first consider the case where s1 ̸= s2. In this case, Theorem 5.3 implies the
nonexistence of a weighted 9-design. Thus, our interest goes to the case where s1 = s2.

To prove Theorem 5.7, we prepare the following two lemmas.

Lemma 5.8. Let n ⩾ 3, a1 ̸= a2 and s1 = s2 (say s). Suppose f4(va1,s) = f4(va2,s) =
f6(va1,s) = f6(va2,s) = 0. Then

5n2 + 15n− 20
12n+ 6 < s ⩽

5n2 + 15n− 20
9n+ 12 .

Proof. Suppose (22) with a1 ̸= a2 and s = s1 = s2. Since f̃4(va1,s) − f̃4(va2,s) = 0, we
have

(28) a2
1 + a2

2 = 6s
n− 1 .

Since f̃6(va1,s) − f̃6(va2,s) = 0, we have

(29) (a4
1 +a2

1a
2
2 +a4

2)(−2+n)(−1+n)−60s−15(a2
1 +a2

2)(−2+n)s−15ns+90s2 = 0.

Substituting (28) into (29), we have

(30) a2
1a

2
2 = 3s{20 − 5n2 + 6s+ 3n(−5 + 4s)}

(−2 + n)(−1 + n)2 .

Since a2
1a

2
2 > 0, we obtain

(31) 5n2 + 15n− 20
12n+ 6 < s ⩽ n− 1.

Meanwhile, solving for a2
1 and a2

2 from (28) and (30), we know that a2
1 (or a2

2) is equal
to

3s
n− 1 ±

√
3(−2 + n)s{5(−1 + n)(4 + n) − 3(4 + 3n)s}

(−2 + n)(−1 + n) .

Since a2
1 and a2

2 are positive reals, by noting 0 ⩽ s ⩽ n− 1, we have

s
(
5n2 + n(15 − 9s) − 4(5 + 3s)

)
⩾ 0 and 0 ⩽ s ⩽ n− 1.

Then we obtain

(32) 0 ⩽ s ⩽
5n2 + 15n− 20

9n+ 12 .

Thus, by combining (31) and (32), we obtain the desired result. □

Lemma 5.9. Assume a1 ̸= a2. Then the following hold:
(i) If n ⩾ 4 and f4(va1,s) = f4(va2,s) = f8,1(va1,s) = f8,1(va2,s) = f8,2(va1,s) =

f8,2(va2,s) = 0, then
n = 6s− 3.
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(ii) If n = 3 and f4(va1,s) = f4(va2,s) = f8,1(va1,s) = f8,1(va2,s) = 0, then

(33) a1 =

√
3 ∓

√
5

2 , a2 = ±1 +
√

5
2 , s = 1.

Proof. Suppose n ⩾ 4. By recalling (28), f̃4(va1,s) − f̃4(va2,s) = 0 and f̃8,i(va1,s) −
f̃8,i(va2,s) = 0 (i = 1, 2), we have

g1(a1, a2, s) = −(a2
1 + a2

2) + (a2
1 + a2

2)n− 6s = 0,
g2(a1, a2, s) = −a6

1 − a4
1a

2
2 − a2

1a
4
2 − a6

2 + a6
1n+ a4

1a
2
2n

+a2
1a

4
2n+ a6

2n− 28s+ 70a2
1s− 28a4

1s+ 70a2
2s− 28a2

1a
2
2s− 28a4

2s = 0,
g3(a1, a2, s) = −18 + 3a2

1 + 3a2
2 − 6n+ 2a2

1n+ 2a2
2n− a2

1n
2

−a2
2n

2 + 36s− 9a2
1s− 9a2

2s+ 6ns+ 3a2
1ns+ 3a2

2ns− 18s2 = 0.

By computing a Groebner basis G for the ideal ⟨g1, g2, g3⟩, we can check that

{(3 + n− 6s)(−1 + n− s), (5 − 4a2 + a2
2)(5 + 4a2 + a2

2)(−1 + n)(3 + n− 6s)} ⊂ G
(34)

Thus it holds that
n ∈ {6s− 3, s+ 1}.

By substituting n = s+ 1 into (34), we have

(5 − 4a2 + a2
2)(5 + 4a2 + a2

2)(4 − 5s)s = 0.

This equation holds true only when s = 0, but this is a contradiction. Thus we obtain
n = 6s− 3.

Next, suppose n = 3. By computing a Groebner basis H for the ideal ⟨g1, g2⟩, we
have

h1(a1, a2, s) = s(14 + 8a4
2 − 105s− 24a2

2s+ 99s2) = 0,
h2(a1, a2, s) = a2

1 + a2
2 − 3s = 0.

