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More on the corner-vector construction for

spherical designs

Kenji Tanino, Tomoki Tamaru, Masatake Hirao & Masanori
Sawa

ABSTRACT This paper explores a full generalization of the classical corner-vector method for
constructing weighted spherical designs, which we call the generalized corner-vector method.
First we establish a uniform upper bound for the degree of designs obtained from the proposed
method. Our proof is a hybrid argument that employs techniques in analysis and combinatorics,
especially a famous result by Xu (1998) on the interrelation between spherical designs and
simplicial designs, and the cross-ratio comparison method for Hilbert identities introduced by
Nozaki and Sawa (2013). We extensively study conditions for the existence of designs obtained
from our method, and present many curious examples of degree 7 through 13, some of which
are, to our surprise, characterized in terms of integral lattices.

1. INTRODUCTION

Delsarte et al. [7] introduces spherical design as a spherical analogue of balanced in-
complete block (BIB) design in applied statistics and combinatorial ¢-design in discrete
mathematics. A finite subset X of a unit sphere S*~! is defined to be a (weighted)
spherical t-design, if for every polynomial of degree at most ¢, the (weighted) average
of the function values on X is equal to the integration with respect to the surface mea-
sure p. Spherical design is closely related to various objects including, but not limited
to, spherical cubature in numerical analysis, isometric embeddings of the classical
finite-dimensional Banach spaces in functional analysis and optimum experimental
designs in applied statistics (see, for example, [14, 27] and [28]).

One of the most fundamental problems in the spherical design theory is the con-
struction as well as existence of designs. Bondarenko et al. [4] shows a general ex-
istence theorem for designs of small sizes, and gives an affirmative answer to the
Korevaar-Meyers conjecture [13]. Although significant progress has been made in the
establishment of existence theorems, recent developments of the construction theory
have been comparatively modest in scale, even for designs of small degrees.

There are two classical approaches to the construction of spherical designs: product
rule and invariant rule. Roughly speaking, the former is a recursive approach that
generates a spherical design from designs on simpler spaces, and the latter is an
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algebraic approach, based on the invariant theory for polynomial spaces, that directly
generates a highly symmetric design from group orbits. A great advantage of the
product rule is its simplicity, however, most of the known product rules strongly
depend on the assumption of the existence of interval designs for Gegenbauer measure
(1—t2)*=12dt, A\ > —1/2 (see, for example, [1, 18, 26]). As pointed out by Xiang [26],
the construction of such interval designs is still an open problem. On the other hand,
the invariant rule is a more sophisticated approach, which makes it possible to provide
an explicit construction of spherical designs. We refer the reader to Xiang [26] for
discussion on the explicitness of designs. A major difficulty of the invariant rule is
the selection of finitely many points whose group orbits form a design of a given
degree. A traditional and popular criterion is the utilization of corner vectors for the
hyperoctahedral group B,,.

The aim of this paper is to make further progress on the corner-vector method by
considering designs of more general type

k
1
(1) 1 Jos f(y)dp = g Wi E f(z) for every polynomial f of degree < t.
" i=1

IEvfﬁsi
We here denote by vifsi the B,,-orbit of generalized corner vector
1

Vai,si =
Vai+s;

A point v, s with @ = 1 is just an (s + 1)-dimensional corner vector, namely the
barycentre of an (s+ 1)-dimensional face of an n-dimensional cross-polytope (see Def-
inition 2.11). The corner-vector method is a traditional way of constructing designs
with only corner vectors. While this method can respond to the preference for sim-
plicity of construction, it has the drawback that the generated designs have degree at
most 7 (see Bajnok [2]).

A classical result on spherical designs is that the vertex set of a regular (¢ + 1)-
gon is a t-design on S! (see, for example, [11]). This means that generalized corner
vectors can generate designs of any degree in dimension 2, since if t = 0 (mod 4), the
vertex set consists of the By-orbits of ¢/4 generalized corner vectors. Heo and Xu [10,
Theorem 2.1] establishes a systematic treatment of the three-dimensional case, and in
particular shows that the degree of the generated design is uniformly upper bounded
by 17. Schur [8, p.721] makes the first advance for n > 4, who discovers a weighted
11-design on S* with a single proper orbit, namely an orbit v24 with a # 1. The
original version of Schur’s formula appeared in the context of Waring problem in
number theory, as briefly explained in Section 2.2. Sawa and Xu [21] discusses a
higher dimensional extension of Schur’s formula, and proves that the degree of any
design with a single proper orbit is uniformly upper bounded by 11. This bound
is sharp, since many examples of such 11-designs have been found in dimensions 3
through 23. Thus a natural question is to ask what happens to designs with two or
more proper orbits.

This paper is organized as follows. Section 2 gives preliminaries where we review
basic facts on weighted spherical designs, with particular emphasis on the connections
to Hilbert identities and simplicial designs. Sections 3 through 6 are the main body
of this paper. Section 3 demonstrates that for n > 4, the degree of any design of
type (1) is uniformly upper bounded by 15 (Theorem 3.1). Our proof is a hybrid
argument employing techniques in analysis and combinatorics, especially a famous
theorem by Xu [27] on the interrelation between spherical and simplicial designs,
and the cross-ratio comparison for Hilbert identity (see for example [17, Theorem
6.6]). Section 4 establishes a characterization theorem for 7-designs of type (1) with

(as1,...,1,0,...,0)€S" 1 a; >0, s;€{0,1,...,n—1}.
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a single proper orbit (Proposition 4.1). As an important corollary of this result, we
first show that there exist finitely many such designs including two sporadic examples
vf & and fug 33 (Remark 4.5), and then prove that the degree of all such designs can
never be pushed up to 9 (Proposition 4.6). Section 5 gives a two-orbit version of
Proposition 4.1 (see Propositions 5.2 and 5.5), and thereby obtain some theoretical
results, e.g. a classification of such 9-designs for n = 3 (see Table 3). Section 6 explores
the exhibition of interesting examples of 11- and 13-designs with more than 2 proper
orbits. Finally, Section 7 is the Conclusion, where some connections between our
designs and integral lattices will be also made.

2. PRELIMINARY

In this section we review basic facts concerning spherical designs, with particular
emphasis on the connection with Hilbert identity and cubature on simplex, and then
quickly overview the background of the corner vector method. Some of the materials
appearing in this section are available in [19, 20].

2.1. POLYNOMIAL SPACE. Let n be a positive integer with n > 2. Let S*~! be the
(n — 1)-dimensional unit sphere centered at the origin, namely,

SR {(xl,...,xn) € R" | Zx% = 1}.
i=1

We denote by |S"~!| the surface area of S*~!, and by p the surface measure on
S?~!. For convention, we write y* for yi‘l <oy where y = (y1,...,y,) € R® and
A= (A1, An) € ZL,. Then we have

1 A BN F(I%A)Il-%—n
5] yrdp = § 2Phr(EEE)
Sn—l O

AeS =220 (mod ),
i=1\2 /)
otherwise,

where [A1 = A1+ -+ A\, for A € ZX,.

We denote by P(R™) the space of all polynomials with real coefficients on R",
and by P;(R™) the subspace of all polynomials of degree at most ¢. We also de-
note by Hom;(R™) or Harm;(R"), the subspace of P;(R™) consisting of homogeneous
polynomials or harmonic homogeneous polynomials (sometimes called h-harmonics)
respectively. In summary,

A An
Pi(R™) = { E Capy A T T [ exy o, € R},
(A1, n)EZY,
A1+t A <t

A An
Homy(R") = { E CoairAn T TR | Cap o, € R}v

(Ao hn ) €22,
At A=t

Harm, (R") = {f € Homy(R") | Y 5/ = o}.
=1 ?

It is then obvious that It is not entirely obvious but shown P,(R") = @!_, Hom,(R").
We use the notation P(A) for the restriction of P(R™) to A C R"™, and similarly for
P(A), Hom(A) and Harm,(A).

The following proposition is classical in spherical harmonics (see, e.g., [9, 15]),
which is a basic tool in the study of spherical designs (see, e.g., [3, 7]), and is related
to the dimension formula for a special subspace of P(S"~!) (see Proposition 2.14).
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PROPOSITION 2.1 (cf. 7, 15]). It holds that
(2) P(S™ 1) = @ Harm,(S" ).

i>0
Moreover (2) is the orthogonal direct sum with respect to the inner product ($,) =
ﬁ fSn—l Ppdp.

