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Operads on graphs: extending the pre-Lie

operad and general construction

Jean-Christophe Aval, Giraudo Samuele, Théo
Karaboghossian & Adrian Tanasa

ABSTRACT The overall aim of this paper is to define a structure of graph operads, thus gen-
eralizing the celebrated pre-Lie operad on rooted trees. More precisely, we define two operads
on multigraphs, and exhibit a non-trivial correspondence between them and the pre-Lie and
Kontsevich-Willwacher operads. We study one of these operads in more detail. While its struc-
ture is too involved to exhibit a description by generators and relations, we show that it has
interesting finitely generated sub-operads, with links with the commutative and the magmatic
commutative operads. In particular, one of them is Koszul this allows us to compute its Koszul
dual. Finally, we introduce a new framework on species and operads and a general way to define
operads on multigraphs.

INTRODUCTION

Operads are mathematical structures that were first introduced as a way to formalize
the notion of type of algebra: given a set of multilinear maps and relations between
them, the associated operad is composed of all the multilinear maps obtained by
composing those in the initial set. These form in fact the generators of the operad.
As detailed in [15], operad theory was first used in algebraic topology in the 1960s
but had a ’renaissance’ in the 1990s when it began to be used in many other fields,
see for example [13] for a very general algebraic approach to the theory. In particular,
in combinatorics, operads provide the right framework to define the embedding of a
combinatorial object in another [4, 8]. In this context, operads are defined by directly
describing their elements and how to embed them. This is in contrast with the original
way to define them by generators and relations, and passing from one definition to
the other is often a difficult question and provides a lot of insight on the structure of
the operad.

A particularly successful example of such a transition is the pre-Lie operad which
was first defined by being generated by the pre-Lie operator, i.e. an antisymmetric
bilinear map ¢ < y such that (z < y) < z—z <A (y<z)=(x<Qz) <dy—z < (2 <y).
Chapoton and Livernet later proved in [5] that the elements of the pre-Lie operad
could be seen as rooted trees and described the composition of two elements in a
purely combinatorial way.

The pre-Lie operad along with the non-associative permutative operad [12] are two
examples of interesting operads for which the combinatorial interpretation is given by
trees. Even though interesting operads on graphs exist in the literature [11, 10, 18, 14],
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none of them is studied in a purely combinatorial framework. We propose a way to
do so in this paper by extending the pre-Lie operad from trees to graphs. Within
our approach, we find that it is more natural to work on multigraphs and define an
operad structure MG on the species of multigraphs, and an operad structure MG?,.
on the species of pointed oriented multigraphs. The operad MG in particular restricts
to the Kontsevich-Willwacher operad [14] on the species of graphs G. We show that
these operads and the pre-Lie operad PLie relate to each other by the following
commutative diagram:

T —~—— PLieNKO/Z =——— PLieN 0 — PLie

| [ I |

G. —~>0NG,/INGS,, «— G3.N0O — G2, NST

orc orc orc

I ! | l

MG, —~ 4 0/T o MG x PLie

where T, G, and MG, are respectively the sub-operads of trees, connected graphs and
connected multigraphs of MG, G? . is the sub-operad of pointed connected oriented

graphs of MG? ., and ST is an operad on spanning trees with O and Z sub-species of
ST generated by ad hoc sums of spanning trees. We show that while, contrarily to
PLie, the operad MG does not admit a simple presentation by generators and rela-
tions, its sub-operads generated by combinations of the empty graph over two vertices
and the segment graph, have interesting links with the commutative operad Com and
the magmatic operad ComMag. In particular, one of them is Koszul, which allows
us to exhibit its Koszul dual. We end our study by providing new constructions on
species and operads. These constructions enable us to define a general way of con-
structing operads on graphs, which we use to justify the operad structure of MG and
MG?,.. More specifically, we give a general way to construct operads on multigraphs
where the partial composition of two elements g; o, g2 can be informally described by
the following steps:

(1) take the union of g; and go,

(2) remove the vertex * from the union, we now have loose ends,

(3) independently connect each loose end to vertices of gs,

where by independently we mean that the way connect a loose end does not depend
on the way we connect the others. A formal definition of what we mean loose end and
connecting them is given in section 1.1.

This paper is organized as follows. In Section 1 we give some general definitions of
species theory and of operad theory, as well as some general definitions on graphs and
multigraphs. In Section 2 we define the aforementioned two operads on multigraphs
and pointed oriented multigraphs and we exhibit the correspondence between these
operads and the pre-Lie and Kontsevich-Willwacher operads. We then proceed to
study the operad on multigraphs and some of its sub-operads. Finally, in Section 3
we exhibit our proposal of constructing species and operads and we apply them in
order to obtain our general construction of operads on multigraphs.

This paper is an extended version of the extended abstract for FPSAC 2020 [1]
with proofs and additional results.

1. CONTEXT

In this entire paper, unless otherwise stated, V' denotes a finite set and V; and V5
two disjoint sets such that V' = V; U V5. The letter n always denotes a non negative
integer and we denote by [n] the set {1,...,n}. All vector spaces appearing in this
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paper are defined over a field of characteristic 0 denoted by K. Finally, for any set E,
KE denotes the free vector space over F.

1.1. GRAPHS AND MULTIGRAPHS. Multisets. Because multiset notations can be
cumbersome, it is customary to consider them in the same way as sets and we do
so whenever it is possible. However, multiset are necessary in order to formally define
multigraphs and we sometimes need notations proper to them.

A multiset over V is subset of V' x N* such that V(v,i) € V x N~ {0,1}, (v,4) €
m = (v,i — 1) € m. Let m be a multiset over V. We say that an element v € V
is in m and denote by v € m if (v,1) € m. In this case, we call multiplicity of v in
m and denote by m(v) the greatest integer ¢ € N such that (v,i) € m. If v & m we
set m(v) = 0. Let m’ be a multiset over a set V'. The deletion of m’ from m is the
multiset m ~m' = {(v,i) € m|i < m(v) —m/(v)} and the disjoint union of m and
m’ is the multiset mUm/ = m U {(v,i + m(v)) | (v,i) € m'}.

The size of a multiset is its cardinality as a set and we call unordered multipair a

multiset of size 2. We denote by M(V') the set of multisets over V. Every set can be
seen as multiset by the bijection W = W x {1}.
Graphs and multigraphs. A graph or simple graph over a non empty set V is a
set of unordered pairs of distinct elements of V' and a multigraph is a multiset of
unordered multipairs over V. In this context, the elements of a (multi)graph g are
called edges of g, the elements of V" are called vertices or nodes of g and the pairs (e, v)
with e € g and v € e are called ends of g. For (e,v) an end of g, we say that (e,v) is
both an end of the edge e and an end of the vertex v. For v a vertex, an edge of the
form {v,v} is called a loop over v and we call neighbour of v any vertex u # v such
that {u,v} € g (v can not be its own neighbour). For W C V', we call the restriction
of g to W and denote by g|w, the multigraph over W with edges exactly the edges of
g contained in W. Graphs can be seen as multigraphs with at most one edge between
two vertices and no loops.

Since we describe different partial composition on multigraphs in term of removing
vertices and reconnecting loose ends, we must formally introduce the notion of a
multigraph with loose ends. However, do note that the elements of study of this
paper are still multigraphs as defined above. Indeed, loose ends will only appears as a
step in partial compositions, in order to provide a combinatorial understanding, and
never outside it. A multigraph with loose ends over V is a multigraph over V U {&}
and we call loose ends the ends of @. We identify multigraphs with multigraphs with
loose ends with no loose ends. Let g be a multigraph with loose ends over V. We
define the operations of removing a vertex and connecting a loose end as follow.

e For v € V, the multigraph with loose ends obtained by remowving v of g is
the multigraph with loose ends over V' ~ {v} obtained by replacing every
occurrence of v by @ in ¢: {o(e) |e € g} where o({v1,v2}) = {o(v1),0(v2)}
and o : VU{@} — (V~{v})U{@} sends v to & and is the identity elsewhere.

e For {u,2} an edge with a loose end of g and vy,...,v, € V, the multi-
graph with loose ends obtained by connecting ({u,@},2) to (v1,...,v,) is
the multigraph with loose ends obtained by replacing the edge {u, @} with
the edges {u,v1},....{u,vn}: (9~ {{u, @}}) U {{w,vit}iicp- n =1 we
write connecting to vy instead of connecting to (v1).

REMARK 1.1. An edge {@, @} have two loose ends ({&, @} , &). We could first connect

one of them to (u1,...,u,) to obtain the new edges {@,u;1 }, ..., {9, u,}, and then re-
spectively connect their associated loose ends to (v1,1,---,V1,ky);---> (Un1s---»Un k)
to obtain the edges {u1,v11},. .-, {u1,V1,4, }»- -+ {Un,Vnk, }. In practice we will al-

ways choose k; =k forall 1 <i<nandv;; =v; foralll1 <i<n,1< <k where
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k is an integer and vy, ..., v, are vertices. In these circumstances, connecting one of
the loose ends of an edge {&, @} to (uq,...,u,) then connecting the loose ends of all
the new edges to (v1,...,vx) returns the same edges than to first connect one of the
loose ends of the edge to (v1,...,v) then connecting the loose ends of all the new
edges to (u1, ..., uy,). To simplify, we hence call these two operation with same results
as connecting the ends of {@, 2} to (u1,...,u,) and (vy,...,vg).

EXAMPLE 1.2. Let g be the multigraph over {a,b,c,d,e} with edges {a,a}, {a,b},
{a,d}, {b,e}, {c,e}, {c,d} and {c,d}. The multigraph with loose ends obtained by
removing a has edges {@, @}, {2, b}, {@,d}, {b, e}, {c, e}, {c,d} and {¢, d}. Connect-
ing the two loose ends of {@, @} to b and (b, ¢), and the loose ends of {@,b}, {@,d}
respectively to d and e gives us the multigraph with edges {b, b}, {b, c}, {b,d}, {d, e},
{ba 6}, {Cv 6}, {C» d}a and {Ca d}

We usually represent multigraphs with blue circles for vertices and full blue lines
for edges. For example, we represent g, the multigraph with loose end obtained by
removing a and the multigraph obtained by reconnecting the loose ends as above:

()
n A0 A0 0

" N ONO @'z‘e

Trees, spanning trees and rooted trees. A path in a multigraph g is a sequence

v1,...,0, of vertices such that n > 1 and {v;,v;41} is an edge of g for 1 < i < n.
A multigraph g is connected if for any two vertices u and v of g, the exists a path
V1,...,V, such that vy = u and v,, = v. In a connected graph, the distance between

two vertices is the length of the shortest path between these vertices. A cycle is a
path such that vy = v, and a tree or abstract tree is a graph without cycle. In a tree,
a vertex is said to be internal if it has at least two neighbours and said to be a leaf
else. For g a connected multigraph over V', a spanning tree of g is a tree over V' with
edges contained in g.

A rooted tree is a pair (t,r) with ¢ a tree and r a vertex of ¢ which we call root or
root vertez of t. For (t,7) a rooted tree and v a vertex of ¢, we call children of v the
neighbours of v farther from r than v. If v # r we also call parent of v the neighbour
of v closer to r than v. For p the parent of v and ¢ a child of v, the end ({p,v},v) is
the parent end of v and the end ({v,c},v) is a child end of v. A corolla is a rooted
tree where only the root has children.

