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Combinatorial Gottsche-Schroeter invariants

In any genus

Gurvan Mével

ABSTRACT Gottsche-Schroeter invariants are a genus 0 extension of Block-Géttsche invariants.
They interpolate between Welschinger invariants involving pairs of complex conjugated points
and genus 0 descendant Gromov-Witten invariants. They can be computed by a floor diagram
algorithm.

In this paper, we show that this floor diagrams recipe actually leads to some invariants in
any genus. This generalizes Gottsche-Schroeter invariant in higher genus in a combinatorial
way. We then prove some polynomiality result and establish a link with invariants defined by
Shustin and Sinichkin. We provide many examples. In particular, we conjecture that these
combinatorial invariants satisfy the Abramovich-Bertram formula.

1. INTRODUCTION

1.1. ENUMERATIVE GEOMETRY. Consider X a complex algebraic and non-singular
surface, and let £ be a sufficiently ample line bundle over X. We define curves on
X as the zero-sets of sections of £. Given a non-negative integer ¢, let N°(£) be the

number of irreducible curves on X with J nodes passing through % — 4 points
in generic position. This number is known as a Severi degree. It does not depend on
the points configuration as long as it is generic. Because of the adjunction formula,
we could consider the dual problem of determining Ny(£) the number of curves on X
of genus g and passing through ¢;(X) - £ — 1 4 g points. This number corresponds to
some Gromov-Witten invariant.

In a real setting, these counts are not invariants as they depend on the configuration
of points we choose. However, a genus 0 real counterpart has been highlighted by
Welschinger [29]. He showed that on some surfaces, counting curves passing through
a configuration of real points with signs +1 leads to an invariant. More generally, when
choosing the configuration of points one can pick pairs of complex conjugated points.
If we fix an integer s, then the number of curves passing through a real configuration
of points with s pairs of complex conjugated points and counted with signs again does
not depend on the configuration itself, as long as it has the appropriate number of
points and is generic.

It is difficult in general to compute these numbers. It was not before the end of the
XXth century that recursive formulas for the complex enumeration have been proven
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GURVAN MEVEL

[21, 11]. Caporaso-Harris type formulas have also been obtained for Welschinger in-
variants [18]. The behavior of these counts when the line bundle varies has also been
studied, see [12, 16, 13, 27] for instance. Let us last mention that the rational Severi
degrees of the Hirzebruch surfaces Fy and Fy satisfy the Abramovich-Bertram formula
[1]. This result has been generalized by Vakil in any genus [28].

1.2. THE TROPICAL APPROACH. The emergence of tropical geometry provided new
ways to compute these numbers. A significant breakthrough is Mikhalkin’s correspon-
dence theorem [22] that turns counts of algebraic curves on toric surfaces into counts
of tropical curves with some multiplicities. He also gives a version of his correspon-
dence theorem suitable to determine the Welschinger invariants when s = 0, i.e. when
there is no pair of complex conjugated points in the configuration. This has been
extended by Shustin [24] to the case s > 1. Following Mikhalkin’s correspondence
theorem, Brugallé and Mikhalkin reduced the enumeration of tropical curves to the
enumeration of floor diagrams with some multiplicities [9, 10].

Through this tropical approach, one can recover some results or prove new ones
regarding the enumerative problems we are interested in. For instance, Franz and
Markwig gave a tropical proof of the Abramovich-Bertram formula [14]. Brugallé and
Markwig generalized the Abramovich-Bertram and Vakil’s formulas to the Hirzebruch
surfaces F,, and F,, 5, by working in the tropical world and using a correspondence
theorem [8].

1.3. REFINED INVARIANTS. In the tropical enumeration, Block and Goéttsche pro-
posed to use a refined multiplicity, which is no longer an integer but a symmetric
Laurent polynomial in a formal variable ¢ [3]. Itenberg and Mikhalkin showed that
the count with Block-Gottsche multiplicities also leads to an invariant [19], known as
the Block-Géttsche invariant and denoted by G4(A)(g), where g is the genus and A
is the polygon which defines the toric surface we look at. Tropical refined invariants
have the property to interpolate between complex and real enumeration of curves :
plugging g = 1 we get Gromov-Witten invariant, and plugging ¢ = —1 we get tropical
Welschinger invariant.