2.2. SPHERICAL DESIGN, HILBERT IDENTITY, SIMPLICIAL DESIGN. Delsarte et al. [7]
introduces the notion of spherical design.

DEFINITION 2.2 (Spherical cubature and design). Let X be a finite subset of S"~1,
with a weight function w : X — Rsq. An integration formula of type

©) |Sn= 1|/ Fy)dp = Z w(x) f(x) for every f € Py(S"™1)

zeX

is called a cubature of degree t on S"~'. The pair (X,w) is called an (equi-weighted)
spherical t-design if w(z) takes the constant 1/|X|, and a weighted spherical t-design
otherwise.

We shall look at some examples.

EXAMPLE 2.3 (cf. [3, 7]). For any positive integer k, let X be the vertex set of a
regular (4k)-gon inscribed in S'. An equi-weighted formula of type

4k—1

2+1 . (2i+ )7
ISl/fyl’yzd”4ka( i 81n<’4k))

is a cubature of degree 4k — 1 on S!.

EXAMPLE 2.4. An equi—weighted formula of type
1
(4) =] / Flyr 2, ys)dp = & > f@)
2€(1,0,0)B3

is a cubature of degree 3 on S?. Here 2% denotes the orbit of € R? under the action
of the octahedral group Bs. In the present example, we have

(5) (1,0,0)5 = {(£1,0,0), (0, £1,0), (0,0, %1)}.

This is the vertex set of a regular octahedron in R3, which is a class of the corner
vectors of the group Bs (see Section 2.3 for the detail). An equi-weighted formula of
type

@ /Sz fy1,y2,y3)dp = é Z f(z)

v€(f5, 75,0078

is also a cubature of degree 3 on S2. In this example, we have

(6) (i 1 O)BS - {(ii + L o) (o + L ii) (ii 0 ii)}

\/§7 \/57 \/§7 \/§7 ) ) \/§7 \/§ ) \/57 9 \/i )
which is just the set of the midpoints of the edges of a regular octahedron, again a
class of the corner vectors of Bs.

EXAMPLE 2.5 (Schur’s formula). The following is a cubature of degree 11 on S3:

@/SS f(y17y2ay3,y4)dp:% Z f(.’II)

re(% 5 \F 0)B4
(7)

1 1 1
tg 2 T@rg X fwtg X f.

-'126(170,070)34 Ie(f \/7,0 O) 4 (EE(%)%)%)%)B4
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This point configuration is not equi-weighted.

Formula (7) originally stems from Schur (cf. [8, p.721]), who finds a certain poly-
nomial identity called Hilbert identity and thereby makes a significant contribution to
Waring problem for 10th powers of integers.

DEFINITION 2.6. A polynomial identity of type

N
(XP+-+ X2 = Zci(aile ot 0 X))
i=1
where ¢; € Ry and a;; € R, is called a Hilbert identity. In particular this is called a
rational (Hilbert) identity if ¢; € Qso and a;; € Q.

The following result by Lyubich and Vaserstein [14] directly relates spherical cu-
bature to Hilbert identity. We also refer the reader to [22] for a brief explanation of
the Lyubich-Vaserstein theorem.

THEOREM 2.7 (Lyubich-Vaserstein theorem). Let n,t be positive integers and

C'fht Sn 1| / %tdp

Let x; = (i1,...,Tin) € St and ¢; € Rsg fori = 1,...,N. The following are
equivalent:
(i) The points x; and weights ¢; give a (weighted) spherical design of index 2t on
S*1 namely
1

N
) ), S Wde = > cif(xi) for every f € Homy (S );
=1

N
C"»t(X12 T+ X2 Zcz xz 1 X+ + $i,an)2t~
=1

EXAMPLE 2.8 (Schur’s identity). By Theorem 2.7, the spherical cubature (7) is equiv-
alent to the rational Hilbert identity
22680(X7 + X3 + X3 + X7)° = > (2X; £ X; + X;)"

(8) 48
+9) C(2X)10 + 180 ) (X £ X; 10+9Z (X1 + X + X3+ X,)',
4 12

where each summation is taken among all combinations of sign changes and permu-
tations of X1, X5, X3, X4.

A spherical cubature is closely connected to a simplicial cubature. We consider the
standard orthogonal simplex in R™, namely

T"={y= (1, yn) ER" |y1 2 0,...,y, 20, [y[r < 1},
where |yl1 =y1 + - + yn. For y € T", we define
1

St (M)

The following result can be found in Xu [27].

Wy, yn) =

Algebraic Combinatorics, Vol. 8 #5 (2025) 1391
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THEOREM 2.9 ([27]). If for every f € P,(T"™1),

/ T Y)W (Wi, Yn—1) dy1 - - dyn—1
T'n,—l

N
= Zcif(zi,h s Tin—1),
i=1

W(yb e 7yn—1) dyl o 'dyn—l

Tn—1
then for every f € Poryq(S™1),
N
1 f(yla o 7yn717yn) dp - Z 2wt Zf :l:\/xl 1yc-+y :l:\/xi-,n*h + V 1- |x’i|1)7
where wt(z;) = [{j | z;; # 0}| fori=1,...,N. Moreover, the converse direction also
holds.

EXAMPLE 2.10 (Example 2.4, revisited). By Theorem 2.9, the formula (4) of degree
3 on S? is equivalent to a simplicial cubature of type

1
sz y1, Y2 dy1dy2

f(yh y2)W (y1, y2)dy1dys
- é (F0,0)+ F(0,1)+ £(0,0)) for every f € Po(T).

We note that the 6 vertices of a regular octahedron (see (5)) is transformed to the
vertex set of the standard orthogonal Simplex T2. Meanwhile, the formula of type

|SQ| / f(y1,y2,y3)dp = 6 Z f(x)
v€(5, 750078
is also a cubature of degree 3 on S?, which is equivalent to a simplicial cubature of
type
1

Sz WY1, y2)dyrdya

f(yl, Y2)W (Y1, y2)dy1dys

1

:g(f( 0) + (0, )+f( )) for every f € P1(T?).

Again, we note that the midpoints of the edges of a regular octahedron (see (6))
is transformed to those of the standard orthogonal simplex T2. Theorem 2.9 pre-
serves geometric information about corner vectors; more details will be available in
Remark 2.21.

2.3. THE CORNER-VECTOR METHOD. A most classical method of constructing spher-
ical designs is the corner-vector method for the symmetry group B, of a regular hy-
peroctahedron in R™. Hereafter we write 2% for the orbit of 2 € R™ under the action
of the hyperoctahedral group B,,.

DEFINITION 2.11. Let eq,. .., e, be the standard basis vectors in R™. Fork=1,...,n,
let vg be a vector of type

k
1
— Z €; € Snil.
vk i=1
The corner vectors (for By ) are the elements of vi™,...,v

Bn

EXAMPLE 2.12 (Example 2.4, revisited). For n = 2, the corner vectors are given by

7= {(£1,0),(0,£1)}, v3? = {(i %i%ﬂ

Algebraic Combinatorics, Vol. 8 #5 (2025) 1392
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which are the vertices and midpoints of edges of a square in R2, respectively. For
n = 3, the corner vectors are given by

vPs = {(£1,0,0), (0, £1,0), (0 0,+1)},
P () (s 5 +50) 0505 5 0) (= )
By 1 1 1
vl —{(1%71%,1%)}.

The first and second sets are the vertices and midpoints of edges of a regular octahe-
dron in R? respectively, and the third is the set of barycenters of faces.

The utility of the corner vector construction is verified from the following more
sophisticated result. Below we denote by P;(A)"» the space consisting of all B,,-
invariant polynomials in P;(A), and similarly for Harm;(A)®Z».

THEOREM 2.13 (Sobolev’s theorem). Let 7" ,... a8 € "', Let w : ", z7" —
Rso be a weight function such that w(z) = w(a') for every x,a’ € xf and 1 =
1,...,m. Then the following are equivalent:

(i) (X,w) is a (weighted) spherical t-design on S"~1;
i)
_ n—1\B,
g [, T = S wf() for cvry £ < P

A great advantage of Theorem 2.13 is the reduction of the computational cost in
order to check the defining property (3) of weighted spherical designs. With Proposi-
tion 2.1 in mind, we have to compute the dimension of Harm;(S"~1)5n.