EXAMPLE 1.3.

e The multigraph g of Example 1.2 is connected but g|(4,s,c} is not.
e We represent spanning trees by using red lines for the edges that are
part of the tree. Here is a representation of g with the spanning tree

{{a.0} {a.d} {b.e}  {d.c}):
(D—)

f
2) (o)

o We generally represent rooted trees as we do multigraphs except with a square
for the root vertex. For example, the rooted tree ({{a,c},{c,b}},c) over
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{a,b,c} is represented as follows:

Sometimes -in particular in the case of Schroder trees- rooted trees may stand
for other objects. In these cases, while the objects for which they stand for may
be labelled with V', the rooted trees will only have their leaves labelled with V',
e.g. Example 1.11. Hence, in order to avoid some confusion, we use a different
representation for rooted trees in these cases, with the root being the bottom-
most vertex and the vertices and edges not sharing the previously set color
code. Furthermore, as we explain in Section 1.3, while there exists different
kind of operad structures on rooted trees, Schroder trees have an implicit
operad structure given by the grafting of trees; hence we found important to
clearly differentiate these Schroder trees, in particular since we can consider
Schroder trees enriched with the species of rooted trees.

Orientations. Let g be a multigraph over V. An orientation of g is a map o from
g to M(V) x M(V) such that for any edge e of g, e = m1(o(e)) L ma(o(e)), with m;
the projection on the i-th coordinate. We respectively call 71 (o(e)) and ma(o(e)) the
sources and targets of e. For (e,v) an end of g, we say that it is a source end if v is a
source of e and a target end else. An oriented multigraph is a pair of a multigraph and
an orientation of this multigraph. The union of two oriented multigraphs over disjoint
sets (g1,01) and (go, 02) is the oriented multigraph (g1 Ul go, 0), where o(e) = o1(e) if
e € g1 and o(e) = oa(e) else.

The notion of orientation directly generalizes to oriented multigraphs by consider-
ing them as multigraphs over V' U {@} and an oriented multigraph with loose ends is
then a pair of a multigraph with loose ends and an orientation of it. Given an oriented
multigraph with loose ends (g, 0), removing a vertex v from g induces the orientation
o’ such that o’ o o(e) = (0 x o) o o(e) with o defined as before. Connecting the end
({u,2},2) to vy,...,v, induces the orientation o’ where the sources and targets of
{u,v;} are obtained by replacing @ by v; in o({u, @}).

REMARK 1.4. We do not use the standard definition of an orientation: since the source
and target maps have their image in M(V'), an edge can have two target ends and
no source ends and vice versa.

ExAMPLE 1.5. Let g be the multigraph of Example 1.2. We define the following ori-
entation of g: o({a,a}) = (,{a,a}), o({a,b}) = ({b},{a}), o({a,d}) = ({a},{d}),
O({b7e}) = (®7{b76})7 °<{C’ e}) = ({c,e},@), and O({Ca d}) = ({C}v{d}) and

o({e,d}) = ({d},{c}). We represent oriented multigraphs by adding arrow heads to
the targets:
(D)

() (9:9) = (=) .
1

1.2. DEFINITIONS AND BACKGROUND ON SPECIES. We recall here basic definitions
on species. We refer the interested reader to [2] for a detailed presentation of combi-
natorial species.

DEFINITION 1.6. A linear species S consists of the following data:
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e For each finite set V, a vector space S[V] of finite dimension,
e For each bijection of finite sets o : V. — V', a linear map S[o] : S[V] — S[V'].
These maps should be such that S[oq o 03] = S[o1] 0 S[o3] and S[Id] = Id.
Furthermore if S[@] = {0}, then S is said to be positive.
The elements of the vector spaces S[V] are called elements of S.

We will use the term species to refer to linear species.

When defining a species, the maps S[o] are often clear from the context and we
do not mention them. Let S be a species. A sub-species of S is a species R such
that R[V] is a sub-space of S[V] for every finite set V and Rlo] = S[o] for every
bijection of finite sets 0. For E a set of elements of S, the species generated by E
is the smallest sub-species of S containing E. We denote by S,, the sub-species of
S defined by S,[V] = S[V] if |V| = n and S,[V] = {0} otherwise, and by S, 4 the
sub-species of S defined by S, +[V] = S[V] if |V] > n and S, [V] = {0} otherwise.
We also denote by S, the species Si+. The Hilbert series of S is the formal power
series defined by Hs(z) = 3", 5, dimS{ln]] ;n.

n!
A morphism of species from a species R to S is a collection of linear maps fy :
R[V] — S[V] such that for each bijection o : V' — V', we have fy oR[o] = S[o] o fy.

For easier reading, we will often forget the index V.

EXAMPLE 1.7.

e The Identity, exponential and singleton species are respectively defined by
ID[V] =KV, E[V] =K{V} and X = E;.

e For V a finite set, we denote by PoOL[V] the set (not the vector space) of
polynomials with coefficients in N, variables in V' and null constant coefficient.
To consider the species KPOL, we must take into consideration the fact that
we need to differentiate the plus of polynomials and the addition of vectors.
We will thus denote by @ the former and keep + for the latter and we will
denote by Oy € PoL[V] the polynomial constant to 0 and keep the notation
0 for the null vector. For example, ab @ ¢ is an element of PoL[{a,b, c}], but
a® b+ cis a vector in KPoL[{a, b, c}].

e We have a natural morphism from ID to KPOL given by v — v and three
natural morphisms from E to KPOL respectively given by V' — [ oy v,
V= @,cpyv and V — >, v. In particular, the image of ID by this
morphism is the species KPOL' of homogeneous polynomials of degree 1.

e We respectively denote by T, G and MG the species of trees, graphs and
multigraphs. We also respectively denote by G. and MG, the species of con-
nected graphs and connected multigraphs. These five species are related by
the following diagram:

T — G, — MG,

(5) I I

G — MG

We add the index or to these five species to designate their oriented coun-
terpart, e.g. G, is the species of oriented connected graphs. Notice that
since we only defined multigraphs over non empty finite sets, these species
are positive, i.e. we set MG[@] = {0}.
e There is an monomorphism ¢ from the species MG to KPOL defined as fol-

lows:

— the empty graph @y € MG[V] is sent on the null polynomial ®(y ) =

Ov;
— an edge e = {v1,v9} is sent on the monomial ®(e) = vivy;
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— an element g € MG[V] is sent on the polynomial ®(g) = ., (e).
This enables us to see the species of multigraphs as the sub-species KPoL?
of homogeneous polynomials of degree 2. This will be useful in the following
sections to do computations on multigraphs since it is easier to formally write
operations, and in particular composition, on polynomials than on multi-
graphs. With this identification, the multigraph of Example 1.2 writes as the
polynomial ®(g) = a? @ ab ® ad & be ® ec  2dc.

One strong point of species is the existence of different operations on them
which enable to construct new species from existing ones. Let R and S be
two species. We can then construct new species which are defined as follows:
sum (R + S)[V] = R[V]I@S[V], product R - S[V] = @Dy, y,—y R[Vi] @ S[V2],
Hadamard product (R x S)[V] = R[V] & S[V], derivative S'[V] = S[V U {x}]
(where * € V), second derivative S"[V] = S[V U {x1,*2}] (*1,%2 &€ V) and pointing
S*[V] = S[V] ® KV. Furthermore if S is positive we can also define the composition
of R and S by

R(S)[V] = D R[P] @ S[Pi,
P partition of V' P;eP
where @ p,p S[Pi] = (S[P1] ® - -+ ® S(Py)), should be seen as an unordered tensor
product. We call assemblies of S the elements of this unordered tensor product.

REMARK 1.8.

e The product of species is associative: (S; - Sg) - Sg = Sy - (S2 - S3). We will
forget the parenthesis when considering the product of three or more species
and directly denote Sy - So - S3.

e These operations are compatible with Hilbert series: the Hilbert series of a
sum of species is the sum of their respective Hilbert series, etc.

e When considering the product of two derivatives R’ - S’, to avoid confusion
we will use the notations R'[V] = R[V U {;}] and S'[V] = S[V U {*2}].

EXAMPLE 1.9.

e The species T* is the species of rooted trees. In order to stay coherent with
our representation of rooted trees, we will also represent the pointed vertex
of the elements MG*® and its sub-species with a square.

e Since E[V] is always reduced to a space of dimension 1, the species E(S) can
be interpreted as the species of assemblies of S.

We can construct a particularly interesting species by using the composition of
positive species. For S a positive species such that S = X + So+, the species .75
of Schrider trees enriched with S is defined as the species satisfying the equation
Fs = X + Sot (H).

The vector space .#5[V] is then generated by abstract rooted trees with internal
nodes labelled by elements of S and set of leaves V. In particular, remark that the
internal nodes have a linear behaviour: if W is a subset of V', x and y are two elements
of S[W] and k is an element of K, a tree ¢t with a node labelled by = + ky is equal
to the sum t; + kto where t; and t5 are identical to ¢ except at the node which was
labelled by x + ky in t which is now respectively labelled by x and y. In this context,
the elements of S are identified with the corollas of ..

REMARK 1.10. Contrarily to the usual case, when working in the context of species the
Schroder trees we consider are not planar. This is because we can already differentiate
leaves through their label and hence do not need an order on them.
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EXAMPLE 1.11. Here is an example of an element in .#s[[4]] where S[V] = Kz if
|[V| =3, S[V] =Ky if [V| =2 and S[V] = {0} otherwise.

o ©
() ) (D)
()
S

1.3. DEFINITIONS AND BACKGROUND ON OPERADS. We give here basic definitions
and results of the theory as well as some classical examples. We use the definition by
partial composition of an operad (see e.g. [7]). We refer the reader to [16] and [13] for
a more general approach to the theory of operads.

A partial composition of a species S is a collection of linear maps o, : S[V1]®@S[V2] —
S[Vi + Vo — {v}], for V] and Vs disjoint finite sets and v € V;. These maps must
be natural: for o7 and o2 bijections with respective domain V; and V5, we have
Og, (v) © S[o1] ® S[oa] = S0y 0 03] 0 0,. By naturality, specifying a partial composition
amounts to specifying a morphism o, : S-S — S from which we can recover all the
maps of the collection.

DEFINITION 1.12. A symmetric linear operad is a positive linear species O equipped
with an unity e : X — O and a partial composition o, : O - O — O such that the
following diagrams commute

"n.om. ©*1 ’ iy Omld o,
or-o0-0—— 0.0 o.0-0——0.-0
lo*zold-r lO*Q lfd-o*z J/OKQ

0.0—1 5,0 0.0—1 5,0

KX*>O/ <O Kk

where T : 2 Qy — yQx and py : T — (9[0](3:) with o the bijection that sends *
on v and is the identity on V ~\ {v}. Also recall that =1 and x5 are elements either
introduced by a second derivative or the product of two derivatives (as introduced in
remark 1.8).