We solve 14 + 8a4
2 − 105s− 24a2

2s+ 99s2 = 0. This equation holds only when

a2
2 = 3s

2 ±
√

−14 + 105s− 81s2

2
√

2
,

35 −
√

721
54 < s <

35 +
√

721
54 .

Therefore, we obtain s = 1 and

a1 =

√
3 ∓

√
5

2 , a2 = ±1 +
√

5
2 . □

We are ready to prove Theorem 5.7.

Proof of Theorem 5.7. Let n ⩾ 3, and suppose that there exists a weighted 9-design
of type (21). By Theorem 5.3 we may consider the case where s1 = s2 (say s).

First, we consider Case (iii). Then

(35)
{
f4(va1,s) = f4(va2,s) = f6(va1,s) = f6(va2,s) = 0,
f8,1(va1,s)f8,1(va2,s) < 0.

Then by Lemma 5.8, we have

(36) 5n2 + 15n− 20
12n+ 6 < s ⩽

5n2 + 15n− 20
9n+ 12 .
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By using Mathematica, we find that n satisfying (35) and (36) is upper bounded by
691. However, for n ⩽ 691, we can also confirm that there exists no integer s such
that

f4(va1,s) = f6(va2,s) = G8,1,8,2(a1, a2, s, s) = 0
Next, we consider Cases (iv) and (v). Let n ⩾ 4. By Theorem 2.18 we may assume

that s > 0. By combining (28), (29) and Lemma 5.9, we obtain

a2
1a

2
2 = − 3s(−5 − 15s+ 27s2)

(−2 + 3s)2(−5 + 6s) < 0,

which is a contradiction. Let n = 3. Substituting a1, a2, s as in (33) into (29), we have

(a4
1 +a2

1a
2
2 +a4

2)(−2+n)(−1+n)−60s−15(a2
1 +a2

2)(−2+n)s−15ns+90s2 = −44 ̸= 0,

which is again a contradiction. □

6. Designs with more than two proper orbits on S3

In Theorem 3.1, we have obtained a uniform bound for the existence of designs of
type (1), namely we have shown that if n ⩾ 4, and if there exists a t-design on Sn−1

of type (1), then t ⩽ 15.
Schur’s formula (7) on S3 has degree 11. Sawa and Xu [21] discusses a higher-

dimensional extension of Schur’s design, and discovers many examples of weighted
11-designs in dimensions 3 through 23. Note that all these designs contain only one
proper orbit. Sawa and Xu [21] moreover establishes that designs of type (1) with
only one proper orbit have degree at most 11.

Then what about designs with at least two proper orbits? The following is a
weighted 11-design on S3 with 3 proper orbits:

• (vB4
a1,2 ∪ vB4

a2,3 ∪ vB4
a3,3, {W1,W2,W3}),{

a1 = 0.470499, a2 = 1.17310, a3 = 3.78381,
W1 = 0.00522948, W2 = 0.00192016, W3 = 0.00586062.

We could not have found 11-designs, and even 9-designs with 2 proper orbits.
The use of more than 3 proper orbits enables us to obtain 13-designs. Indeed, the

following two are weighted 13-designs on S3 with 5 orbits:
• (vB4

1,3 ∪ vB4
a2,1 ∪ vB4

a3,2 ∪ vB4
a4,3 ∪ vB4

a5,3, {W1,W2,W3,W4,W5}),
a2 = 0.444883, a3 = 0.509692, a4 = 9.68607, a5 = 2.53788,
W1 = 0.00475002, W2 = 0.00407904, W3 = 0.00435065,
W4 = 0.000536920, W5 = 0.00431532.

• (vB4
1,0 ∪ vB4

a2,1 ∪ vB4
a3,2 ∪ vB4

a4,2 ∪ vB4
a5,3, {W1,W2,W3,W4,W5}),

a2 = 0.597599, a3 = 0.521840, a4 = 3.07756, a5 = 1.85216,
W1 = 0.00262253, W2 = 0.00244207, W3 = 0.00370960,
W4 = 0.00256322, W5 = 0.00405640.

At this point we could not have succeeded in finding a 15-design on S3 with more
than 5 proper orbits, though there actually exist 15-designs with negative weights Wi

(see for example Keast [12]). The following is a challenging open question, which is
left for future work.