PROPOSITION 2.14 (cf. Appendix of [19]). The harmonic Molien series y o pi\'
where p; = dim Harm;(S"~1)B»  is given by

i 1
D (=P OB = )

In particular,

i\ =
;p (T A1 —X8) (1 A2n)
LM+ A+ X N0 ifn = 3;
=1+ AH N 4208 N0 4ot ifn =4
T+ A+ A0+ 228 2010 oo ifn > 5.
COROLLARY 2.15. It holds that
dim Harmy(S"~1)B» = dim Harmg(S" 1P =1 forn >3,

. n-1\B, _ | 1 forn=3,
dim Harmg(S" )" = {2 forn >4

. n—1\B, _ J 1 forn =34,
dim Harmi,(S" )" = {2 forn>5

dim Harm2k+1(S”’_1)B”' =0 fork=0,1,...

Let S, be the symmetric group of order n. It is convenient to use the notation
sym(f) for a symmetric polynomial as defined by

9) sym(f) Z F@yy - Tymy)

WES

Algebraic Combinatorics, Vol. 8 #5 (2025) 1393
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where

(Sn)r={rveSul flayay, - 2ym)) = f(z1,...,2n) for all (x1,...,2,) € R"}.

The following lemmas will be utilized for further arguments in the main body of
this paper (see, for example, Lemma 3.5).

LEMMA 2.16 ([19]). We define homogeneous polynomials fa, fe, fs.1, fs2, fr01, f10.2
as

fale) = sym(ad) — 2

180
msym(z%x%x%) fOT n 2 37

15
folw) = sym(e) — —sym(aad) +

sym(zixs) forn >3,

28
foaw) = sym(af) - ——sym(atof) +

n—1
6
fsae) = sym(etad) — ——sym(atuiad)
108
+ msym(m%x%x%xi) forn >4,
42
froa(2) = sym(al’) — ———sym(atad) + ——sym(wiaf)
1008 1260
6
fro2(x) = sym(zizs) — ——sym(afrizs) - sym(z35a3)
n—2 n—2
450
+ msym(zf&c%x%zﬁ)

T =D 3y — 0y mlEinesTie;) Jorn > 5.

Then fa, fo, fs,1, f8,2, fr0,1, fio,2 are By-invariant h-harmonics.

LEMMA 2.17. Let

.f:l(va,s) = (a2 + 3)2f4(Ua,s)a fG(Ua,s) = (a2 + 8)3f6(va,s)
f&l(va,s) = (a2 + S)4f871(va,s)7 ]E&Q('U(Ls) = (a2 + 5)4](872(’[}@,5)
f101(as) = (a® +8)° fr01(Vars),  fr02(Va.s) := (a* + 5)° f10.2(Va.s)-

Algebraic Combinatorics, Vol. 8 #5 (2025) 1394
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It holds that

- -1
Ja(va,s) :a4—|—3—6a2ni1 — SS—I)

form =3,

- e B 4 9 B s 5 S(s—1)
f6(vas) =a®+s—15(a*+a” +s 1)7n_1+90a TR

s(s—1)(s —2)
3ot T T ) >3,
+ = 1)(n—2) forn >3
fsa(v )=a8+s—28(a6—|—a2+s—1)L+70(a4+75_1) i forn >3
e n—1 2 'n—1 ’
; ~1 —1
fs,Q(UaVS):a4+%73(a4+2a2+572)2_2
9 (s—1)(s—2)
5 (4a? ) v 2 4,
+2(a+s 3)(n—2)(n—3) forn
fm,l(va,s)=a10+s—3(15a8—14a6—14a4+15a2+s—1)ﬁ
—1)
126(4a® — 10a* + 307 — 5+ 2)—E D >
+ 126(4a 0a* 4 3a“ — s + )(n—l)(n—2) forn =3,
g -1
fr02(va,s) = a*s +a’s + s(s — 1) — 3(a® + 10a* + 7a® + 65 — 12)8((82))
" —
S 1)(s-2)
75(at + 30> 4 s — 3) S DE=2)
+75(a” + 3a” + s )(n—2)(n—3)
1) (s —2)(s —
_g0(sa2 45— )BT DE=26=8) oo

(n—2)(n—3)(n—4)

Now, a crucial demerit of the corner-vector construction is that it cannot generate
spherical cubature of degree larger than 8, as shown in the following result.

THEOREM 2.18 (Bajnok’s theorem, Proposition 15 in [2]). Let n > 3 be a positive
integer. Assume that |J]~, U,ﬁ" is a By -invariant weighted spherical t-design. Then it

holds that t < 7.

To push up the maximum degree of design, we give a generalization of the notion
of corner vectors.

DEFINITION 2.19. Let eq, ..., e, be the standard basis vectors in R™. Let a be a positive
real number and s =0,...,n — 1. Let

1 S
Vg.s = ———(ae1 + e; esh L.
a,s m( 1 ; z+1)

A generalized corner vector (for By ) is an element of vf’g. In particular when a =1,
v1,s exactly coincides with the corner vector vsy1. Moreover, when a # 1, we refer to
vBn as a proper orbit.

a,s

EXAMPLE 2.20. For n = 2, take generalized corner vectors of type

of? = {(£1,0),(0,£1)}, o2 = {(i %i?) (j: ?i%)}

As already seen in Example 2.3, these are the vertices of a regular dodecagon inscribed
in S', respectively.

The following explains a geometric interpretation of generalized corner vectors.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1395
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REMARK 2.21 (See, for example, Heo-Xu [10]). For n = 3, we consider the map
8?5 T2, (w1, 09,23) = (aF,23).
For a finite subset X of S?, we write 1(X) for {¢(x) | z € X}. Then z/)( D9) is the

vertex set of T2, namely, 1 (v23) = {(0,0), (1,0), (0,1)}. Moreover, 1(v’ 1) is included
in the boundary of T2, namely

w(vﬁﬁ) C{(z1,22) ER? |2o=—21 + 1, 0 < 2y < 1}
U{(z1,x2) € R? |zo =0, 0< z; <1}
U{(z1,22) €R? |21 =0, 0 <y < 1},
Also, w(v(f%) is included in the medians of 72, and more precisely
$(vg3) C{(w1,2) €R? |y =1, 0 <1/2}
U{(z1,22) € R? | g = —2x1 + 1,
U{(z1,20) €R? | 2y = =229 + 1,

1/2}

r1 <
l‘2<1/2}

0<
0<

zb(vfg) coincides with the set of the barycenters of s-dimensional faces of T? (see
Figure 1 below). These observations can also be found in Heo-Xu [10], where the
situation is explained for regular triangles embedded in R3. A more general treatment
of Remark 2.21 will be established in Section 3.

X X2

r

Y \1* Yol

X — X1
0 1 ! 0 1\
FIGURE 1. ¢(v23) (s =0,1,2)
Hereafter we restrict our attention to the case where n > 3. Let s1,...,s; be
integers with 0 < s; < n — 1 for all 4, and let ay,...,ar be positive real numbers.

Then, as a generalization of the corner-vector method, we consider a design of type

(10) L y)dp = ZW Z f(z)  for every f € P,(S"1)

|§n71‘ gn—1

EXAMPLE 2.22. (Example 2.5, revisited). For n = 4, Schur’s formula (8) can be rewrit-
ten in terms of generalized corner vectors as follows:

|S3|/ fy1, 92,93, ya)dp

6402f Zf Zf GOZf

vaz 2 xevl z€v2 z€v4

This can be checked by applying Theorem 2.13 to fi, fs, fs,1, fs,2 and fio,1.
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What is remarkable here is that Schur’s formula has degree 11, contrary to the situ-
ation of Bajnok’s theorem. More generally, Sawa and Xu [21] establishes that the max-
imum degree of a B, -invariant design with only one proper orbit vag can be pushed
up to 11. Then what about designs with two or more proper orbits val Sl,vf;sz, L7
This is the main subject of this paper, although in Section 4, some new results are

established for designs with a single proper orbit vfg

3. A UNIFORM UPPER BOUND FOR THE DEGREE OF OUR DESIGNS

Let n, s; be integers with n > 3 and 0 < s; < n—1, and let a; > 0. In this section we
prove an upper bound for the degree of a Welghted spherical design of type (10). The
presentation in this section is conscious of algebraic and geometric interpretations of
generalized corner vectors.