A sub-operad of an operad O is a sub-species of O containing the image of e and
which is stable under partial composition. For O an operad, the sub-operad of O
generated by a sub-species S is the smallest sub-operad of O containing S and the
sub-operad generated by a set E of elements of O is the sub-operad generated by the
species generated by E. A morphism of operads f : O — O3 is a morphism of species
stable under the structure maps: foe = e and f(z o, y) = f(x) ox f(y).

In practice the map e is often trivial and we do not mention it. Let us now give a
series of examples of operads.

Identity.: The identity species has a natural operad structure given by vy o, vo = v
if v1 = * and vy o4 V92 = vy otherwise.
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Com.: The species E; has a natural operad structure given by (V3 U {x}) o, Vo =
V1 LU V,. This operad is called the commutative operad and denoted by Com.
In this context we denote by py =V the basis element of Com[V].

NAP.: Let be (t1,71) and (t2,72) be two rooted trees and denote by c(x) the child
ends of *. Let (¢1,71) o4 (t2,72) be the rooted tree obtained by the following
construction.

(1) Take the union of t; and to,
(2) remove the vertex s,
(3) connect the loose ends to 7o,
(4) if r1 # %, we choose 1 as the root of the obtained tree, else we choose
T2.

This construction is a partial composition and turns the species T* of rooted

trees into an operad. This operad is called the non-associative permutative

operad [12] and is denoted by NAP. For instance we have:

2] 2]
(7) O = G—©
® ®

PreLie.: Let be (t1,71) € T'[Vi] and (t2,72) € T[Va2] be two rooted trees and let
(t1,71) o« (t2,72) be the sum of rooted trees obtained by the following con-
struction and indexed by the maps f : c(x) — Vi, with c(x) the set of child
ends of .

(1) Take the union of ¢; and t.

(2) remove the vertex s,

(3) connect the loose parent end to r,

(4) connect the loose child ends to their images by f,

(5) if r1 # *, we choose 71 as the root of the obtained tree, else we choose

Tra.

This operation is a partial composition and turns the species T® into an

operad. This operad is called pre-Lie operad [5] and is denoted by PLie.

Remark that the partial composition of ¢; and t; as elements of NAP is

always in the support of the partial composition of ¢; and ¢, as elements of

PLie. For instance, we have:

o] o] ]
(8) © o [cH@ = @ + © (@).
@ ® ®)

Polynomials.: The species KPOL, has a natural partial composition given by the
composition of polynomials: for pi(vq,..., v, *) and pa(v],...,v]) two poly-
nomials over disjoint sets of variables,

(9) (pl Ox p2)(1}17 e avlmvj/b e avl/) = pl'*(—pz = pl(’Uh e 7’Uk7p2(lui7 .. 'aUZ))'

One can directly check that this partial composition satisfies the commutative
diagrams of Definition 1.12. This turns KPOL into an operad where the
units are the singleton polynomials v € PoLy [{v}]. Remark that since o, is
a linear map, the product and addition of polynomials act as bilinear maps.
Restricting the four species morphisms from Example 1.7 to E4 and KPoL,
when necessary makes them operad morphisms.
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Hadamard product.: If O; and O are two operads, then the species O x O, is also
an operad with partial composition: (21 ®x2)0.(y1®y2) = (£104y1)R(x20.y2).

Assemblies.: For O an operad, the species Com(O) of assemblies of O has a natural
operad structure. Let V;,...V, and Wy,..., Wi be n + k disjoint sets such
that * € V7. Let be z; € O[V;] for 1 <i<nand y; € OW;] for 1 <j <k
Then the partial composition of the assemblies 1 ® -+ - Q@ x, and y; @ - - - R yg,
is defined by

k
(218 @Tp)ou (N @ -@Yp) = Y Y1 - BYi1OT104Yi DY 41D+ - QY OT2Q - - QL.
i=1

In all the above examples, we defined operads by explicitly describing the vector
spaces O[V] and the partial compositions. There is another way to present an operad
which is as a quotient of a free operad.

Let S be a positive linear species such that S = X + Sg+. Recall that #5[V] is
generated by trees with internal vertices decorated with elements of S and set of
leaves V. The species .#s has then a natural operad structure given by the grafting
of trees. For t; € #{[V1] and ty € .#5[V5], the partial composition 1 o, to is the tree
obtained by grafting to on the leaf % of ¢; and relabeling the nodes of t; accordingly.
This operad is called the free operad over S and we denote it by Freeg.

ExAMPLE 1.13. We give here an example of partial composition in a free operad over

the same species as in Example 1.11.
(10)
Q0n" N2 Qe

In the sequel, we consider free operads over species which are sub-species of an
operad O. When this happens, we denote by % the partial composition in the free
operad in order to not confuse it with the partial composition in O.

ExXAMPLE 1.14 (ComMag). The free operad over one symmetric generator Freeg, is
the operad of abstract binary trees with partial composition the grafting of trees. This
operad is called the commutative magmatic operad [3] and is denoted by ComMag.
In this context, for V' a set of size 2, we denote by sy the generating element of Eq[V]:
EQ[V] = FreeE2 [V] = KSV.

An ideal of an operad O is a sub-species Z such that the image of the products O'-Z
and Z'- O by the partial composition maps are in Z. The quotient species O/Z defined
by (O/I)[V] = O[V]/Z[V] is then an operad with the natural partial composition
and unit : [x] o, [y] = [z o« y] where [z] is the equivalence class of . For G a species, if
R is a sub-species of Freeg, we denote by (R) the smallest ideal of Freeg containing
R and write that (R) is generated by R.

Denote by Freeg) the sub-species of Freeg of trees with two internal nodes.

DEFINITION 1.15. Let G be a species and R be a sub-species of Freeg. We denote by
Ope(G,R) = Freeg/(R) the operad generated by G and with relations R. The operad
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Ope(G,R) is binary if the species G of generators is concentrated in cardinality 2 (i.e.
G = Gy). This operad is quadratic if the species R of relations is a sub-species of

(2)
Freeg .

ExAMPLE 1.16. Denote by R the sub-species of ComMag(Q) generated by the asso-
ciativity relation sgq .} ¢ S{bc} — S{cx} ot 57{a,b}- Then Com = Ope(Ez, R) and Com
is hence binary and quadratic. Remark that as a consequence we have that py is the
image of sy under the projection ComMag — Com.

Two advantages of defining an operad by its generators and relations are that
it is possible to construct (under some conditions) its Koszul dual and to check if
the operad is Koszul. Koszul duality is a generalization of various dualities found in
representation theory, e.g. that of Lie algebras and commutative associative algebras.
A Koszul operad is an operad with a subspecies of elements that act similarly to a
Grobner basis in a polynomial ring, except that it considers Schroder trees instead
of polynomials. If O is a Koszul operad, it admits a Koszul dual ©' and the Hilbert
series of @ and O' are related by the identity:

(11) Ho(—Ho () =t.

These notions are too involved to be presented in a simple reminder and we only
refer to them in Proposition 2.13 and Proposition 2.14 in order to use the above
equation. We refer the reader not versed in operad theory to Appendix A for more
information on these.

2. EXTENDING THE PRE-LIE OPERAD

As announced, we want to extend the pre-Lie operad structure to graphs. As we will
see later, it is more natural to search an extension to multigraphs.

2.1. TWO CANONICAL OPERADS. If we want to extends the above construction to
multigraphs, we are faced with the problem that multigraphs do not have a root
vertex. Our first solution is then to try to extend it to the pointed multigraphs MG*®,
where the pointed vertex would take the role of the roots. But this alone is not
enough: indeed the partial composition of PLie also uses the notion of parent and
child vertex/end which can not be defined on a general pointed multigraph. To remedy
this, we consider oriented pointed multigraphs, where the targets play the same role
as the parents ends in PLie and the sources the same role as the children ends.
Let then be (g1,01,v1) € (MG,)'[V4] and (g2,02,v2) € MG, [V2] and define the
partial composition (g1, 01, v1)04(g2, 02, v2) as the sum of pointed oriented multigraphs
obtained by the following construction and indexed by the maps f : t(x) — Vs, with
t(x) the set of target ends of *.

(1) Take the union of (g1, 01) and (g2, 02),

(2) remove the vertex x,

(3) connect the loose source ends to vg,

(4) connect the loose target ends to their images by f,

(5) the new pointed vertex is vy o, v9, with the partial composition of the identity
operad.

For instance, we have:

o o
(12) K [0 = GE—0 + .
®

® 0,
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THEOREM 2.1. The species MG.,., endowed with the preceding partial composition, is
an operad.

We give a proof of this theorem in Section 3 where we provide a general way to
define operads on graphs and multigraphs.

It is straightforward to note that the subspecies of connected components MG,
and the species Gg, are sub-operads of MG}, and that G} is a sub-operad of
G?,. Given a rooted tree (t,r), we have a natural orientation o, which consist of
choosing the parent ends as sources and child ends as targets. This induces an operad
monomorphism (¢,7) — (¢, 04,,7) from PLie to G},. and hence makes PLie a sub-
operad of G},

Our second solution in extending PLie is to ignore the steps of the construction
of the partial composition which involve the root. The resulting partial composition
is then much more natural than the previous one over MG, : let g3 € MG’[V;] and
92 € MGIV3] be two multigraphs and define the partial composition g; o, g2 as the
sum of oriented multigraphs obtained by the following construction and indexed by
the maps f : n(x) — Va2, with n(x) the ends of *.

(1) Take the union of g; and ga,
(2) remove the vertex *,
(3) connect the loose ends to their images by f.

For instance, we have:

THEOREM 2.2. The species MG endowed with the preceding partial composition is an
operad.

As for Theorem 2.1, we give a proof of this theorem in Section 3.

This operad structure makes all the species of the diagram 5 operads and its
maps operad monomorphisms. In particular, we recover the Kontsevich-Willwacher
operad [14] on G. Recall now from Section 1 that we can identify multigraphs with
polynomials. The partial composition we just defined can then be formally written as
910492 = g1/, . @ go (using the same notation for the composition of polynomials
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as in (9)), which can then be expanded as follows:

91092 = g1l Sy, B g2

= g1|V1 S3] @ ’U(Z Vv2) D ((Z ‘/2)2)6991(**) P g
(14) ven(x)
g1 (%)

= > o alwe @ vfv)e D 1)@ g,

Fin(x)—=Va Li[g1 (+%)] = Va Va ven(x)

where n(*) is the multiset of neighbours of * in g; and gy (**) is the number of loops
on * in g;. Each of the three terms of the second line, without counting g5, has a
combinatorial interpretation: g1|v; is g1 to which we removed *, €, ¢, (. v(2_ V2) can
be understood as “for all vertices v of n(*), sum over the ways of connecting v to g»”
and the term ((3° V5)?)®91(%) as “for each loop over #, add an edge between any two
elements of V57 This partial composition expands in a simpler way on G because of
the absence of loops. Indeed, if g1 and go are now graphs, Equ. (14) rewrites as

91092 = g1l v, D92

=qgln® D v() V2)®ge
(15) " ven(s) 2

= Y anwe @ vf)Dg

Fin(x)—Va ven(x)

For instance, we have:

<16>o*+++.

In particular, we observe that all graphs appearing in g; o, g2 have 1 as coefficient.