Problem 6.1. Does there exist a weighted 15-design on S3 of type (1) with more than
5 proper orbits?
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The situation is quite different in dimensions 3 and 4. Indeed, we obtain weighted
9-designs with two proper orbits, as already seen in Section 5.2 (Table 3). As in the
four-dimensional case, one can obtain weighted 11-designs on S2 with 3 proper orbits,
e.g.

• (vB3
a1,1 ∪ vB3

a2,1 ∪ vB3
a3,2, {W1,W2,W3}),{

a1 = 1.51610, a2 = 4.44671, a3 = 1.79726,
W1 = 0.0147251, W2 = 0.00936568, W3 = 0.0175759.

A remarkable gap between the three and four dimensional cases is that there exists
a weighted 17-design on S2 of type (1). Indeed, the following example with 6 proper
orbits can be found in Table 2.1 of Heo-Xu [10, p.275]:

• (vB3
1,0 ∪ vB3

1,2 ∪ vB3
a3,1 ∪ vB3

a4,2 ∪ vB3
a5,2 ∪ vB3

a6,2, {W1,W2,W3,W4,W5,W6}),
a3 = 0.544741, a4 = 5.21363, a5 = 2.0945, a6 = 0.312791,
W1 = 0.00382827, W2 = 0.00979374, W3 = 0.009695,
W4 = 0.00821174, W5 = 0.00959547, W6 = 0.00994281.

7. Conclusion and further remarks
In this paper we have explored a full generalization of the classical corner-vector
method for constructing weighted spherical designs, and have extensively studied the
existence of designs of type (1). We have first established a uniform upper bound for
the degree of such designs (Theorem 3.1). Our proof is a hybrid argument combining
the cross-ratio comparison technique for Hilbert identity and Xu’s theorem on the
interrelation between spherical designs and simplicial designs, which appears to be
useful in the study of designs of a different type than (1). Moreover, we have made a
detailed observation about the existence of 7-designs with one proper orbit, 9-designs
with two proper orbits, and 11- and 13-designs with more than two proper orbits.

In the rest of this paper we explore the connections between integral lattices and
some of our designs. Since the pioneering paper by Venkov [25], there have been
numerous publications on the construction that derives spherical designs from shells
of integral lattices. Such lattice-based constructions are also significant for coding
theorists as a spherical analogue of the Assmus-Mattson theorem that directly relates
blocks designs to linear codes. For a brief introduction to the connections among
designs, codes and lattices, we refer the reader to Bannai and Bannai [3].

We shall make a brief explanation of the lattice-based construction, together
with examples for D4-root lattice. The D4-root lattice, its dual lattice D∗

4 and√
2-normalization D′

4 are defined by

D4 = {(x1, x2, x3, x4) ∈ Z4 | x1 + x2 + x3 + x4 ≡ 0 (mod 2)},

D∗
4 = {(y1, y2, y3, y4) ∈ R4 |

4∑
i=1

xiyi ∈ Z, (x1, x2, x3, x4) ∈ D4},

D′
4 =

√
2D∗

4 .

Given a set E of R4, the shell of (square) norm m, say Em, is defined to be the inter-
section of E and the concentric sphere S3

m of radius m. We also use this terminology
for the n-dimensional case.

Example 7.1. Let E = D4 ∪D′
4. Then the first two shells for D4 are given by

(D4)2 = (1, 1, 0, 0)B4 , (D4)6 = (2, 1, 1, 0)B4 ,
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which can be represented in terms of generalized corner vectors as (
√

2v1,1)B4 and
(
√

6v2,2)B4 , respectively. Similarly, the first two shells of D′
4 are given as

(D′
4)2 = (

√
2, 0, 0, 0)B4 ∪ ( 1√

2
,

1√
2
,

1√
2
,

1√
2

)B4 = (
√

2v1,0)B4 ∪ (
√

2v1,3)B4 ,

(D′
4)6 = (

√
2,

√
2,

√
2, 0)B4 ∪ ( 3√

2
,

1√
2
,

1√
2
,

1√
2

)B4 = (
√

6v1,2)B4 ∪ (
√

6v3,3)B4 .

The following theorem is proved in de la Harpe et al. [6].

Theorem 7.2 (Theorem D4, [6]). With the notation given above, the following holds:
(i) Any shell E2m is an (equi-weighted) spherical 7-design.
(ii) The union of 1√

2E2 and 1√
6E6 is a weighted spherical 11-design.

Remark 7.3. Theorem 7.2 (i) is a corollary of Bajnok’s theorem (Theorem 2.18), and
Theorem 7.2 (ii) is just Schur’s formula described in Example 2.5.