3.1. UNIFORM BOUND.

THEOREM 3.1. Let n > 4. Suppose that
(11) S 1|/ fy)dp = ZW Z f(z)  for every f € Py(S™1).

Then it holds that t < 15.

REMARK 3.2. As shown by Heo and Xu [10, Theorem 2.1], the maximum degree of
weighted spherical designs on S? of type (11) is upper bounded by 17.

Since designs of type (11) are centrally symmetric, it suffices to take care of even
degrees 2,4, ...,2|t/2]. As a corollary of Theorems 3.1 and 2.7, we obtain the following
result.

COROLLARY 3.3. Suppose that

(12) Cn,r(X12 + -+ X2 Z)\ Z al o(1) + X o(2) R XU(Si+1))2T

i=1 o,+
where the second summation is taken over all permutations o € S, and all sign
changes £. Then it holds that r < 7.

The proof of Theorem 3.1 is substantially divided into three parts. The first part
is an application of the cross-ratio comparison that was first introduced by Nozaki
and Sawa [17, Theorem 6.6]. The remaining two parts involve elementary calculus on
By, -invariant h-harmonics of degree 8 and Xu’s characterization theorem (see Theo-
rem 2.9), respectively.

3.2. PROOF OF THEOREM 3.1. As briefly mentioned in Section 3.1, we need three
preliminary lemmas, each including a key idea that can also be applied in the study
of design of a different type than (11).

LEMMA 3.4. Let n > 4. Suppose that there exists a weighted t-design of type (11) with
s; = 3 for some i. Then it holds that t < 15.

Proof. The proof is based on the cross-ratio comparison for monomials X7 X3 X$ X9,
X2X3X3X§ and XFX3X5X7.

First we compare the ratio of the coefficients of X7 X3X§X$ and X?X3X5XJ on
the both sides of (12). On the left side, we have

BOO-OOO-0--+
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Whereas, on the right side, we have

<126> (164) <§> ZA¢(2a?+2a?+sw3) : (126> <164> (i) ZAZ' (ai+2ai+a$+s,—3)

:22Ai(2af+2a?+si73):SZAi(af+2a?+a?+sif3)

where A; = \;2% ("~%) for i =1,...,k. Then

Si:?)
BZAi(Qa? +2a8 +5; —3) = 52Ai(a? + 2a} +al +s; — 3)

and therefore

(13) > Ai(af —10af +a7) =2 Ai(si - 3).

Next we compare the ratio of the coefficients of X7 X3 X$X$ and X{X3X5X] on
the both sides of (12). On the left side, we have

OO-OOO-0) (-

Whereas on the right side, we have

() St et 0 () () () Bt o5

= 2 Aia? + 20 +af + 5 —3): 5> A;(4al +5; — 3).

Then
53 Ai(dat + 5~ 3) =33 Ai(a? + 20! +af + 5~ 3)

and therefore

(14) ZAi(3a? — 14a} + 3a?) =2 ZAi(Si —3).

3

In summary, by subtracting (14) from (13), we have
0= ZAi(a? —2a} +a?) = ZA,;af(a? —1)2,

which implies a; € {0,1}. This is a contradiction to Bajnok’s theorem (see Theo-
rem 2.18). O

LEMMA 3.5. Let n > 8. Suppose that there exists a weighted t-design of type (11) with
s; €{0,1,2} for alli. Then it holds that t < 7.

Proof. By combining (11) with Lemma 2.17 for fgyl, we have

0:Zm(a%siw(%agﬂﬂoa;ﬂf4a3+sﬁ1> $i1)7
: p—

where W; = Wz‘\”fi%J >0.Fori=1,...,k, let

s
Ag, s = a5+ 8; + T(—4a8 +10a} — 4a? + 5; — 1)n_l T
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Since W; > 0 for every i, there exists j such that Aqa;s; < 0. Clearly s; # 0. It thus
follows from elementary calculus that

28a$ — 70a] + 28a3

<4 if s; =1;
< a+1
" 5648 —140a +56a2 — 14
aj+2

0

LEMMA 3.6. Let n > 3. Suppose that there exists a weighted t-design of type (11) with
si <n—2 for all i. Then it holds that t < 2n — 1.

Proof. Let n > 3, and suppose that there exists a weighted (2n + 1)-design of type
(11) with s; <n —2 for all . As in Remark 2.21, we consider the map

ST L (T, X1, X)) = (x%, .. 79ci71).

Then by Theorem 2.9, the set

oo ot e (ot

is a weighted simplicial design of type

S ef(a) = | SOW - dy

seS fT" ! dyl
for every f € P, (T" ).

Let x = (x1,...,2p) € Uz LB, Since s; < n— 2 for all i, there exists at least
one nonzero coordlnate of z. If x,, = 0, then ¥(z) is included in the affine hyperplane
mo w1+ +ax, =1 If x; =0 where i = 1,...,n — 1, then ¢ (z) is included in the
hyperplane 7; : x; = 0. Then the polynomial

oo = (T2) (- 320)

j=1

has degree n, which vanishes at the boundary of 77! but takes positive values at
the interior of 77~ !. Hence it follows that

; /
f(y)W(y)dy e 'dyn— = § Csf(zs) =0,
an 1 dyl dyn—l Tn—1 ! ! scs
which is a contradiction. O

We are now in a position to complete the proof of Theorem 3.1

Proof of Theorem 3.1. The result is proved by Lemma 3.4 for s; > 3 for some 4, and
by Lemmas 3.5, 3.6 for s; < 3 for all i. (see Table 1) O

4. DESIGNS WITH A SINGLE PROPER ORBIT

Throughout this section we assume n > 3 and consider a design of type

(15) % fy)dp = vé’?| Z f(x)  for every f € Pt(Snfl).

ISP Jgn—a
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TABLE 1. Upper bound for the maximum degree t,, of weighted de-
signs on S"~! with generalized corner vectors

n 4 5 6 7 8 9
——
Ji (si =2 3) th<15 t,<15 t,<15 t,<15 t,<15 t,<15
Lemma 3.4
Vi (S, = 07 1,2)
- - - < <

Lemma 35 tn\ 7 tn\ 7
VZ (Si = O, 1,2)
Lemma 3.6 tn<T7  tn<9 tn<1l £,<13 ¢, <15 t, <17

PROPOSITION 4.1. Let n > 3. A T-design of type (15) exists if and only if,

o2 3s+£+/(2+n)s(1—n+3s)

(16) el ,
hi(n,s) =n>+ (2 —=9s)n + (=7 — 95 + 125*)n + 65° 4 185 + 4
(17) +(n? = 3(=2+s)n —3s —7)/(2+n)s(1 —n + 3s) = 0.

Proof. By Theorem 2.13, Corollary 2.15 and Lemma 2.17, a 7-design of type (15)
exists if and only if f4(va,s) = fs (Va,s) = 0.

Solving fi(va,s) = 0 for a, we obtain (16). Substituting (16) into fs(va.s) = 0, we
also obtain (17). O

REMARK 4.2. When s =0 in (17), we have
0=n*+2n>—Tn+4=(n-1)7>%*(n+4),
whose roots are 1 and —4, contradicting the assumption that n > 3.

REMARK 4.3. Let n > 3. If a weighted 7-design of type (15) exists, then n? — 3(—2 +
s)n—3s—7 = 0 or (2+n)s(1—n+3s) is a square number. But n?—3(—2+s)n—3s—7=0
does not hold. Suppose contrary. Since n and s are integers, the discriminant of
n? —3(—2+ s)n — 3s — 7 = 0 is a square, that is, there exists an integer m such that

(18) 9s? — 245 + 64 = m?.

Then, the solutions of (18) are (s,m) = (0, £8), (1, £7), (5, £13), for which n?—3(—2+
s)n — 3s — 7 = 0 has no integer solutions.

THEOREM 4.4. There exist only finitely many pairs (n,s) that satisfy the condition
(17).
Proof. Substituting n = z, s = y into (17), we have
hy(z,y)h_(2,y) = {n® + (2 — 9s)n® + (=7 — 95 + 125%)n + 65> + 18s + 4}?
—{n? =3(—2+s)n—35—7)\/(n+2)s(1 —n + 3s)}>
= (-1+2)*(1+y){z* + (6 — 9y)z* + (27y* — 30y + 1)z°
— (27y® — 54y? — 9y + 24)z — 18y — 36y> + 30y + 16} = 0.