In the rational case, Gottsche and Schroeter extended Block-Gottsche invariants
and defined a refined broccoli invariant now taking into account the number s of pairs
of complex conjugated points we fix in the points configuration [17]. These invariants
are denoted by Go(A, s)(¢) and correspond to Block-Géttsche invariants for s = 0.
It now interpolates between the broccoli invariants of [15], i.e. Welschinger invariants
involving pairs of complex conjugated points, and genus 0 descendant Gromov-Witten
invariants. Gottsche-Schroeter invariants appeared to be a particular case of some
invariants defined by Blechman and Shustin [2]. Schroeter and Shustin generalized
Gottsche-Schroeter invariants to genus 1 [23]. Simultaneously and independently with
this paper, Shustin and Sinichkin proposed a generalization of the work of [23] to any
genus [25]. They also showed that the evaluation at ¢ = 1 gives the number of curves
satisfying some incidence and tangency conditions.

The computation of the tropical refined invariants is possible using the floor di-
agram algorithm, adapted to the refined setting by Block and Gottsche [3]. With
an additional decoration called pairing, the floor diagrams can also be used to com-
pute the broccoli invariants in genus 0 from [17], see [7]. In particular, the existence
of refined invariants ensures that the diagram count does not depend on the chosen
pairing. Using floor diagrams and the degeneration formula in Gromov-Witten theory,
Bousseau showed that Block-Gottsche invariants correspond to the generating series
of higher genus relative Gromov-Witten invariants with insertion of a lambda class
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[5]. In [20], the authors prove a similar result relating logarithmic Gromov—Witten in-
variants with a Ay class, and the enumeration of Blechman and Shustin [2]. Bousseau
also uses his result to show that Block-Goéttsche invariants satisfy the Abramovich-
Bertram formula, settling a conjecture of [6].

1.4. RESULTS OF THIS PAPER. The calculation of Gottsche-Schroeter invariants
Go(A, s) using floor diagrams requires to choose a pairing S of order s, see section
2.2. However, the Gottsche-Schroeter invariant does not depend on the choice of
this pairing, as long as it has order s by [7, Theorem 2.13], stated as Theorem
2.8 here. Namely, if S and S’ are two pairings of order s, one can define the
count of floor diagrams Go(A,S) and Go(A,S’), and show they are both equal to
the Gottsche-Schroeter invariant Go(A,s) (this last notation is then an abuse of
notation).

We give in this paper a combinatorial proof of this independence which is valid
in any genus, not only in the rational case. For any genus g we define a quantity
Gg4(A, S) as a count of floor diagrams, and show it does not depend on S but only of
its order.

THEOREM 3.3. Let A be h-transverse polygon and g € N. Let s € N and S, S’ be two
pairings of order s. Then G4(A,S) = G4(A,S"). We can then write G4(A, s) and call
1t Gottsche-Schroeter invariant of genus g.

As wished in [7, Remark 2.14] the proof is entirely combinatorial and does not go
through tropical geometry. Moreover, in the case where the polygon A is h-transverse
we show that the invariants of [25], denoted by RB,(A, g, (n1,n2)), match the ones
of this paper. Hence, the floor diagram algorithm gives a practical way to study and
compute the invariants of [25].

PrOPOSITION 3.11. Let A be a h-transverse polygon, g € N and s € N. The combina-
torial Gottsche-Schroeter invariant corresponds to the invariant of [25], i.e.

Gy(A,5)(q) = RBy(A, g, (y(A) =1+ g —2s,5)).

In relation with [5] and [20], it is also possible that the invariant presented in this
paper is related to some generating series of logarithmic Gromov-Witten invariants
with insertion of some lambda and psi classes.

We then illustrate the use of floor diagrams by proving few results on this higher
genus Gottsche-Schroeter invariant G4(A, s). These properties extend the ones we
can find in [7]. Especially we show some polynomiality behavior with respect to s,
which generalizes [7, Theorem 1.7] to arbitrary genus. Here, (G4(4A, s)); denotes the
codegree 7 coefficient of G4(A, s). Other notations are defined in sections 2.1 and 2.2.

THEOREM 3.8. Let A be a h-transverse polygon and g < gmax(A). If 21 < e”°(A)
and i < gmax(A), then the values (G4(A, s)); for 0 < s < Smax(4A, g) are interpolated
(=2)°

by a polynomial of degree i, whose leading coefficient is T(gma;—i).