2.2. Link wiTH PLie. While PLie is a sub-operad of MG}, the operad structure
on MG does not seem to have any relation with PLie. In fact, as we will see at the
end of this subsection, there is a non-trivial correspondence between the four operads
MG?,, MG, PLie, and the Kontsevich-Willwacher operad G. Let us begin with the
following result which gives a correspondence between the sub-operad T of MG and

PLie.

PROPOSITION 2.3. The monomorphism of species 1) : T — T* defined by, for any tree
t e T[V],

(17) bty = (t7),

reV

is a monomorphism of operads from T to PLie.
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Before giving the proof of this proposition, we illustrate it on an example:

+)w< 5

We can note that the case when * is the root plays a particular role.

®

Proof. Fort € T[V] a tree and r,v € V, we denote by n.(v) the set of neighbours of v
in ¢, by ¢ ,(v) the set of children of v in the rooted tree (¢,r) and if r # v, we further
denote by p; »(v) the parent of v in (¢,r).

Let be t; € T'[V4] and ty € T[Vz]. We now make full use of the correspondence
between graphs and polynomials:

(19) v (t)otby(tz) = DY (fi,r)ow Y (fa,r2)

ri€VAU{x} ro€Va

Z Z (t1,71) 0x (t2,72)

Tlevlu{*} ro€Vs

DS (mvl & o (2 D12

r1€ViraeVs

+Z<t1v1@tz@ D (ZVQ),TQ>

ro€Vs vECt), « (%)

(£0) )

UECtl 1 (*)

- Z (thl D Pti,ry (*) (Z V2> S t2 S (Z ‘/2) >
ri€Vy “ectl ry (%)
+ > (tlvléBtQEB ) (ZI/Q)m)
ro€Vs vEet,, « (%)
= Z (thIEB @ U(ZVQ)EBIfQ,T)
reVi+Vs vEN4, (%)
= Z (tl‘*(_z‘é@tg,’f)
reVi+Vs
= wvl"l‘VZ (tl Ox tz) 0
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The map 1 naturally extends to a morphism of species MG, — MG?. A natural
question to ask is if it also possible to find an operad structure on MG? in order
to make the following commutative diagram of species a commutative diagram of
operads:

T % | PLie

2 [ j

MG, —— MG?

But as explained before, there does not seem to be a natural way to extend PLie
to MG? and we must rather consider MG, ., from which PLie is indeed a sub-
operad. By doing this we are now faced with the problem of finding a natural way
to embed MG? in MG}, which would make the species ¥/ (MG,) a sub-operad of
MG, containing PLie. This would then require to find a canonical orientation for
each pointed multigraph compatible with MG?,.. operad structure, which again does
not seems possible.

Fortunately, even though it does not seems possible to make the diagram (20)
a diagram of operads, we can obtain a similar result albeit with a more involved
diagram. To do this let us first introduce three new species. For g € MG.[V], r € V,
and ¢t € T[V] a spanning tree of g, we denote by oy ) the orientation of g defined
by o(g.t,r)(€) = osr(e) if e € t and o(y,)(e) = (D, ¢e) else. This orientation orients
the edges in t with the orientation induced by the rooted tree (¢,7) and make all the
remaining ends target ends.

Let us define Z C O C ST (ST standing for “spanning tree”) three sub-species of
MG:?,. by

(21) ST[V]=K{(g,0(5:t,r),7) : 9 € MG[V],r € V and t a spanning tree of g},
g € MG,[V] and for each 7, }

(22) O[] =K {;/(g, O(g,t,r)sT) : t(r) a spanning tree of g

€ MG.[V],r €V, and
(23) I[V] =K {(ga o(g,t1,7‘)7r) - (gv o(g,tz,r)7r) .9 [ ] } .

" t1,ts two spanning trees of g

EXAMPLE 2.4. Let V = {a, b, ¢,d}. We give example of elements in ST[V], O[V] and
Z[V]. We colored the edges of spanning trees in red.

(24)

(26)

LEMMA 2.5. The following properties hold:
(i) ST is a sub-operad of MG, isomorphic to MG x PLie,

orc
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(ii) O is a sub-operad of ST,
(iii) Z is an ideal of O.

Proof. Before proving these three items, we first give two equalities which will help
us for the two last items. Let U : MG, — MG be the forgetful functor which sends
an oriented multigraph on the multigraph obtained by forgetting the orientation. Let
g1 € MG.[V1] and g2 € MG,[V5] be two connected multigraphs, ¢ a spanning tree of
g1 and for each v € V3, t(v) a spanning tree of go. When * is the root of the spanning
tree ¢, all the ends of * are target ends. Since the target ends in an oriented multigraph
behave the same than the normal ends in a multigraph, the forgetful functor preserves
the partial composition. For example we have:

UxId ‘/C@ o, [cl<@
Ro

=U x Id %@++%@+

(27)

® @®

o o
o*UxId 0, Ux Id( <@ ).

® “®

More formally, for r € V5, we have:

UxId ((gl, O(g1,t,%)> *) O (927 O(ga,t(r),r)s T))

(28) = <g1|\/1 &) @ v (Z Vg) D ((Z V2)2)€a91(**) @92,7’>

veEN(x*)

= (gl O 927T)‘

Let now r be a vertex in V3. Denote by p the parent of x in the rooted tree (t,r), by
¢(x) its children, by ng,~+(*) the multiset of neighbours of * in g; \ ¢t and by n(x) the
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multiset of neighbours of * in g1, so that n(x) = ng,_+(*) Uc(x) U {p}. We then have

(29) UxlId ((91» °(g1,t,r)v T‘) Ox Z (927 o(gz,t(v),v)v ’U))

vEV,
= Y U X Id((91,0(g1.t.r):7) O« (92, 0(gs.t(0) ) V)

veV,
=) <91|V1@p’£1@ D (sz)@
vEVs UGC *

o (S e (S8 o)
:<91'V1@”(ZV2)@US?*)“(ZV2)@
e (Ew=(Eh) >>
: (W @ (S (£9)) o

= (gl O% g2,T )

Proof of (i) The species morphism from MG x PLie to MGS,.. given by (g,t,7) —
(gUt,0(gut,t,r),7) is an operad morphism and hence its image ST is a sub-operad of
MG?

orc*

FIGURE 1. An example of the isomorphism of item 4.

Proof of (ii) Let Vi and Va be two disjoint sets, g1 € MG/ [V}] and go € MG_[V3]
be two connected multigraphs and for each v € V3 U {x}, t(v) a spanning tree of g;
and for each v € V3, t(v) a spanning tree of go. We have

(30) > (919t 1) 05 D (92, 0(gat(ra).r)s T2)

ri€VAU{*} ro€Vs
= > D (9100 ttr)ir)s T1) O (9250(gs t(ra) ) T2)
’I"IEVlU{*} ro€Va

Then from (28) and (29) we know that applying U x Id to the preceding sum gives
us:

(31) > (grongr).

reVi+Ve
To conclude note that O[V] is the reciprocal image of K{}_ . (g,v)|g € MG.[V]}
by U x Id: ST — MG"®.

Proof of (iii) It is easy to see that Z is a left ideal of ST and hence of O. Let
be g1 € MG.[V4], g2 € MG.[Vz], r € Vi, t a spanning tree of g; and for every
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v € Vo, t(v) a spanning tree of go. Then from (28) and (29) we know that U x

1d((g1,0(g,t,r),T) O Duers, (925 O(gat(v),0))» ¥) 18 Of the form (g1 o g2, 7) if 7 # *, and
of the form ), i, (91 0« g2,v) otherwise. In both cases it does not depend on ¢. This
concludes this proof since Z[V] is the kernel of (U x Id)y : ST[V] — MG:[V]. O

We can see PLie as a sub-operad of ST by the monomorphism (¢,7) — (¢, 0, 7).
The image of the operad morphism v of Proposition 2.3 is then O N PLie and we
have that Z N PLie = {0} and hence O N PLie/Z N PLie = O N PLie.

PROPOSITION 2.6. The operad isomorphism v : T — PLieNO extends into an operad
isomorphism ¢ : MG. — O/T satisfying, for any g € MG.[V],
(32) »(9) = Y (9, 0(g.t(r)r)sT);

reV
where for each r € V, t(r) is a spanning tree of g. Furthermore, this isomorphism
restricts itself to an isomorphism G, - ONGS,./ING,.,.
Proof. This statement is a direct consequence of Lemma 2.5 and its proof. O

The last results are summarized in the following commutative diagram of operad
morphisms.

T ——=—— PLieNnKO/Z ——— PLieN O ——— PLie

| I I |

(33) G, —~— O0NG:.JING: , «— G2 . NO —— G*..NST
MG, ~ 0/ o MG x PLie

2.3. THE MG OPERAD. As shown in the previous subsection, MG and its sub-
operads have some interesting properties and links with PLie. While MG was defined
by explicitly describing MG[V] for each V, the operad PLie was first defined by its
generator and the pre-Lie relation and then is was proven that it is an operad on
rooted tree in [5]. It is then natural to search for generators and relations of MG and
its sub-operads.

To describe a generating family of G, we currently have no better method than
performing an exhaustive search. With the aid of a computer, we therefore construct
this generating family iteratively, arity by arity, incorporating a simple graph if it
cannot be expressed as a linear combination of partial compositions and applications
of the symmetric group action on elements of the previously computed family.

Through this process, we have computed the following family of simple graphs with
fewer than six vertices:

(34)

R
SRR A Y
SRR
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Due to the symmetric group action on G, only the knowledge of the shapes of the
graphs is significant. While (34) does not provide to us any particular insight on
a possible characterisation of the generators, it does suggest that any graph with
“enough” edges must be a generator. This is confirmed by the following lemma.

LEMMA 2.7. Let S be a sub-species of G and let g be a graph in G[V]| with at least
(";1) + 2 edges, where n = |V|. Then g belongs to the sub-operad generated by S if
and only if g € S[V].

Proof. Suppose that g ¢ S[V]. It is sufficient to show that g cannot appear in the
support of any vector of the form ¢, o, go for any g; and go different of g. Hence let
g1 € G'[V1] and go € G[Vz] be two graphs, and denote by e; the number of edges of
g1 and by es the number of edges of g3. Then the graphs in the sum g; o, g have
e1 + es edges. This is maximal when g; and g» are both complete graphs and is then
equal to (“F1) + (";%) =2? — (n— 1)z + (3) where 0 <z = [V3| <n — 1.

If x = 0 then necessarily g1 = @, and g1 o, go = g2 and g appears in the sum
g1 ©« g2 if and only if g = go. This is impossible, hence z # 0. Similarly we have
x # n— 1. The expression 2 — (n — 1)z + (}) is then maximal for z =1 or  =n —2
and is equal in both cases to ("_1) +1< (";1) + 2. This implies that g can not be

2
part of the sum of graphs g; o, go and concludes the proof. O

PROPOSITION 2.8. The operad G is not free and has an infinite number of generators.