By noting x > 3 and y > 0, we obtain
fx,y) == a* + (6 — 9y)a® + (27y? — 30y + 1)2® — (27y> — 54y® — 9y + 24)x

19
(19) —18y® — 36y + 30y + 16 = 0.
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Suppose fy(x,y) = 0. Since

fy(z,y) = —92° 4 62%(9y — 5) + (—81y* + 108y + 9) — 54y — 72y + 30
= —3(z — 3y + 1)(32% — 9zy + Tz — 6y — 10),

we have

r+1 —10 + 72 + 322 2
20 _ e R B
(20) L T 5213 T3

Substituting (20) into
fo(z,y) = 42> — 922 (3y — 2) + 2(54y* — 60y + 2) — 27y> + 54y* + 9y — 24 = 0,

we obtain (x,y) = (2,1) or (1,0). Since f(2,1) = 0 and f(1,0) = 0, these are the only
singular points of the curve C' defined by (19). It is not entirely obvious but shown
that (2,1) or (1,0) are ordinary multiple points of multiplicity 2, and therefore C has
genus one. By Siegel’s theorem [23], there exist finitely many pairs (n,s) for which
(17) holds. O

REMARK 4.5. By using Mathematica, we find that a weighted 7-design of type (15)
exists if (n,a, s) = (16,2,8), (23,2,11).

In Section 7, we characterize vf & and fuf 3 in terms of shells of integral lattices.
Contrary to the situation of 7-designs, there do not exist 9-designs, as shown in
the following result.

PROPOSITION 4.6. Let n > 3. A weighted 9-design of type (15) does not exist.

exists, then by Theorem 2.13, Corollary 2.15 and Lemma 2.17, we have f4(vqs) =
f6(va,s) = fs.1(va,s) = 0. By computing a Groebner basis for the ideal (f4, f6, fs.1)
we have

Proof. By Remark 4.2, we may assume s > 1. If a weighted 9-design of type (15)

—277504 — 32752n — 1412n% — 200n> + 3n* = 0.

However this equation has no integer solutions. O

5. DESIGNS WITH TWO PROPER ORBITS

Throughout this section we assume that n > 3. Let aj,a2 > 0, and let s1,s5 be
integers with 0 < s; < n — 1. We consider a weighted design of type

(21)

1

S| fy)dp =W Z f(x) +Ws Z f(x)  for every f € Py(S"1).

‘ | snt xEvf{ﬁsl xEvaTﬁsz

Let

G4,6(a17 ag, S, 82) = f4(va1,sl>f6(va2752) - fG(Ua17S1)f4(Ua2,82)7
Gug,i(ar,a2,51,52) = fa(Vay,s)f8,i(Vas,ss) — f8,i(Vay,s1) fa(Vay,s,), 1 =1,2,
Ge,8.i(a1,a2,51,52) = f6(Vay,s1)f8.i(Vas,ss) — f3.6(Vay s1) f6(Vay,sp), ©=1,2,
G8,1,8,2(a17 a2, 51, 82) = fs,l(val,sl)fs,z(an,SQ) - f8,2(va1,51)f8,1(1]0.2,52)'

REMARK 5.1. By substituting a1 = as = 1, s = k1 — 1 and s = ko — 1 into
Ga6(a1,az,s1,s2), it can be confirmed that this function coincides, up to a constant
multiple, with the function G(k1, k2) defined in Bajnok [2, p.390].
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5.1. CHARACTERIZATION OF 7-DESIGNS. In this subsection, we show a characteriza-
tion theorem for 7-designs with two orbits.

PROPOSITION 5.2. Let n > 3. A weighted 7-design of type (21) exists if and only if
one of the following cases (i)-(iii) holds:

(i)

fa(Vay,50) f1(Vay.s,) <0, Gaglar,as,s1,s2) =0;

f4(va1,sl) - f4(va2,52) =0 3 fG(Ual,sl)fG(vag,sz) < 0;
(i)

(22) f4(va1,81) = f4(va2,52) = fﬁ(val,(‘n) = f6(vﬂ2752) = 0.
Proof. We solve the following system of liner equations
1 1 = 1
W
(29 filvmn) fltne.) | [112] = 0]
fﬁ(val,sl) fﬁ(va2,82) 0

where W; = Wi|”£?si| >0, (i = 1,2). We divide the situation into three cases: (a)
f4(val,81) 7é f4(va2,52)7 (b) f4(v0«1,81) = f4(va2,82)7 fﬁ(val,sl) 7é fG(va2’52) and (C)
f4(va1,81) = f4(Ua2,52>7 f6(va1,51) = fﬁ(va2,82>'

We first consider Case (a). Applying the row reduction in the standard linear
algebra to the augmented coefficient matrix in (23), we have

1 1 1 1 1 1
f4(’U0«1’51) f4(va2,82) 0 — |0 f4(Ua2,52> - 4(Ua1,51) _f4(va1,81)
f6(’U¢11751) f6(71a2,52) 0 0 fﬁ(vaz,sz) G(Ualasl) _fG(Uth,Sl)

fa(

Vag,sn)
10 f4(va2 32) 2f42('0a1 51)
| p— T

f4(va2,52)7f4(’0a ,sl)
00 Ga6(ai,a2,51,52

f4(7)a2,82)_f4(“a1‘81)

Thus in this case, a weighted 7-design of type (21) exists if and only if
f4(va1781) 7é f4(va2,32)7

f4(va ,s )
f4(”a2,52)_2f42(va$,81) > 07
_f4(1}a2,52)_f4(va1,51) > 07

4(Vay s
Gye(ar,az,s1,52) =0.

This is equivalent to

(24) {f4(va1,s1)f4(va2,52) < O,

Gye(ar,az,51,52) = 0.

Next we consider Case (b). Applying the row reduction arguments again, the aug-
mented coefficient matrix can be reduced to

fG('Ua ,8 )
10 fﬁ(”az,SQ)jfff(val,sl)
01 — fG(Ual,sl)
fﬁ(“a2,52)7f6('”a1,51)
00 _f4(va1781)
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Thus in this case, a weighted 7-design of type (21) exists if and only if

f4(va1781) = f4(vaz,32) = 07

fG(UaQ,SQ) 7é f6(va1151)7
f6(Vay,s0)
fﬁ(”a2’52)72f62(”a ,51) >0
_ 6 Ual,sls
fG('Uaz,SQ)*fﬁ(val,sl)

> 0.

This is equivalent to

f4(va1,sl) = f4(va2752) = 01
(25) {fé"(vahsl)fﬁ(vaz,sz) <O0.

Finally, we consider Case (c). Applying the same arguments again, the augmented
coefficient matrix can be reduced to

11 1

00 _f4(va1781)
00 *fG(Ualm)

Thus, in Case (c), a weighted 7-design of type (21) exists if and only if

(26) f4('Ua1751) = f4(va2,82) = fﬁ(val,sl) = fG(UGmSz) =0.
By summarizing (24)-(26), we obtain all the desired conditions. O

THEOREM 5.3. Let n > 3. Case (iit) of Proposition 5.2 does not occur if s1 # sa.
We prove Theorem 5.3 in Section 5.3.
REMARK 5.4. We list W, Wa of Cases (i), (ii) listed in Table 2

TABLE 2. Weights of 7-design

Wl W2
i J1(Vag s5) Fi(Vay 51)
Case (i) f4(va2,52)jf42(va1’51) _f4(va2,52),1f41(va1_’51)
Case (i) Fo(Vaz.s5) _ fo(vay51)

f6(Vag,so)—f6(vay.s) f6(Vay,sp)—Ff6(Vay,s;)

5.2. CHARACTERIZATION OF 9-DESIGNS. We start with a characterization theorem
for 9-designs with two orbits.

PROPOSITION 5.5. Let n > 3. A weighted 9-design of type (21) exists if and only if
one of the following cases (i)-(v) holds:

(i)
f4(va1’51)f4(va2,82) < 07
Gue(ar,a2,51,52) = Gagi(ar,as,s1,52) = Gagalai,az,si,s2) =0.
(i)
f4('Ua1,sl) = f4(Ua2,52) =0, fG(Ual,m)fG(vag,SQ) <0,
Ge s,1(a1,a2,51,52) = Ggg2(a1,az,s1,s2) =0.
(i)
f4(va1,51) = f4(va2752) = f6(va1,51) = fG(UaQ,SQ) = 07

f8,1(Vay s1) f3,1(Vay,s,) <0, Gs1,82(a1,a2,s1,s2) =0.
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(iv)
f4(v¢11751) = f4(va2132) = fﬁ(val,sl) = fﬁ(va2ys2) = fS,l(Ualysl) = f8,1(va2,52) =0,
f8,2(va1,81)f8,2(va2,52) < 0.
v)
f4<va1751) = f4('Ua2,52) = fﬁ(vaLSl) = fﬁ(va2,82) =0,
f8,1(Vay,51) = f8,1(Vas,s5) = f5,2(Vay,s1) = f5,2(Vas,s5) = 0.