We now clarify the connection between our 7-design vB16
2,8 (see Remark 4.5) and a

certain integral lattice called the Barnes-Wall lattice in R16. The Barnes-Wall lattice
in R2 is the standard Z2-lattice, and the Barnes-Wall lattice in R4 is just the D4-root
lattice. In general the Barnes-Wall lattice in R2k can be realized as the rational part
of the lattice M⊗k

1 , where M1 is the set of all Z[
√

2]-integer combinations of (
√

2, 0)
and (1, 1) (see [16, Theorem 2.1] for the details). In particular the lattice in R16 is
generated by the rows of the matrix

X =



4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0
2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



.

Theorem 7.4. The 7-design (8
√

3v2,8)B16 is a subset of some shell of the Barnes-Wall
lattice in R16.

Proof. We note that 4e1, . . . , 4e16, where e1, . . . , e16 are the standard basis vec-
tors, are all integer combinations of the rows of the generator matrix X. The
orbit (8

√
3v2,8)B16 = (8, 4, . . . , 4︸ ︷︷ ︸

8 times

, 0, . . . , 0)B16 is thus included in some shell of the

lattice. □

Next we come to the connection between our 7-design vB23
2,11 (see Remark 4.5) and

a certain integral lattice in R23. The Leech lattice Λ24 is an even unimodular lattice,
which often appears to be the densest sphere packing in R24. As briefly explained
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in [5, Chapter 24], the lattice Λ24 has an explicit expression as

Λ24 =
{ 1√

8
(2c + 4x) | c ∈ G24 (mod 2), x ∈ Z24 with

24∑
i=1

xi ≡ 0 (mod 2)
}

∪
{ 1√

8
(1 + 2c + 4x) | c ∈ G24 (mod 2), x ∈ Z24 with

24∑
i=1

xi ≡ 0 (mod 2)
}

where 1 is the 24-dimensional all-one vector and G24 is the set of all 24-dimensional
vectors, considered as vectors in R24, of the extended Golay codes over F2; see, for
example, van Lint and Wilson [24, § 20] for the definition of the (extended) Golay code
over F2. The minimal shell consists of 1104 points of type (±42, 022), 97152 points of
type (±28, 016), 98304 points of type (∓31,±123), and totally 196560 points.

The shorter Leech lattice, O23, is the unique odd (up to isometry) unimodular
lattice with minimal norm 3 in R23 [5, Chapter 19]. Given a minimal vector v ∈ Λ24
of norm 4, the lattice O23 can also be identified as the orthogonal projection of the
set of points in Λ24 that have an even inner product with v onto

v⊥ = {u ∈ R24 |
24∑

i=1
uivi = 0};

see for example [5, p.179].
Consider a hyperplane H given by

H := {(x1, . . . , x23, 0) ∈ R24 | x1, . . . , x23 ∈ R}.
Then, a linear transformation Υ : H → R24 is defined as follows:
(37)

Υ((x1, . . . , x23, 0)) :=
(
x1√

2
,
x1√

2
,
x2 − x3√

2
,
x2 + x3√

2
, . . . ,

x22 − x23√
2

,
x22 + x23√

2

)
∈ R24.

Since it can be easily verified that Υ preserves inner products, it follows that Υ is an
orthogonal transformation.

Theorem 7.5. With the orthogonal transformation Υ, the point set {Υ((y, 0)) | y ∈
(4

√
15v2,11)B23} is a subset of some shell of the shorter Leech lattice O23.

Proof. For v = 1√
8 (4,−4, 0, . . . , 0) ∈ Λ24 with ∥v∥2 = 4, we set

v⊥ = {x = (x1, . . . , x24) ∈ Λ24 | x1 − x2 = 0} .

The orthogonal projection onto v⊥ is defined by

πv⊥(t) := t − ⟨t, v⟩
∥v∥2 v = t − t1 − t2√

8
v

for t = (t1, . . . , t24) ∈ R24. By the definition of the shorter Leech lattice O23, we have
O23 = {πv⊥(x) | x ∈ Λ24, ⟨x, v⟩ ∈ 2Z}

⊃ {πv⊥(x) | x = (x1, . . . , x24) ∈ Λ24, x1 = x2}
= {(x1, x1, x3, . . . , x24) ∈ Λ24} .

Our goal is to show that the point set {(y, 0) | y ∈ (4
√

15v2,11)B23} ⊂ H is trans-
formed under the orthogonal transformation Υ into {(x1, x1, x3, . . . , x24) ∈ Λ24} (⊂
O23).