Proof. The fact that G has an infinite number of generators is a direct consequence
of Lemma 2.7. Moreover, the relation

(35)

@000 + OO0 - ®O-O© 20-0-0©
=000 + 0O + OO + OO
EOACRONOROROMIOROR0

=0
shows that G is not free. O

As a consequence of Proposition 2.8, it seems particularly involved to find a defini-
tion of G by generators and relations. We did not have any more success in describing
T in such a way even exploiting the monomorphism ¢ : T — PLie. We at least
managed to compute a family of generators for trees over less than 7 vertices:

(36)

N S

As with the previous family (34), this does not give to us any insight on a possible
family of generators.

2.4. FINITELY GENERATED SUB-OPERADS. Since finding family of generators seems
out of reach, let us now directly focus on finitely generated sub-operads of MG. In
particular we will study the operads generated by:

(1) {@ @} which we denote by Gg and which is isomorphic to Com,

(2) {} which we denote by Seg and which is isomorphic to ComMag,

(3) {@ (@©),(@)~(v)} which we denote by SP,
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(4) { @ ,(@ @} which we denote by LP.

First, note that the sub-operad Gy generated by {@ @} is isomorphic to the
commutative operad Com. Indeed, recall from Example 1.16 that Com is the quotient
of the free operad over one symmetric element of size two Eo by the associativity
relation. By definition G4 is also generated by one symmetric element of size 2, and
furthermore we have:

B @O0 =0000=00»00

which is the associativity relation. Hence Gg = Com. This could also be observed
from the fact that we clearly have G4[V] = K&y and hence the map @y — uy
implies an isomorphism from Gg to Com.

The other three cases are more involved.

PROPOSITION 2.9. The sub-operad Seg of G generated by {} is isomorphic to
ComMag.

Proof. We know from Proposition 2.3 that Seg is isomorphic to the sub-operad of
PLie generated by

53

Then [3] gives us that the map which sends the above element to s{, 4y € Ez[{a,b}]
induces an isomorphism between the sub-operad and ComMag. This concludes the
proof. O

Remark that while ComMag = Seg, the image of an element in the canonical
basis of ComMag|[V], i.e. a binary tree with V' as set of leaves, is not a single graph
but a sum of trees with vertex set V.

This result suggests the following more general conjecture.

CONJECTURE 2.10. The sub-operad of G generated by the complete graphs Ky is
isomorphic to Freeg, , the free operad over one symmetric element of size n = |V|.

Proving this would require showing that there are no relations involving only com-
plete graphs of size n in G which is highly non-trivial. In fact this was avoided in the
proof of Proposition 2.9 by using the results of [3] which is somewhat equivalent in
the case of n = 2.

The isomorphisms Com = Gz and ComMag = Seg allow us to see Com and
ComMag as disjoint sub-operads of G which gives us a natural way to define the
smallest operad containing these two as disjoint sub-operads. Denote by G the sub-

species of G generated by {@ @,} and SP the sub-operad of G generated
by these two elements. This operad has some interesting properties. Recall from Re-

mark 1.3 that we use the notation o$ for the grafting of tree in a free operad and that
we denote the equivalence class of = by [z].
PROPOSITION 2.11. The three following operads are isomorphic

o SP
e Ope(G, R) where R is the subspecies of Freeg generated by

(39a) @EEO® - @ OO ©

and
3%)  @OIOO - ©@OLIO® - ® OO
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e Com(ComMag), the assemblies of ComMag.

In particular, SP is binary and quadratic.

FIGURE 2. An element in the generating family of
Ope(G,R)[{a,b,c,d,e, f}].

Proof. The element [@ @] of Ope(G,R) is symmetric of size 2 and follows the
associativity relation (39a). Hence the sub-operad of Ope(G, R) generated by [@ @}
is equal to Com and all the trees in Freeg with V as leaves and whose labels are
all empty graphs over two points are sent over uy when passing to the quotient. In
the same way, the element [(a)~(5)| of Ope(G,R) is symmetric of size 2 and does not
follow any relation involving only itself, hence the sub-operad of Ope(G, R) generated
by [(@)~(b)] is equal to ComMag and [(a)-(b)] = s{4,4) € ComMag][{a, b}].

There is a natural epimorphism ¢ from Freeg to SP which is the identity on @ @
and and which sends a partial composition g1 of g2 on the partial composition
g1 9+« g2. We already proved by (37) that the vector (39a) is in the kernel ¢. The case
of (39b) is also straightforward:

@O-®O=000+ 000
i CACRNORORNONOR OS0!

To conclude that SP = Ope(G, R), we must now show that for any w € Ope(G, R)[V],
¢(w) = 0 implies w = 0. To do this, we first prove the bijection Ope(G,R) =
Com(ComMag). Because of (39b), we have that the vector s¢, .} ¢ [i{b,c} is equal

(40)

to the vector pi .y ¢ S{a,c} F Hic) 5 5{ab} in Ope(G,R). Hence, by iterating this
process, we get that all elements of Ope(G, R) can be written as a sum of equivalence
classes of trees where no s vertex has a p vertex as descendent. This means that
Ope(G, R)[V] has the following generating family (cf. Figure 2 for an example):

(41)

{M,T of (t1,t2y ..., tk) | pr € Com|n], t; € ComMag[Vi]}ﬂz{th,Vk} partition of V7

where i of (t1,ta,..., 1) stands for (... ((pr o%l t1) 062 ta)...) of/k th.

To conclude that Ope(G, R) = Com(ComMag) just remark that the partial com-
position of Ope(G, R) acts the same way than the partial composition over assemblies
of ComMag.

Let now be w of the form 22:1 a;w; where for each 1 < i <[, a; € K and there
is a partition m; = {V;1,..., Vi } of V such that w; = pir, 05 (ti1,ti0,- .., tik,) with
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t;; € ComMag|V; ;]. For i € [l], the image of fir, by ¢ is the empty graph over
m;, and so the image of w; is equal to: |_|;€:1 ¢(ti ;). Hence, for ¢ # j two indices, if
m; # m; the supports of ¢(w;) and ¢(w;) are disjoint. We can then restrict ourselves
to the case where all the w; are on the same partition of V', i.e. m; = {V1,...,V}} for
all indices <.

Denote by G[Vi, ..., Vi] the vector space K{g1 U---Ugx|g; € G[V;]}. Then there
is an isomorphism from G[V7,...,Vi] to G[V1]® - - ® G[V}] defined by g1 U---U g —
g1 ® -+ ® gx which sends ¢(w) on Zézl a; ®?=1 ¢(t; ;). By definition, ¢ sends the
elements ¢; ; on images of the basis elements of ComMag[V;] — G[V;] and hence
form a free family in G[V;]. Hence the tensor products ®?:1 ¢(t;,;) also form a free
family of G[V1] ® --- ® G[V4] and so ¢(w) = 0 if and only if w = 0. This concludes
the proof. O

REMARK 2.12. The elements of Com(ComMag) are assemblies of ComMag which
can be interpreted as forest of binary trees.

From now on we identify @ @ and with their respective image in Com
and ComMag: (i1, and s, 3. We now exhibit the Koszul dual of SP.

ProprosITION 2.13. The operad SP admits as Koszul dual the operad SP' which is
isomorphic to the operad Ope((G)Y,R) where R is the subspecies of Freegv generated

by

(42a) @G < O-E",
@) @O OO + OO OO + OO <@ @,
42) @O OO +OEOEO@E® +O® O EO®"

Proof. Let us respectively denote by r; and ro and r{, r5, and r§ the vectors (39a),

(39b), (42a), (42b), and (42c). Denote by Z the operad ideal generated by 1 and ra.
As a vector space, Z[{a, b, c}] is then the linear span of the set

(43) {ry, (ab) - r1,72, (abc) - ro, (ach) - ra},

where - is the action of the symmetric group, e.g r1-(ab) = Freeg|[(ab)](r1). This space
is a sub-space of dimension 5 of Freeg[{a, b, c}], which is of dimension 12. Hence, since
as a vector space we have

(44) FI‘eegv [{CL, b, C}] = Freeg* [{a7 b, C}] = Freeg [{a’ b, C}]a

we conclude that Z+[{a, b, c}] must be of dimension 7.
Denote by J the ideal generated by 71, r5 and r5. As a vector space, J[{a,b, c}]
is then the linear span of the set

(45) {r1, (ab) -7}, (ac) - v}, rh, (abe) - 15, (ach) - rh, v} .

This vector space is of dimension 7. To conclude, we need to show that for any
elements f € J[{a,b,c}] and x € Z[{a, b, c}] we have (f |z) = 0. For every pair o <
in {a,b,c,+} ordered with the alphabetical order (¢ < *) denote by sxﬂ the dual

of s{4,p and by /‘Xﬁ the dual of iy, gy. Among the 21 cases to check, we have for
example:

(r 1) = (s 0% 8y | bguep ©F Hfab — Hfase} OF fibie})
(46) = (507, 0% 8y | By ©F tgap}) — (Suw 05 Sve | Hgary O Kby
= 5?1/* (M{*,C})Sl\z/c(u{a,b}) - 3)1/* (:u{a,*})sz/c(/‘{bﬁ}) =0,
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and
(47) <(ab0)~r'2|7’2>:
<“b* : +Sa*o*ﬂbvc S{a,*}O*ﬂ{b,c}—u{c,*}O*s{a’b}>

+ sc* O* /‘Lab - M{b’*}o*s{c1a}
= L (8{a,5))Sca (Lip,e}) — M (Bie,s})Sea(8a,by) = How (1gb,01)5ca (S (c.a})
+ San (S{ase) e (ibey) = Sau (e ) ) Hoe(S1aby) = San(bige}) e (S{ea})
+ Sen (80,1 Hap (ib,ey) = Seu(Bge et Hab(Saby) = Ses (b)) Hap (S{ea})
=-1+1=0.
We leave the verification of the 19 remaining cases as an exercise to the interested
reader. O

In order to compute the Hilbert series of SP' we need to use identity (93) and
hence to prove that the operad SP is Koszul.

PROPOSITION 2.14. The operad SP is Koszul.

Proof. Let R be the species defined as in Proposition 2.11 so that SP = Ope(KG, R).
Denote by p(a,b) and s(a, b) the elements of GZ [{a, b} , ab]. Then the following vectors
form a basis B of R7 [{a,b,c},abc]:

(48) b1 = p(p(a,b),¢) = pla,p(b,c)) , v2 =p(p(a,c),b) —p(a, p(b,c))
(49) v’y = s(p(a,b),c)—p(s(a, c),b) — p(a,s(b,c))
(50) v’y = 5(p(a, c), b)—p(s(a,b),c) — p(a,s(b, )
(51) v's = s(a, p(b, c))—p(s(a, ), ¢) —p(s(a, c),b).

We need to show that it is a Grobner bases of (R7). Let us now consider the path-
lexicographic ordering presented presented page 27 in Appendix A with s > p. Then
the leading terms of vy, vy, v’1, v’y and v’ are respectively p(p(a, b), ¢), p(p(a, c), b),
s(p(a,b),c), s(p(a,c),b) and s(a, p(b, c)). We conclude with Proposition A.11. Indeed,
it is shown in [6] that the S-polynomials of pairs of elements in {t1, 02} are congruent
to zero modulo B. We show for example that the S-polynomial of v; and v’y corre-
sponding to ¢ = s(p(p(a, b), c),d) € Freed'[{a,b,c,d},abed] is congruent to zero. We
have

(52) mc,lt(nl)(nl) = —s(p(a,p(b,c)),d)

mqlt(u’l)(nll) == p(ﬁ(p(a’ b)? d)7 C) - p(p(a7 b),ﬁ(c, d))a

which gives us

(53) sc(01,0'1) = p(s(p(a,b),d),c) + p(p(a,b),s(c,d)) — s(p(a,p(b,c)),d).