REMARK 5.6. When n = 3, we may ignore all conditions involving fs . For example,
both Case (iv) and Case (v) can be reduced to

f4(va1,sl) = f4(Ua2,52) = fG(val,sl) = f6(va2,52) =0, f8,1(va1,51) = fS,l(Uag,SZ) =0.
THEOREM 5.7. Cases (i), (i) and (v) of Proposition 5.5 do not occur.

We prove Theorem 5.7 in Section 5.3, where a proof of Proposition 5.5 is given in
the Appendix.

We close this subsection by discussing weighted 9-designs of type (vfﬁsl U
vf;ﬁs . {W1,W5}). Such 9-designs can be classified by two examples listed in Table 3,
where numerical parameters are considered with six significant digits. (Throughout
this paper, numerical results are treated with the same level of precision.) What is
remarkable here is that all these examples belong to Case (ii), which implies that

Case (i) may not occur even for n > 4.

TABLE 3. Parameters of weighted 9-design

S1 89 ai as Wi Wo
1 2 0.396751 0.470350 0.0220088 0.0196579
2 2 0.380041 3.89103 0.0193973 0.0222694

The orbit vf: $ can be understood as the vertices of a convex polyhedron obtained
by uniformly removing the 6 square pyramid parts from a regular octahedron, or by
uniformly truncating the 6 vertices of a regular octahedron in such a way that each
edge of the octahedron is divided into the ratio a : 1 —a : a if 0 < a < 1, and
1:a—1:11if1 < a. The values of a1, az, and W7, appearing in Case 1 (see Figure 2),
satisfy the equations

17 — 924, 4 7T8A3 — 44A3 + 543 = 0,
24 — 167TA; +24A2 + 57A1 Ay — 394142 + 54, A3 = 0,
—845 — 522 A5 + 36942 — 40A3 4 1785W; = 0,

where A; = a? and Ay = a3.

The orbit vfé can be characterized in terms of vertex-truncation and edge-
truncation. When 0 < a < 1, the orbit vf % can be obtained by uniformly removing
the 8 rectangular triangular pyramids from a cube in such a way that each edge of
the cube is divided into the ratio 1 —a : 2a : 1 —a. If 1 < a, the orbit Ufé can be
obtained by uniformly cutting off the 8 right-angle isosceles prisms including the
edges of a cube in such a way that each edge of the cube is divided into the ratio
a—1:2:a—1. The values of a1, as, and Wi, appearing in Case 2 (see Figure 3),
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FIGURE 2. v, (left), v2®,(middle), v2® | U vl (right)

ai,l

satisfy the equations
—19+ 11642 + 6643 — 2043 + A3 =0,
—175 + 124; — 47A + 1943 — A3 =0,
—3956 + 229145 — 349A% + 13A3 + 7770W; = 0,

where A} = a? and Ay = a3.

FIGURE 3. vfl"b(left), vi":Q(middle), vBs, U vifg(right)

ai,2

Note that all 24-point configurations consisting of each single proper orbit are
3-designs.

5.3. PROOFS OF THEOREMS 5.3 AND 5.7.

Proof of Theorem 5.3. Suppose that s; # so. By the similar argument that used in
Proposition 4.1, it holds that

h(n,s;) =n>+ (2 —9s;)n? + (1257 — 9s; — T)n + 657 + 18s; + 4
+(n® —3(s; —2) —3s; — )/ (n+2)s;(1 —n+3s;) =0, i=12.
Since (n?® + (2 — 9s;)n? + (1257 — 9s; — T)n + 657 + 18s; +4)2 = ((n3 — 3(s; — 2) —
3s;i — 7)v/(n+2)s;(1 — n+ 3s;))? for each i, by noting n > 3 and s; > 0, we obtain
0=n"+ (6 — 9s;)n® + (1 — 30s; + 27s7)n? — (24 — 9s; — 54s? + 27s3)n
—18s? — 3657 +30s; +16, i=1,2.
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By subtracting them and then dividing it by 3(s2 — s1), we obtain the Diophantine
equation

0 =3n%+ (10 — 957 — 9s2)n? — 3(1 + 651 + 652 — 35° — 35152 — 352)n

(27) ) 5
—10 4 1257 4 1255 4 657 + 65152 + 655.

By using Mathematica, the positive integer solutions of (27) are (n, s1, s2) = (8,3,3),
(5,2,2), (2,1,1), each of which does not satisfy the restriction s; # $s. O

Next we prove Theorem 5.7 by focusing on Cases (iii), (iv), and (v) of Proposi-
tion 5.5.

We first consider the case where s; # s. In this case, Theorem 5.3 implies the
nonexistence of a weighted 9-design. Thus, our interest goes to the case where s; = ss.

To prove Theorem 5.7, we prepare the following two lemmas.

LEMMA 5.8. Let n > 3, a1 # az and s1 = s2 (say s). Suppose f1(va, s) = f1(Vay.s) =
fG(U(ll,S) = fﬁ(va27s) = 0. Then

5n2 + 15n — 20 5n2 + 15n — 20
_—  <s—m
12n+6 In + 12

Proof. Suppose (22) with a1 # as and s = $1 = s9. Since f4(val,8) — f4(Vgy.s) = 0, we
have

6s

—1

28 T+a3=
(28) ap T az =~

Since fo(va, s) — fo6(Vay.s) = 0, we have
(29) (af+a2a3+a3)(—2+n)(—1+n)—60s—15(a?+a3)(—2+n)s—15ns+90s* = 0.
Substituting (28) into (29), we have

35{20 — 5n? + 65 + 3n(—5 + 4s)}

(30) alal = 211 )

Since a?a3 > 0, we obtain

5n? + 15n — 20
31 —_— <n-—1
(51 2n+6 o S"
Meanwhile, solving for a? and a3 from (28) and (30), we know that a? (or a3) is equal

to

3s n V3(=2+n)s{5(=1+n)(4+n) — 3(4+ 3n)s}
n—1 (=2+n)(=1+n) '

Since a? and a2 are positive reals, by noting 0 < s < n — 1, we have

s(5n® +n(15—9s) —4(5+3s)) >0 and 0<s<n-—1

Then we obtain

5n? + 15n — 20
32 0gsg o on—2
(32) ? on + 12
Thus, by combining (31) and (32), we obtain the desired result. O

LEMMA 5.9. Assume a1 # as. Then the following hold:

(i) Ifn > 4 and f4(va17s) = f4(va275) = fsxl(valys) = fS,l(UCLZ:S) = f872(’Ua17s) =
fS,Q(Uaz,s) = O, then
n =6s — 3.
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(11) Ifn =3 and f4(va1,s) = f4(va2,s) = f8,1(va1,s) = f8,1(va2,s) = 0’ then

3 ) +1 5
(33) a; =1\ $2f, agz%f, s=1.

Proof. Suppose n > 4. By recalling (28), f4(val,s) — f4(va2’s) = 0 and f&i(vahs) _
f8,i(Vay s) =0 (i = 1,2), we have

gi(a1,as,8) = —(a? +a) + (a? + a2)n — 65 = 0,
galay,ag,s) = —al — atal — aa3 — a$ + aSn + atain
+a2ayn + aSn — 28s + 70a?s — 28a}s + T0a2s — 28atass — 28a3s = 0,
g3(ay,az,s) = —18 + 3a? + 3a3 — 6n + 2a%n + 2a3n — ain?
—a3n? + 365 — 9a3s — 9a3s + 6ns + 3ains + 3ains — 18s% = 0.
By computing a Groebner basis G for the ideal (g1, g2, g3), we can check that
(34)
{B34+n—65)(—=1+n—s5), (5—4ay+a2)(5+4ay +a2)(-1+n)(3+n—6s)} CG
Thus it holds that
n e {6s—3,s+1}.
By substituting n = s 4+ 1 into (34), we have
(5 — 4ay + a3)(5 + 4ay + a3)(4 — 5s)s = 0.
This equation holds true only when s = 0, but this is a contradiction. Thus we obtain
n =6s — 3.
Next, suppose n = 3. By computing a Groebner basis H for the ideal (g1, g2), we
have
hi(a1,az,s) = s(14 + 8a;3 — 1055 — 24a3s + 99s%) = 0,
ho(ay,az,s) = a® + a3 — 3s = 0.