By noting

(4
√

15v2,11)B23 = 1√
8

(
16

√
2, 8

√
2, . . . , 8

√
2︸ ︷︷ ︸

11 times

, 0, . . . , 0
)B23
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and letting (y1, . . . , y24) ∈ {(y, 0) | y ∈ (4
√

15v2,11)B23}, we observe from equation
(37) that each of yi/

√
2 and (yi ± yj)/

√
2 belongs to the set 1√

8 {0,±8,±16,±24}.
Hence, each resulting vector

z ∈ {Υ((y, 0)) | y ∈ (4
√

15v2,11)B23}

lies in 1√
8Z

24, and in fact we can write z = 4z′/
√

8 for some z′ = (z′
1, z

′
1, z

′
3, . . . , z

′
24) ∈

Z24, with all z′
i ∈ {0,±2,±4,±6}.

Since all entries of z′ are even integers, their sum is also even, and thus z satisfies
the parity condition required for membership in Λ24. Therefore, we conclude that
z ∈ Λ24, which completes the proof. □

Appendix A. Proof of Proposition 5.5
In this section, we give a proof of Proposition 5.5. Suppose n ⩾ 4. We solve the
following system of linear equations

1 1
f4(va1,s1) f4(va2,s2)
f6(va1,s1) f6(va2,s2)
f8,1(va1,s1) f8,1(va2,s2)
f8,2(va1,s1) f8,2(va2,s2)


[
W̃1
W̃2

]
=


1
0
0
0
0

 ,
where W̃i = Wi|vBn

ai,si
| > 0 (i = 1, 2). As in the proof of Proposition 5.2, we divide the

situation into five cases:

(a) f4(va1,s1) ̸= f4(va2,s2),
(b) f4(va1,s1) = f4(va2,s2) , f6(va1,s1) ̸= f6(va2,s2),
(c) f4(va1,s1) = f4(va2,s2) , f6(va1,s1) = f6(va2,s2) , f8,1(va1,s1) ̸= f8,1(va2,s2),
(d) f4(va1,s1) = f4(va2,s2) , f6(va1,s1) = f6(va2,s2),

f8,1(va1,s1) = f8,1(va2,s2) , f8,2(va1,s1) ̸= f8,2(va2,s2),
(e) f4(va1,s1) = f4(va2,s2) , f6(va1,s1) = f6(va2,s2),

f8,1(va1,s1) = f8,1(va2,s2) , f8,2(va1,s1) = f8,2(va2,s2).

In Case (a), the augmented coefficient matrix has rank 2 and can be reduced to



1 0 f4(va2,s2 )
f4(va2,s2 )−f4(va1,s1 )

0 1 − f4(va1,s1 )
f4(va2,s2 )−f4(va1,s1 )

0 0 G4,6(a1,a2,s1,s2)
f4(va2,s2 )−f4(va,s)

0 0 G4,8,1(a1,a2,s1,s2)
f4(va2,s2 )−f4(va,s)

0 0 G4,8,2(a1,a2,s1,s2)
f4(va2,s2 )−f4(va,s)


.

Thus, in Case (a), a weighted 9-design of type (21) exists if and only if
f4(va2,s2 )

f4(va2,s2 )−f4(va1,s1 ) > 0,
− f4(va1,s1 )

f4(va2,s2 )−f4(va1,s1 ) > 0,
G4,6(a1, a2, s1, s2) = G4,8,1(a1, a2, s1, s2) = G4,8,2(a1, a2, s1, s2) = 0.

Since f4(va1,s1) ̸= f4(va2,s2), this is equivalent to{
f4(va1,s1)f4(va2,s2) < 0,
G4,6(a1, a2, s1, s2) = G4,8,1(a1, a2, s1, s2) = G4,8,2(a1, a2, s1, s2) = 0.
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Similarly, in each of the remaining three cases (b), (c), (d), the augmented coeffi-
cient matrix has rank 2 and obtain the desired equivalence case.

In the last case, Case (e), the augmented coefficient matrix can be reduced to
1 1 1
0 0 −f4(va1,s1)
0 0 −f6(va1,s1)
0 0 −f8,1(va1,s1)
0 0 −f8,2(va1,s1)

 .
Thus, a weighted 9-design of type (21) exists if and only if{

f4(va1,s1) = f4(va2,s2) = f6(va1,s1) = f6(va2,s2) = 0,
f8,1(va1,s1) = f8,1(va2,s2) = f8,2(va1,s1) = f8,2(va2,s2) = 0.

It remains to consider the case of n = 3. In this case we may ignore f8,2 and so
reduce the size of the augmented coefficient matrix to 4 × 3 from 5 × 3.
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