Let us look how each of the terms of s.(v1,0’;) reduces modulo B:
p(ﬁ(p(aa b)v d)7 C) =v/y p(p(ﬁ(aa d)a b)a C) + p(p(avﬁ(ba d))> C)
=o, P(s(a,d), p(b,¢)) +p(a, p(s(b,d), c),

(54) p(p(a,b),5(c,d)) =o, p(a,p(b,s(c, d)),

s(p(a,p(b,c)),d) =or, p(s(a,d),p(b,c)) + pla,s(p(b, ¢),d))
=v’y p(s(a, d)7p(ba C)) + p(a,p(s(b, d),C)) + p(aap(b75(0’ d)))

Putting this together in (53) gives us that s.(v1, b’1) reduces to 0 modulo B. We leave
the verification of the other cases to the interested reader. O
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PROPOSITION 2.15. The Hilbert series of SP' is given
(1 —log(1—x))? -1

5 .
Proof. The Hilbert series of ComMag is HcomMag(z) = 1 — /1 — 2z hence the
Hilbert series of SP = Com(ComMag) is Hgp(z) = e!~V172% — 1, where the —1
comes from the fact that we consider positive species. We deduce the Hilbert series
of SP' from Hgp and the identity (93). O

(55) Hsp(z) =

The first dimensions dim SP'[[n]] for n > 1 are
(56) 1,2,5,17,74, 394, 2484, 18108, 149904.
This is sequence A000774 of [17]. This sequence is in particular linked to some

pattern avoiding signed permutations and mesh patterns.
Before ending this section let us mention the sub-operad LP of MG generated by

(57) { @ @ @}-

This operad seems particularly interesting to us since its two generators can be con-
sidered as minimal elements in the sense that a partial composition with the two
isolated vertices adds exactly one vertex and no edge, while a partial composition
with the loop adds exactly one edge and no vertex. A natural question to ask at this
point concerns the description of the multigraphs generated by these two minimal
elements.

PROPOSITION 2.16. The following properties hold:

e the operad SP is a sub-operad of LP;
o the operad LP is a strict sub-operad of MG. In particular, the multigraph

(58) @O—C_©
is in MG but not in LP.

Proof. e The following identities show that is in LP[{a,b}] and hence
that SP is a sub-operad of LP:

00~ & - We
Y 00 Go oY -'©@

e Using computer algebra, one generates all vectors in LP[{a,b, c¢}] with three
edges and shows that the announced multigraph is not a linear combination
of these. 0

3. GRAPH INSERTION OPERADS

The goal of this section is to give a general construction of operads on multigraphs
where the partial composition of two elements g, o, go is given by

(1) taking the union of g; and ga,

(2) removing the vertex x,

(3) independently connecting loose ends with vertices of gs.
What we mean by independently is that the way we connect one end does not depend
on how we connect the others. Note that we may connect a loose end to more than
one vertex and hence increase the number of edges.
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3.1. CONSTRUCTIONS ON SPECIES AND OPERADS. We begin by defining new con-
structions on species and operads. We define three constructions: the augmentation,
the semi-direct product and the maps from a set to an operad.

DEFINITION 3.1. Let A be a set and S be a species. An A-augmentation of S is a
species A-S such that A-S[V] = S[A x V] for every finite set V.

ExXAMPLE 3.2. Let A be a set.

e Instead of considering an A-augmented multigraph on V' as a multigraph on
V x A, we consider them as multigraphs on V where the ends are labelled
with elements of A. In particular, the species of oriented multigraphs MG,
is in bijection with the species of {s, t}-augmented multigraphs {s,t}-MG.
For ¢ € MG and o an orientation of g, the pair (g,0) is sent on augmented
the multigraph obtained by respectively labeling by s and t its sources and
targets ends.

e Instead of seeing the elements in A-PoL,[V] as polynomials with set of vari-
ables the couples (v,a) € V x A, we consider them as polynomials with set of
variables {v, |v € V,a € A} of elements of V indexed by elements of A.

REMARK 3.3. For S and R any two species and f : R — S a morphism, f extends to

a morphism between any two A-augmentations of R and S by A-R[V] 2 R[A x V] ER
S[A x V] =2 A-S. In particular the morphism MG — PoL, given in subsubsection 1.7
extends to a morphism which sends an edge (ugq, vy) on the monomial w,vy,.

In the following proposition, we give an operad structure to a Hadamard product
S x O where S is a species and O is an operad.

PROPOSITION 3.4. Let S be a linear species and O an operad. Let ¢ be a morphism
from S"- (S x O) to S and denote by x ol y = p(xz @ y @ f). Suppose that ¢ satisfies
the following hypotheses.

Commutativity.: For z an element of S” and y® f and 2®g two elements of S x O,
(59) (wof, y)ol, 2= (0, 2) ol y.

Associativity.: For x an element of S', y ® f an element of (S x O) and z ® h an
element of S x O,

fou
(60) (wol, y)of, 2 = w 03" (yo, 2).

Unity.: There exists a map e : X — S such that
(61) zofo e(v) =8S[o](z) and e(x)of z =z,

where e is the unit of O and o is the bijection which sends *x on v and is the
identity on the rest of the set on which x is defined.

Then the partial composition of defined by

(62) o?:(Sx0O)-Sx0O—=Sx0O

(z@f)@[y®g) —zoly® fo.yg

makes S X O an operad with unit e. We call this operad the semi-direct product of S
and O over ¢ and we denote it by S x, O.

Proof. We must verify that the three diagrams (1.12) commute.
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e Let V7, Vo, V5 be three disjoint sets and z® f € (Sx O)"[V1], y®g € S x O[V4]
and z® h € S x O[V3]. We then have
(@@ f)of, (y®g)) of, (2@ h) = ((x 0%, y) of, 2) @ ((f 0x, g) 0x; h)
(63) = ((wol, 2) o2, y) ® ((f 0x h) 0sy 9)
= ((z® f)of, (z@h)) oF, (y® 9),

where the second equality follows from (59) and the fact that O is an operad.
e Let V1, Va, V3 be three disjoint sets and 2@ f € (SxO)'[V1], y®g € (SxO)'[Va]
and z® h € S x O[V3]. We then have
(@@ f)of, (y®g))of, (@ h) = ((x oL, y) o, z) @ ((f oxy ) s, h)
ou h
(64) = (20" (yol, 2)) @ [ ox (g 0sy 1))
=(@®f)of, (y®g)of, (z®h)),

where the second equality follows from (60) and the fact that O is an operad.
o Letbex® f € (SxO)[V] and v € V. We then have

(65) (2@ f)of (e(v) ® eo(v)) = 2 05°" e(v) ® f o, e(v) = S[o](x ® f)

where ¢ is the bijection which sends * to v and is the identity on V. The last
equality follows from the first equality from (61) and the fact that O is an
operad. Let now be 2 ® f € S x O[V]. Then

(66) (e(x) @eo(¥)) ox (z® f) = e(x) ol z@eo(x) o f =@ f
where the last equality comes from second equality from (61) and the fact
that O is an operad. O

When it is clear from the context, we do not mention ¢ and just write semi-direct

product of S and O and denote it by S x O. In practice, the operad structure O of
S x O is transparent and we are just interested in what happens on S, that it is to
say the “pseudo partial composition” x o y.
EXAMPLE 3.5. For C a finite set, let C be the trivial species given by C[V] = KC for
each set V and let C = X 4 Cqy. This second species has an operad structure given
defined by, for ¢; € C'[V4] and ¢3 € C[Va]: ¢10xca = ¢1 if Vi # @ and x 0, ca = ¢
when V; = @ and * € X[{*}].

Let F¢ = X + F§, be the species of maps with co-domain C: FC[V] =
K{f:V — C} for |V| > 1. We define a semi-direct product structure F¢ x, C.
Suppose that |V U {x}|,[Va| > 1 and let be f € FE[V; U{x}] and g@x € FC x C[Va].
We then have f o g = 0if f(x) # ¢ and f oS g(v) = {‘zgzg EZ i “2 else. When
Vi = @ or V4 is a singleton, the action of ¢ is implied by the unit hypothesis.

We call this operad the C'-coloration operad. When this operad is considered alone,
one can see an element (f,c) € F¢ x C[V] as a corolla on V with its root colored
by ¢ and its leaves v € V colored by f(v). For example, for C' = {Red, Green, Blue},
V ={a,b,c,d} and f € FC[V] defined by f(a) = Red, f(b) = Red, f(c) = Blue, and
f(d) = Green, the element (f, Blue) would be represented by the following corolla:

®)
(67) QT %
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The partial composition consists then in grafting two corollas if the root and the leaf
on which it must be grafted share the same colors. For instance we have:

0
(68) Oy C%? 0 and
QI D% -. 0o
(69) = @ ©.
C%@ °@ .‘0

A way to define colored operads (see [19] for more details on the theory of colored
operads) is then to define them as any Hadamard product of a C-coloration operad
with another operad. In particular, when doing this with a free operad, the elements
of the product can be seen as Schroder trees with colored vertices and the partial
composition as the grafting of trees if the root and the leaf on which it must grafted
share the same color.

Let us now define our last construction.

DEFINITION 3.6. Let A be a set and S be a species. The set species of functions from
A to S is defined by F5[V] = K{f: A — S[V]}.

The following proposition then tells us that if O has an operad structure, it natu-
rally reflects on F¢.

ProOPOSITION 3.7. If O is an operad with unit e, ]-'ff has an operad structure with
the elements e, : A — {e(v)} € F{[{v}] as units and partial composition defined by

fiox fala) = fi(a) o fa(a).
Proof. We must verify that the diagrams (1.12) are indeed commutative.

e Let be f; € (FQ)"[Vi], f2 € FS[Va] and f3 € F9[V3]. Then for all a € A, we
have

((f10uy f2) 0uy f3)(a) = (f1 0x, f2(a)) o, fa(a)
= (f1(a) o, fa(a)) ox f3(a)
(70) = fi(a) ox, f3(a) ox f2(a)
= (f1 04, f3(a)) ox, f2(a)
= ((f1 045 f3) 0x; f2)(a),

where the third equality follows from the fact that O is an operad and the
other equalities from the definition of the partial composition on ]—"f. Hence,

we have (f1 oy, fz) 0u f3=(f1 e f3) 0xy fo.
o Let be f1 € (FQ)'[V1], f2 € (FQ)'[Vz] and f3 € F[V3]. Then for all a € A:

((fl Oy fz) Oy f3)( ) ( 1 Oxy fz(a)) Oy f3(a)

= fi(a) ox; f2(a) ox f3(a)

(71) = fi(a) ox, f3(a) ox f2(a)
= (f1 04, f3(a)) 0x, f2(a)

= ((f1 045 f3) 04, f2)(a),

where the third equality comes from the fact that O is an operad. Hence, we

have (f1 0k, f2) 0xy f3 = (f1 0xy f3) 0xy fo.
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e Let be f € (FQ)'[V] and v € V. Then for all a € A, we have the equalities
foxey(a) = f(a) ox e(v) = Olo](f(a)) and so f o, e, = Olo](f), where o is
the bijection which sends * to v and is the identity over V. If now f € F¢,
we have for all a € A: e, o, f(a) = e(x) o, f(a) = f(a) and so exo0, f = f. O

Note that if A is a singleton then F§ =2 O. Let A, B, C, D be four sets such that
A and B are disjoint and let f: A — C and g : B — D be two maps. We denote
by f W g the map from AU B to C U D defined by f W g(a) = f(a) for a € A and
fwg(b) =g(b) for b € B.