We solve 14 + 8aj — 1055 — 24a3s + 99s% = 0. This equation holds only when

o35 V—14 41055 — 8152 35 — /721 B V721
27 2 22 ’ 54 54

Therefore, we obtain s = 1 and

3FV5 . _E1+V5
S a =

We are ready to prove Theorem 5.7.

Proof of Theorem 5.7. Let n > 3, and suppose that there exists a weighted 9-design
of type (21). By Theorem 5.3 we may consider the case where s; = so (say s).
First, we consider Case (iii). Then

f1(Vay s) = fa(Vag,s) = f6(Vay,s) = f6(Vay,s) =0,
f&l(val,s)f&l(vag,s) < 0.
Then by Lemma 5.8, we have

5n% 4+ 15n — 20 5n2 + 15n — 20
R Bt
12n+6 9n + 12

(35)

(36)
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By using Mathematica, we find that n satisfying (35) and (36) is upper bounded by
691. However, for n < 691, we can also confirm that there exists no integer s such
that

f4(va1,s) - fG(Uag,s) = GS 1 82(a17a278 S) =0

Next, we consider Cases (iv) and (v). Let n > 4. By Theorem 2.18 we may assume
that s > 0. By combining (28), (29) and Lemma 5.9, we obtain

9 o 3s(—5 — 15s + 27s?)
asa; = —
(=24 3s8)2(—=5 + 6s)
which is a contradiction. Let n = 3. Substituting a;, as, s as in (33) into (29), we have

(a}+aia3+a3)(—2+n)(—14+n)—60s—15(af+a3)(—2+n)s—15ns+90s* = —44 # 0,

<0,

which is again a contradiction. (Il

6. DESIGNS WITH MORE THAN TWO PROPER ORBITS ON S?

In Theorem 3.1, we have obtained a uniform bound for the existence of designs of
type (1), namely we have shown that if n > 4, and if there exists a t-design on S*~!
of type (1), then ¢ < 15.

Schur’s formula (7) on S* has degree 11. Sawa and Xu [21] discusses a higher-
dimensional extension of Schur’s design, and discovers many examples of weighted
11-designs in dimensions 3 through 23. Note that all these designs contain only one
proper orbit. Sawa and Xu [21] moreover establishes that designs of type (1) with
only one proper orbit have degree at most 11.

Then what about designs with at least two proper orbits? The following is a
weighted 11-design on S? with 3 proper orbits:

hd ( a12UUa23UU {W17W2aW3})a

as,3?

a1 = 0470499, a9 =1.17310, a3 = 3.78381,
W1 = 0.00522948, W, =0.00192016, W5 = 0.00586062.
We could not have found 11-designs, and even 9-designs with 2 proper orbits.

The use of more than 3 proper orbits enables us to obtain 13-designs. Indeed, the
following two are weighted 13-designs on S® with 5 orbits:

. (013U%21U%32U%43 a537{W17W2=W37W47W’})

as = 0.444883, a3 = 0.509692, ay = 9.68607, a5 = 2.53788,
Wi = 0.00475002, W, = 0.00407904, W5 = 0.00435065,
W, = 0.000536920, Ws = 0.00431532.

o (’UloUUB4 U’UB4 U’Ua42U1)a 3,{W1,W2,W3,W4,W5})

as,2

az = 0.597599, a3z = 0.521840, a4 = 3.07756, a5 = 1.85216,
W1 =0.00262253, W, = 0.00244207, W3 = 0.00370960,
Wy = 0.00256322, W5 = 0.00405640.
At this point we could not have succeeded in finding a 15-design on S? with more
than 5 proper orbits, though there actually exist 15-designs with negative weights W;

(see for example Keast [12]). The following is a challenging open question, which is
left for future work.

PROBLEM 6.1. Does there exist a weighted 15-design on S of type (1) with more than
5 proper orbits?
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The situation is quite different in dimensions 3 and 4. Indeed, we obtain weighted
9-designs with two proper orbits, as already seen in Section 5.2 (Table 3). As in the
four-dimensional case, one can obtain weighted 11-designs on S? with 3 proper orbits,
e.g.

. (Uﬁ‘o”l U UaB;”l U vPs {Wl, W, W3}),

as,2’

a1 = 1.51610, ao = 4.44671, a3 = 1.79726,
W1 =0.0147251, W, = 0.00936568, Ws3 = 0.0175759.

A remarkable gap between the three and four dimensional cases is that there exists
a weighted 17-design on S? of type (1). Indeed, the following example with 6 proper
orbits can be found in Table 2.1 of Heo-Xu [10, p.275]:

o (vP3UvP3 Ul U, Ul Unls, (W, Wa, Wa, Wy, W5, We}),

as,1 a4,2 as,2 ag,2’

az = 0.544741, a4 = 5.21363, a5 = 2.0945, ag = 0.312791,
W, = 0.00382827, W, = 0.00979374, Ws = 0.009695,
W, = 0.00821174, W5 = 0.00959547, Wy = 0.00994281.

7. CONCLUSION AND FURTHER REMARKS

In this paper we have explored a full generalization of the classical corner-vector
method for constructing weighted spherical designs, and have extensively studied the
existence of designs of type (1). We have first established a uniform upper bound for
the degree of such designs (Theorem 3.1). Our proof is a hybrid argument combining
the cross-ratio comparison technique for Hilbert identity and Xu’s theorem on the
interrelation between spherical designs and simplicial designs, which appears to be
useful in the study of designs of a different type than (1). Moreover, we have made a
detailed observation about the existence of 7-designs with one proper orbit, 9-designs
with two proper orbits, and 11- and 13-designs with more than two proper orbits.

In the rest of this paper we explore the connections between integral lattices and
some of our designs. Since the pioneering paper by Venkov [25], there have been
numerous publications on the construction that derives spherical designs from shells
of integral lattices. Such lattice-based constructions are also significant for coding
theorists as a spherical analogue of the Assmus-Mattson theorem that directly relates
blocks designs to linear codes. For a brief introduction to the connections among
designs, codes and lattices, we refer the reader to Bannai and Bannai [3].

We shall make a brief explanation of the lattice-based construction, together
with examples for Dy-root lattice. The Dy-root lattice, its dual lattice D} and
v/2-normalization D} are defined by

Dy = {(z1,22,23,24) € 74 |21 + 22+ 23 +24 =0 (mod 2)},
4

Di = {(y1,y2,y3,94) ER* | Y iy € Z, (w1, 22, 3,24) € Da},
i=1

Dy =V2Dj.

Given a set E of R%, the shell of (square) norm m, say E,,, is defined to be the inter-
section of E and the concentric sphere S3, of radius m. We also use this terminology
for the n-dimensional case.

EXAMPLE 7.1. Let E = Dy U D). Then the first two shells for Dy are given by
(D4)2 = (1717070)B47 (D4)6 = (27171a0)B47
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which can be represented in terms of generalized corner vectors as (v/2v; )P4 and
(v/6v2,2) P4, respectively. Similarly, the first two shells of D are given as

\}i’ \2’ \g’ \}5)34 = (V2u1,0)%* U (vV201,3)",
N Ba 3 1 1 1
(Dy)e = (\/57 V2,V/2, 0)~* U (—\/57—\/57—\@,—\/5

The following theorem is proved in de la Harpe et al. [6].

(Dﬁl)Q = (ﬂa07070)34 U (

)P = (V6u1,2)"* U (V6us 3)7.

THEOREM 7.2 (Theorem Dy, [6]). With the notation given above, the following holds:

(i) Any shell Ea,, is an (equi-weighted) spherical 7-design.
(ii) The union of %Eg and %EG is a weighted spherical 11-design.

REMARK 7.3. Theorem 7.2 (i) is a corollary of Bajnok’s theorem (Theorem 2.18), and
Theorem 7.2 (ii) is just Schur’s formula described in Example 2.5.