We also perform computations on manageable examples. This leads to few conjec-
tures that may give evidence that this combinatorial invariant may have a geometric
interpretation. In particular the higher genus Gottsche-Schroeter invariants seem to
satisfy the Abramovich-Bertram formula. Here, the polygon A7, defines the Hirze-
bruch surface F,, together with the curves of bidegree (a,b), see Figure 19.

CONJECTURE 4.16, ABRAMOVICH-BERTRAM FORMULA. Let a,b € N and g > 0. For
any s = 0 one has

‘L (b425
Gg(Ag,a—i-bvs) = Z ( j >Gg(A(21—j,b+2ja5)-

=0
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2. FLOOR DIAGRAMS AND REFINED INVARIANTS IN GENUS 0

In this section we recall how to use floor diagrams to compute genus 0 refined invari-
ants.

2.1. h-TRANSVERSE POLYGONS AND FLOOR DIAGRAMS. We first introduce some def-
initions and notations. In this paper a polygon will always be a convex polygon in R?
with vertices in Z2.

DEFINITION 2.1. Let A be a polygon. We said that A is h-transverse if any of its edges
has an outward normal vector of the form (0,£1) or (£1,n) for some n € Z.

Via toric geometry, a polygon A defines a toric surface Xa and a line bundle LA on
Xa. It also has some combinatorial data that is related to the enumerative problems
we are interested in throughout this text. We set the following notations :

> a(A) is the height of A, ie. the difference between the maximal and the
minimal ordinate of a point of A,

> eT>°(A) (resp. e~ *°(A)) is the length of the top (resp. bottom) horizontal
edge of A.

> y(A) = |0A N Z2| the number of integer points on the boundary of A, geo-
metrically it is equal to —La - Kx,,,

> x(A) is the number of vertices of A, geometrically it is the Euler characteristic
of XA,

> gmax(Q) = |A N Z?| the number of interior lattice points of A, geometrically
it is the maximal genus of a curve in the linear system associated to La if
XA is non-singular,

b Smax(A, g) = {y(A)—H—g

5 JforgEN.

Note that y(A) = et (A) + e">(A) + 2a(A). Moreover, if A is h-transverse we
denote :

> blet (A) (resp. bright(A)) is the unordered list of integers k appearing j times,
where j is the integral length of the side of A having (—1,%) (resp. (1,k)) as
outward normal vector.

When no ambiguity is possible we will simply use a, e7°°, gmax, etc.

(a) Aq. (b) Ap. (c) A.
FIGURE 1. Some polygons.

ExAMPLE 2.2. Consider the polygons of Figure 1. The polygons A, and A, are h-
transverse but A. is not. We give in Table 1 their combinatorial data.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1356
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— 00

+oo Gmax bleft bright

8 |{0,0,1,1} | {-2,0,0,1}
4 / /

X
A, || 3] 0 3 19(3| 1 | {000} {1,1,1}
7
5

TABLE 1. Combinatorial data of the polygons of Figure 1.

We now introduce some terminology on graphs. An oriented graph T is a collection
of vertices V(I'), of bounded edges E°(T) (i.e. of oriented edges adjacent to two
vertices), and of infinite edges E°°(T") (i.e. of oriented edges adjacent to one vertex).
An infinite edge oriented toward (resp. from) its adjacent vertex is called a source
(resp. a sink), and we denote by E~°°(A) the set of sources (resp. by ET>°(T") the
set of sinks). We denote by F(T") the set of all edges of T'. The graph T is weighted if
there is a function w : E(T') — N*. Given a vertex v € V(I") of an oriented weighted
graph, its divergence div(v) is the difference of the weights entering and leaving v, i.e.

div(v) = Zw(e) - Zw(e).

e e
—v v—r

Last, the genus of a graph T is its first Betti number.

DEFINITION 2.3 (Floor diagram). Let A be a h-transverse polygon and g € N. A floor
diagram D with Newton polygon A and genus g is a quadruple (U, w, L, R) such that
> (T, w) is a weighted, connected, oriented and acyclic graph of genus g,

> the graph T has a(A) wvertices, e™>°(A) sinks and e~ (A) sources,

> all the infinite edges have weight 1,

> L : V() = bt (A) and R : V(I') = bright (A) are bijections such that for
every vertex v € V(T') one has div(v) = L(v) + R(v).