PROPOSITION 3.8. Let A and B be two disjoint sets and O1 and Oy be two operads.
Then the species .7-'2%02 defined by ]:1(49’15}02 V] = {f Wgl|fe ]—'fl,g € ]—'gZ} is an
operad with same partial composition as in Proposition 3.7.

Proof. We remark that since A and B are disjoint, f1 W fo0,g1Wgs = (f10.91)W(f20.
92). To conclude we apply what was already shown in the proof of Proposition 3.7. O

3.2. APPLICATION TO MULTIGRAPHS. We now use the construction of the previous
subsection to define operad structures on multigraphs.

Recall from Remark 3.3 that there is a monomorphism from A-MG to A-PoLy.
We now make use of this monomorphism and consider the elements of A-MG as both
multigraphs and polynomials. Let p € PoLy[V] be a sum of polynomials. Then for
A a set and a € A, we denote by p, € A-PoL, the sum of polynomials obtained
by indexing all the variables in p by a. Let now p be any polynomial and z1,...,z,
a subset of its variables. Then for ¢1,..., g, n polynomials, we expand the notation
introduced in equation (9) and denote by p(,, g, the polynomial (... ((p10os, 1) o,
q2) - .- ) 04, qn- This notation generalizes to sum of polynomials by recalling that the
multiplication and addition of polynomials act as bilinear maps.

EXAMPLE 3.9. For A the singleton {a} and p the polynomial zy @ 2 + 2y €
PoL, [{z,y, z}] we have p, = 4Ys B 22 + 2,y4. Let now p = x & yz, ¢ = u+ v and

q2 = 1 @ x2. Then
(72) Plocagiyea =0 ® gz = (utv)® (21 2)2
=UDPX12D X2z +VDxT12D T2

1
KPOL+

THEOREM 3.10. Let A be a set and ¢ be the morphism from A-MG-(A-MG x F, )

to A-MG given by

(73) (91 ® g2 ® f) = g1 0] 92 = g1l (s0f(a)e} © 92-

Then ¢ satisfies the hypotheses of Proposition 3.4 and we can consider the semidirect
1

product of A-MG and ]-'ZPOL* over .

Proof. We need to check that ¢ satisfies the three hypotheses of Proposition 3.4. The
first two are simply computations over polynomials.

Commutativity.: Let g; be an element of A-MG” and ¢, ® f and g3®h two elements
of A-MG x F% Then
(9101, 92) 0" g5 = (91] {1 f(a)a} B 92)| {20 in(a)a} ® 3
= 911 {10 f(a)a} {x20a—h(a)a} D g2 D g3
(74) = 9l {rzah(@)a} {10 t-F(a)a) B 93 © g2
= (91l {x20-h(@)a} D 93) (10 f(a)a} B 92
= (g 022 g3) 0;7:1 g2.
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Associativity.: Let be g; an element of A-MG’', go ® f an element of (A-MG x

1 1
]-'ZPOL+)’ and g3 ® h an element of A-MG x }"EPOL*. Then
(91 Ofl 92) 0532 93 = (91l{s10F(a)a} D 92)| {400 h(a)a} D 93

= 91l {r1a s (@a} Hrzan(@)a} © 92l (a0 n(a)a} © 93
(75) = gl‘{*laef(a/)al{*zu(—h(a)a}} ® 92|{*2a<—h(a)a} g3

- gl‘{*laﬁfo*zh(a)a} ® ng{*2a<—h(a)a} ® g3

= g1 o177 (go ol, g3).

Unity.: Let e : X = A-MG be defined by e(v) = @(,} and let ex the unit of ]-':POI
Let be g € A-MG'[V] and v ¢ V. Then

(76) 907" e(v) = glps,cer@a) ® Do)
= gl {xaevay = A-MGlo](g),
where o is the bijection which sends * to v and is the identity over V. If now
g € A-MGJV], then for any f,
(77) e(*) of g = Byl (ris(@a) B9 =9 0
EXAMPLE 3.11. Let A be the set of shapes {4, I ,A} and let be g1 ® f1 € (A-MG x,,
.7:KPOI+) [{a,b}] and g» ® fo € A-MG Kx,, fKPO *[{c,d, e}] defined by:

() ®—adx ¢—>che+c
(78) ® o) , ©{m—d
00 A bt (m—=(d) |a—c+d

The partial composition (g1 ® f1 of (g2 ® f2) is then:

" TP PP LP LS

Qn—>a®c@e+a@c
KW —b
A—b+c+d

The sum ¢; of ? g2 is obtained removing * from g; and reconnecting the loose ends by
looking at the images of their shapes by fo. The map f o, f2 is obtained by composing
the images of fi with the images of f; as in Proposition 3.7. Remark that the two first
elements of the sum had one of their edge duplicated: this happens when reconnecting
the end labeled by ¢ to ¢ @ e.

In all the following, we only consider this semi-direct product and we drop the ¢
index.

DEFINITION 3.12. We call graph insertion operad any sub-operad of A-MG x .7:KPOL+ ,

for A a set and ¢ as defined in Theorem 3.10.

REMARK 3.13. This notion of graph insertion operad is different than the one men-
tioned in [11], in the context of Feynman graph insertions in quantum field theory.

While defining a graph insertion operad seems involved, it essentially is equivalent
to finding sub-operads of KPOL_1|r7 i.e. sums of degree 1 polynomials stable by composi-
tion. Let us give two simple examples of graph insertion operads. Recall from Section 1
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that we have a natural embedding of ID in KPOL,, and three natural embeddings of
E+ in KPOL+.

EXAMPLE 3.14. G* has a natural operad structure given by G* = G x Ip = {0} -G x
.7:%8}. For (g1,v1) and (g2, v2) two pointed graphs, the partial composition (g1, v1) o
(g2, v2) is then equal to (g3, v1 |4y, ) Where g3 is the graph obtained by connecting all
the ends on * to ve. More formally,
(91,v1) 04 (92,02) = (91 |5ty © 92,1 |4e-0,)

= (Glo](91) @ g2, v1]s-v5);

where o is the bijection which sends * on vy and which is the identity on the rest of
its domain. For instance, we have:

o] o]
(81) O o, = () @
O, @)

Remark that the operad NAP [12] is a sub-operad of the operad above and hence is
a graph insertion operad.

(80)

ExaMPLE 3.15. G has a natural operad structure given by G =2 G x E; 2 {0}-G x
-7:?0}’ where we consider here the embedding V' + @,y v. For g; and g two graphs,
the partial composition g; o g is then the graph obtained by adding an edge between
each neighbour of * and each vertex of go. More formally, for g; € G'[V;] and g €
G[VQ]Z

91« G2 :gllﬂ—@Vz D g2

=qgln® @ v P Dy
(82) ' ven(x) veEVZ

=ag1ly, © D v1v2 © g2,
viEn(*),v2€Va

where n(x) is the set of neighbours of *. Each of terms of the last line have a combina-
torial interpretation: g1|y, is g1 to which we removed *, the term @me”(*)mevz V1V
means that we add an edge between any element in n(x) and any element in V5, and
finally the term go means that we keep all the edges of go. For instance, we have:

(o) ()
(83) © o, = eee
® @)

Let us now prove that the two partial composition introduced in subsection 2.1 do
indeed make MG}, and MG operads.

Proof of Theorem 2.1. Recall from Example 3.2 that we have a bijection MG,, =
{s,t}-MG. The isomorphism MG’ = {s,t}-MGxIDxE; ¥ {s,t}-MG } Fi

{s}:{t}
give the desired operad structure on MG}, when considering the embedding V' +
> ,ey v of By in KPOLY. O

Proof of Theorem 2.2. This is the operad structure on MG given by MG = MG x
E; = {0}-MG x fﬁf} when considering the embedding V'~ > .\, v of E in
KPoL!. O
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We end this section by mentioning that while we restricted ourselves to multigraphs
in this paper, all the work done in this section naturally generalizes to the very general
framework of multi-hypergraphs, whose edges can contain any non-null number of
vertices and can appear more than once. This is done by replacing MG by MHG, the
species of multi-hypergraphs, and KPOLi_ by KPoL, in Theorem 3.10. In this more
general context, we can also connect a loose end to a group of vertices, which also
allows to increase the number of vertices of the edges.

APPENDIX A. KOSZUL DUALITY AND KOSZUL OPERADS

As said at the end of Section 1, two advantages of defining an operad by its generators
and relations are that it is possible to construct (under some conditions) its Koszul
dual and that it is possible to check if the operad is Koszul.

KoszuL DUALITY. Let us begin by defining the Koszul dual of an operad. To do this,
we consider from now on that we have an arbitrary order for every finite set V in
order to consider the signature of a bijection between two different sets.

For S a linear species, we denote by S* the dual species of S which is defined by
S*[V] = S[V]* and S*[0](f) = f o S[c~!]. We denote by S" the species defined by
SY[V] = S*[V] and SY[o](f) = sign(o) f o S[c 1], where sign(c) is the signature of o.
DEFINITION A.1. Let O = Ope(G, R) be a binary quadratic operad. Define the linear
form (—|—=) on Freegv) X Free(g2) by
(84) (f10x f2| 21 0x w2) = fr(z1) fa(22),

The Koszul dual of O is then the operad O' = Ope(GY, R*) where R+ is the orthog-
onal of R for (—|—).

EXAMPLE A.2. The Lie operad Lie is the quotient of the free operad over one an-
tisymmetric generator by the Jacobi relation. More formally, denote by [a,b] the
generating element of E[{a,b}] and by [b,a] = (ab) - [a,b] so that [b,a] = —]a,b].
Then Lie = Ope(Ey,R) with R the sub-species of Free%) generated by the Jacobi
relation [a, [b, c]] + [¢, [a, b]] + [b, [¢, a], where [a, [b, c]] stands for [a, %] o, [b, ¢] (one can
check that this is indeed stable under the action of &y, ) and hence R is indeed
a species). This operad is the Koszul dual of Com. Indeed, for every pair a < (8 in
{a,b, ¢, *} ordered with the alphabetical order (¢ < ) denote by s 5 = [, 5] the dual
of 514,57 € ComMag[{ca, 3}]. Then we have, for example:

(85)  (Sau Ox Spe + 8% Ox Sap + S5k Ox Sca | S{a} Ox S{bic} — S{eyx} Ox S{ah})
= (500x5pc | S{a ) OxS{b,c}) F (550wt | 5{a,x}OxS(b.c})
+ (55405500 | 5{a,#) xS {b,c})
— (57,0u85c | S{cx10xS{ap}) — (S00uSup | S{c,x10x5ap})
— (85204800 | 51,1058 {a b))
= S (5{ae})50e(5qv.ct) + 55 (5{a)Sap (Sqv.ct) + 55 (5{ae})Sea(S(b.c})
— San(80c1)35c(8ab}) = Sen(S{e1)5ab(8(a0}) = s (5{c,v})Sea(S1a,b})
=1404+0-1-0-0=0.
Koszul, oPERADS. Koszulity is an important aspect of operad theory. We only give
here a very quick overview of Koszulity and Grébner bases for operads which hides

a lot of the theory. We do not give the general results but only restricted versions
which suffice for our use. We refer the reader to the literature; for a broader approach
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of the topic, see for example [13, 16, 9, 6]. In particular, all the examples presented
here come from [6].