We now clarify the connection between our 7-design vf &° (see Remark 4.5) and a
certain integral lattice called the Barnes-Wall lattice in R'S. The Barnes-Wall lattice
in R? is the standard Z>2-lattice, and the Barnes-Wall lattice in R? is just the Ds-root
lattice. In general the Barnes-Wall lattice in R2" can be realized as the rational part
of the lattice M, where M; is the set of all Z[v/2]-integer combinations of (v/2,0)
and (1,1) (see [16, Theorem 2.1] for the details). In particular the lattice in RS is
generated by the rows of the matrix

[4000000000000000]
4400000000000000
4040000000000000
2222000000000000
4000400000000000
2200220000000000
2020202000000000
2222222200000000
4000000040000000
2200000022000000
2020000020200000
2222000022220000
2000200020002000
2200220022002200
2020202020202020

(111111111111 11171]

THEOREM 7.4. The 7-design (8\/§v278)316 is a subset of some shell of the Barnes- Wall
lattice in RS,

Proof. We note that 4eq,...,4e15, where eq,...,e16 are the standard basis vec-

tors, are all integer combinations of the rows of the generator matrix X. The

orbit (8v/3v25)P16 = (8,4,...,4,0,...,0)51% is thus included in some shell of the
——

8 times

lattice. O

Next we come to the connection between our 7-design vf 33 (see Remark 4.5) and
a certain integral lattice in R?3. The Leech lattice Aoy is an even unimodular lattice,
which often appears to be the densest sphere packing in R?*. As briefly explained
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in [5, Chapter 24|, the lattice Ag4 has an explicit expression as
1 24
Aoy = {%(26—}— 4z) | ¢ € Goy (mod 2), x € Z** with Zml =0 (mod 2)}
i=1
1 24
U{ﬁ(l +2c+4x) | c € Gyy (mod 2), x € Z** with le =0 (mod 2)}
=1
where 1 is the 24-dimensional all-one vector and G4 is the set of all 24-dimensional
vectors, considered as vectors in R?4, of the extended Golay codes over Fy; see, for
example, van Lint and Wilson [24, § 20] for the definition of the (extended) Golay code
over Fy. The minimal shell consists of 1104 points of type (£42,022), 97152 points of
type (£28,016), 98304 points of type (F3%, £123), and totally 196560 points.

The shorter Leech lattice, O3, is the unique odd (up to isometry) unimodular
lattice with minimal norm 3 in R?3 [5, Chapter 19]. Given a minimal vector v € Agy
of norm 4, the lattice O23 can also be identified as the orthogonal projection of the
set of points in Ay that have an even inner product with v onto

24
vt = {u e R* | Zuz’vi =0}
i=1
see for example [5, p.179].
Consider a hyperplane H given by
H:={(z1,...,723,0) € R* | zy,..., 293 € R}.

Then, a linear transformation T : H — R2? is defined as follows:

(37)
T1 Ty T2 — X3 T2+ T3 Tog — T3 T2 + To3 24
T((z1,...,223,0)) i = | —=, —, , sy , € R,
(om0 = (55, 75, 22 2 AR )
Since it can be easily verified that T preserves inner products, it follows that T is an
orthogonal transformation.

THEOREM 7.5. With the orthogonal transformation Y, the point set {Y((y,0)) | y €
(4v/15v411) P22} is a subset of some shell of the shorter Leech lattice Oas.

Proof. For v = %(4, —4,0,...,0) € Ayy with ||[v]|? = 4, we set

vh={z = (21,...,%24) € Aoy | 71 — 22 = 0}.
The orthogonal projection onto v* is defined by

t t1 —1
WUL(t)I:t—<7’U2>’U:t— L2
[[vll V8
for t = (t1,...,t24) € R?. By the definition of the shorter Leech lattice O3, we have
023 = {7T,UJ_ (iIZ) | T € A24, <£B,’U> S QZ}

D{myi(x) | = (21,...,224) € Aoy, T3 = 22}

= {($1,m1,x3, s 71'24) € A24} .

Our goal is to show that the point set {(y,0) | y € (4v/15v2,11)52*} C H is trans-
formed under the orthogonal transformation Y into {(z1,z1,xs,...,Z24) € Aos} (C
Oa3).

By noting

1
4V Thus11) B2 = — (16v2,8V2,...,8V/2,0,...,0)"*
) \/g
—_————

11 times
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and letting (y1,...,924) € {(¥,0) | y € (4V/15v211)523}, we observe from equation
(37) that each of y;/v/2 and (y; + y;)/V/2 belongs to the set %{O,:I:S,:HG,:EM}.
Hence, each resulting vector
ze{Y((y,0)) | y € (4V/15v211)"*}
lies in %224, and in fact we can write z = 42’//8 for some 2’ = (2}, 21,25, ...,25,) €
Z**, with all 2} € {0, £2, £4, £6}.
Since all entries of 2’ are even integers, their sum is also even, and thus z satisfies

the parity condition required for membership in Agy. Therefore, we conclude that
z € Aoy, which completes the proof. O

APPENDIX A. PROOF OF PROPOSITION 5.5

In this section, we give a proof of Proposition 5.5. Suppose n > 4. We solve the
following system of linear equations

( 1 ) Ja( 1 )
fa(Vay,s1)  fa(Vas,s, 7
| )

fG(vahsl) fG('Ua2,52) W2

f&l (7)111 ,S1 ) f&l (vaz,sz

f8,2 (UCH ,S1 ) f872 (’Ua2782)
where W; = Wi|”ﬁ-’fsq;‘ > 0 (¢ = 1,2). As in the proof of Proposition 5.2, we divide the
situation into five cases:

(a) f4(val,sl) # f4(va2,32)7

OO OO

(b) f4(val,81) = f4(va2752) ) fﬁ(val,m) 7& fﬁ(va2ys2)a
(C) f4(v0«1,81) = f4(va2,82) ) f6<Ua1,81) = fG(’Ua2752 ) fS,l(Ual,Sl) 7& fS,l(UGQ,Sz)7
(d> f4(Ua1,81) = f4(va2752) ’ f6(va1751) = fG(Uaz,Sz)’

f8,1(va1,31) = fS,l(Ua2,32) ) fS,Z(Ual,Sl) # fS,Q(Ua2782)a
(6) f4(Ua1,sl) = f4(va2,52) y fG(Ua1,51) = fﬁ(vag,sg)v
f8,1(va1,51) = f8,1(va2,52) 5 fS,Q('Ual,sl) = f8,2(va2752)'

In Case (a), the augmented coefficient matrix has rank 2 and can be reduced to

B fa(Vay,so) T
10 f4(”a2,52)72f42(vnr1,s1)
0 1— f4('“a1,31)

f4(”a2,52)_f4(”a ,51)
00 Gy46(a1,a2,51,82

f4(va2,52)_f4(va,s)
00 Gy48.1(a1,a2,51,82)

f4("’a2,52)7f4(”a,5)
00 Ga,8,2(a1,02,51,52)

f4(“a2,52)7f4(71a,s) d
Thus, in Case (a), a weighted 9-design of type (21) exists if and only if

f4(Ua2,52)
f4(va2,52)_f4(va ,sl) > 0’
_ 4 Ual,sls 07

>
f4('Ua2752)7f4(va1-,s1)
Gag(ar,as,51,52) = Gagi(ar,az,s1,52) = Gagalai,az,si,s2) =0.

Since f4(Va,,s;) # fa(Vay,s,), this is equivalent to

{f4(va1,51)f4(va2,52) < Oa

Gyelar,az,51,52) = Gagi(ar,az,s1,52) = Gagalar,az,si,sz) =0.
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Similarly, in each of the remaining three cases (b), (c), (d), the augmented coeffi-
cient matrix has rank 2 and obtain the desired equivalence case.
In the last case, Case (e), the augmented coefficient matrix can be reduced to

11 1

00 _f4(’U¢11751)
00 _f6(U017S1)
00 7f8,1(va1751)
00 _f8,2(va1,51)

Thus, a weighted 9-design of type (21) exists if and only if

f4(va1,81) = f4(’0a2,52) = f6(va1751) = fG(Uaz,Sz) =0,
J8.1(Vay,s1) = f8,1(Vag,so) = fs,2(Vay,s1) = f8,2(Vay,s,) = 0.

It remains to consider the case of n = 3. In this case we may ignore fgo and so
reduce the size of the augmented coefficient matrix to 4 x 3 from 5 x 3.
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