In order to give the characterisation which interests us, we need to introduce the
concepts of .Z-species, shuffle operads and Grébner bases. Informally, we can see these
objects as the same as species and operads, except with a total order on every set of
vertices.

ZL-species. A linear positive £ -species consists of the following data:

e for each finite set V' and total order [ on V', a vector space S[V,!], such that
S[@, @] = {0}.

e For each increasing bijection o : (V,1) — (V’,1’), a linear map Slo] : S[V,I] —
S[V’,l']. These maps should be such that S[oq003] = S[o1]0S[o2] and S[Id] =
Id.

In the sequel, we write order to designate a total order and .Z-species to designate
linear positive Z-species. For S an .Z-species and [ an order on V', we also denote
by S[l] = S[V,I]. We can do this since the data of V is included in [. As for species,
we denote by X the .Z-species defined X[V,I] = {0} if V is not a singleton and
X[{v},v] = Ko else.

As in the case of classical species, .Z-species also have constructions on them, but
before giving them, let us give some notations.

e For [ an order on V and W C V a subset of V', we denote by Iy the order on
W induced by .
e Forl=1y...1, an order on a set V of size n, i € [n] and * € V, we denote by

1<« the order ly...l;_1 *1;...1, on VU {x}.

e For [',...1* k orders on pairwise disjoint sets Vi,...,Vi, we denote by
sh(l',...,IF) = {w |wy, = li} the set of shuffles of I',...,1*. Note that this
is an “associative operation” in the sense that for {!,2,13 three orders, the
union of the shuffles of I* with the elements of sh(I2,1?) is exactly sh(I', 12, [?).

e The shuffle compositions COMPg[V, 1] of an ordered set (V,l) are the com-
positions P = Py, ..., P, of V such that, for every 1 < i < j < k, min; P; <
minl Pj.

Let R and S be two linear .Z-species and [ a total order on V. Denote by n = |V|
and let be i € [n]. We define the following operations.

Product R-S[V,il= & R[l'l®S[l"],
lesh(l’,1'")

i-th derivative Si[V, ] =S[Vu{x},I & %],

k
Composition — R(S)[V,I] = &P (R[{Pl, ..., Py}, Pl® @ S[F;, lpi]>.
PeComPgy [Vi1] =1
Since we have the Z-species X and the notion of composition, we can define
Schroder tree on .Z-species in the same way as for species: if S = X + So+, then
s = X + So+(F%). In this case, for S a L-species, .#5[V] is the vector space of
rooted planar trees with internal vertices decorated with elements of S and set of
leaves V. This is because of the orders: instead of indexing with partitions in the
composition we use shuffle compositions.
For S a Z-species and [ an order on V, the fact that we have an order enables us
an easier notation of the elements of .#5[V, 1] as operations, e.g. a(ly,...,1,).

EXAMPLE A.3.Let S be the Z-species defined by S[V,I] = {0} when |V| # 2 and
S[V,1l] = K{1,...n} otherwise, for n an integer greater than 1. Then the generators
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of .ZgM[[3], 123] are of the form

1 2 1 3 2 3

(86) 3, 2 and 1 ,

where 1 < z,y < n. This is because the only shuffle compositions of size 2 of [3] are
(12,3), (13,2) and (1,23). These trees can be denoted in a more compact way by

Mm(#y(172)73)5 ﬂx(ﬂy(173)v2) and :U‘:C(L#y(273))'

Let us end this brief presentation of Z-species by giving their link to classical
species. Let .Z be the forgetful functor which send a species S on the Z-species S7
defined by:

e for [ an order on V, S7[V,1] = S[V].
e For o : (V,1) = (V',I') an increasing bijection, S7 [o] is given by

(87) SZV, 1] =S[V] Z S[w] = s7[w, 1.
e For f:S — R a species morphism, f7 is the .Z-species morphism given by
(88) fZ 87,0 =SV S RV = R7 [V, 1].

This is a forgetful functor in the sense that we forget the action oy on S[V]. We have
the following fundamental proposition from [6].

PROPOSITION A.4 ([6, Proposition 3]). Let S and R be two species. Then
(89) (R(8))7 = R7(S7).

Shuffle operads. We would like to define shuffle operads as .Z-species satisfying
the same axioms that a linear species must satisfy to be an operad. For now we can
not do this because we do not have the notion of derivative of a shuffle operad O'.
Fortunately, there is a way to make sense of the different species appearing in the
diagrams (1.12).

For I an order on V' and v € V, denote by arg;v the index of v in I: lyrg,, = v. For
R and S two .Z-species we define the .Z-species R’ - S and R” - S - S as follow:

R-SV,= ® R™®i[es[,
(90) lesh(l1,12) ] .
RII . SQ[‘/, l] — ® Rarglll,arglll [ll] ® S[[Q] ® S[lg]

lesh(I1,12,13)

A shuffle operad is then a Z-species O with a unity e and a partial composition
osh . 0. O — O such that the diagrams (1.12) commutes. For S a .Z-species, the
free shuffle operad over S is denoted by Freegh and defined in the same way as the
free operad over a species. The same goes with the ideal of a shuffle operad and the
notation Ope,, (G, R).

REMARK A.5. With the notations of elements of the free operad as operations,
the partial composition of the free operad is then the composition of operation:

fra (oo )05y () = (e iy (1), ),

We have the following corollary from Proposition A.4.

THEOREM A.6 ([6, Corollary 1]). Let G be a species. The image by F of the free operad
generated by G is isomorphic to the free shuffle operad generated by F(G). For R a
sub-species of Freeg, the image by % of the operad ideal generated by R is isomorphic
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to the shuffle operad ideal generated by % (R). This writes as Freeg =~ Freegfgz and
(R)7 = (R7). Hence Ope(G,R)7 = Ope,,(G7,R7).

Admissible order. Let S be a Z-species. In order to define the notion of Grébner
bases, we need to introduce an order on the trees generating Freegh[V7 I]. Instead
of giving the broader notion of admissible order defined in [6], we only give a small
variation of the path-lexicographic ordering.

First for every order [ on V, fix a basis of S[I] and an order on this basis such that
for every x in the chosen basis of S[l] and ¢ : I — I, o -z is also in the chosen basis of
S[l'] and for y an other element of the basis greater than x we have o -z < o -y. That
is to say, the order does not depend on the labels (but it can depend on their relative
order). Given an ordered basis, we also have an order on the words on elements of
the basis given by the lexicographic order. Let now be t € Freeg"[l; .. .1,] such that
every internal node is labelled by an element of the chosen bases. For all ¢ € [n], there
is a unique path from [; to the root of t. Denote by a; the word composed, from left
to right, of the labels of the nodes of this path, from the root to the leaf. We associate
to t the sequence (aq,...,a;, w), where w is the word obtained by reading the leaves
of t from left to right.

For two trees t,t' € Freegh, with associated sequences (ai,...,a,,w) and
(by...,bn,w') we then compare t and ¢’ by lexicographically comparing a; with by
then ay with by, etc, and reverse lexicographically comparing w with w’ if a; = b; for
all 7.

EXAMPLE A.7. The .Z-species S of Example A.3 have natural ordered bases equal to
the set {1,...,n} with the natural order. The sequences attached to the given trees
are then respectively (zy,zy, 123), (zy, x, zy, 132) and (z, zy, xy, 123) and we have

1 2 1 3

(91) 3 > e 2

ife>a'orz=2"andy >y orz=a"and y =1y

Now remark that trees in Frees"[V,!] with basis elements as internal node labels

make a basis Frees"[V,]. Hence any = € Freei" can be written as a sum of such
elements and we define 1t(x) the leading term of x as the maximal element in this
sum.
Divisibility and S-polynomials. Let S be a .Z-species. A tree t of Freegh is divisible
by another tree ¢’ of Freegh if ¢’ is a sub-tree of t. Here a sub-tree must also conserve
the order of the leaves. A tree u of Freel" is a small common multiple of two tree t
and ¢’ if it is divisible by both ¢ and ' and its number of vertices is less than the total
number of vertices of ¢ and ¢'.

EXAMPLE A.8.Let S be an Z-species, let | = [i,...l, be an order and let
a(B(l1,13),7(B(l2, 16), 14, 15)) be an element of Freei". This tree has among its
divisors Oé(ﬂ(ll,lg),lg) and ’}/(ﬁ(ll,l4),lg,lg) but not ’y(ﬂ(ll,lg),l27l4).

If ¢ is divisible by t/, then there exists trees o and fSi,...,08, such that t =
al...,t'(B1y-- ., Bk),...). We denote by my the operation on any tree with same
number of leaves than ¢’ which associate to a tree u the tree (..., u(B1,...,Bk),...).
Let now V be a finite set, [ an order on V and z,y € Freed"[V,l]. Assume lt(z)
and lt(y) have a small common multiple u. Then we have m, 1) (It(2)) = u =
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My 1e(y) (16(y)). We call S-polynomial of x and y (corresponding to u) the element

Cy
(92) Su (:177 y) = mu,lt(w)(x) - ?mu,lt(y) (y)’
Y

where ¢, and c, are the respective coefficient of the leading terms of x and y.
Grobner bases and Koszulity. We can finally give the definition of a Grébner
bases and a Koszul operad.

DEFINITION A.9 ([6, Definition 13]). Let G be a L -species and R be a £ -sub-species
of Freegh. Let B be basis of R. We say that B is a Grobner bases of R if for every
x € (R), the leading term of x is divisible by the leading term of one element in B.

DEFINITION A.10 ([6, Corollary 3]). Let G be a .£-species and R be a quadratic L -
sub-species of Freegh. We say that Ope,, (G, R) is Koszul if R admits a Grébner
bases.

Let G be a set species and R be a quadratic sub-species of Freeéh, We say that
Ope(G, R) is Koszul if Ope,,(G7,R7) is Koszul.

When O is a Koszul symmetric operad, it admits a Koszul dual O'. In this case
the Hilbert series of O and O' are related by the identity:

(93) Ho(—He (—t)) =t.
Let us finish by a characterisation of Grobner bases.

PROPOSITION A.11 ([6, Theorem 1]). Let G be a £ -species and R be a .£-sub-species
of Freeéh. Let B be basis of R. Then B is a Grébner bases if and only if for all pair

of elements in B, their S-polynomials are congruent to zero modulo B (i.e. they are
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