By abuse of notations, we will use D for I'. If D is a floor diagram its number of
elements n(D) is its number of vertices and edges, i.e.

n(D) = [V(D)| + |[E(D)|.
Since one has |[E(D)| = |[E*(D)|+|E>(D)|, |V(D)|—|E°(D)| = 1—g with g the genus
of D, and |V(D)| = a(A) with A the Newton polygon of D, then
n(D) =y(A)—1+g.
The degree of D is
deg(D) = 3 (wle) 1),

ecE(D)
If the diagram D has Newton polygon A and genus g, its codegree is
codeg(D) = gmax(A) — g — deg(D).
We will always draw the floor diagrams oriented from bottom to top. Hence we
do not put any arrow on the edges to show the orientation. Moreover we indicate

the weights of the edges only if their are at least 2. We give some examples of floor
diagrams.

EXAMPLE 2.4. Figure 2 gives all the floor diagrams with Newton polygon the polygon
of Figure la. Here, the functions R and L are constant equal to 1 and 0, so any vertex
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has divergence 1. The first three diagrams have genus 0, and the last one has genus
1. We also specify their codegrees.

O

— e
U

(a) g=0, (b) g =0, (c)g=0, (d)g=1,
codeg(D) =1 codeg(D) =0 codeg(D) =1 codeg(D) =0

FiGURE 2. The floor diagrams with Newton polygon the polygon of
Figure 1a.

2.2. REFINED INVARIANTS. Following [7], we now recall how to determine the
Gottsche-Schroeter invariants of [17] using floor diagrams.

The orientation of a floor diagram D induces a partial order < on the set of its
elements E(D) U V(D). More precisely, given two elements o and 5 we write a <
if there exists an oriented path in D from « to 8. Hence, one can define increasing
functions on a floor diagram.

DEFINITION 2.5 (Marking). Let D be a floor diagram. A marking of D is an increasing
bijection

m: EMD)UV(D) —= {1,...,n(D)}
The couple (D, m) is called a marked floor diagram.

Two marked floor diagrams (D, m) and (D’',m’) are isomorphic if there exists an
isomorphism ¢ : D — D’ of weighted graphs such that L = L' o o, R = R' o ¢ and
m=m'oyp.

We denote by v(D) the number of markings of a diagram D up to isomorphisms.

EXAMPLE 2.6. Figure 3 gives examples of markings of the floor diagram of Figure 2a.
The marked floor diagrams of Figures 3a and 3b are isomorphic.

A pairing of order s of the set {1,...,n} is a set S of s disjoint pairs {i,i + 1} C
{1,...,n}. Given a floor diagram D and a pairing S of {1,...,n(D)}, we say that a
marking m is compatible with S if for any a € S, the set m~!(«) consists of

> either an edge and an adjacent vertex,

> or two edges that are both entering or both leaving the same vertex.

Let (D, m) be a marked floor diagram and S a pairing compatible with m. We define
Ey={ec E(D) | Vac S,ed¢m *a)},
Ey={e€ E(D)| e V(D),3ac S, {e,v}=m(a)},
By ={{e,} C E(D) | Ja € S,{e,e'} =m (a)}.

(One should write Eo(D, m), etc, but for the notations not to grow heavy we forget
the dependence in (D,m).)

Algebraic Combinatorics, Vol. 8 #5 (2025) 1358
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FIGURE 3. Some marked floor diagrams with Newton polygon the
polygon of Figure la.

For n € Z the quantum integer [n](q) is defined by

g/ —q /2 2 3)/2 3)/2 2 £1/2
() = Ly = g0 g I 2 € g,

We will use the shortcuts
[n]* = [n](g)* and [n]y = [n](¢?).
DEFINITION 2.7 (Refined S-multiplicity). The refined S-multiplicity of a marked floor
diagram (D, m) is
w(e)]|w(e)][w(e) + w(e
/LS(D,m)(Q) _ H [w(e)]2 H [w(e)]2 H [ ( )][ ( )][[2]( ) ( )} c Z[qil/Q]
e€Eg ecEy {e,e’}€E>

if S and m are compatible, and ps(D,m)(q) = 0 otherwise. If non-zero, it is a Laurent
polynomial of degree deg(D).

The following theorem can be taken as a definition of the Gottsche-Schroeter in-
variants.

THEOREM 2.8 ([7, Theorem 2.13]). Let A be a h-transverse polygon and s €
{0,..., Smax(A,0)}. For any pairing S of order s of {1,...,y(A) — 1} one has

GO(A’S) - Z ,U'S(Dvm)

(D,m)

where the sum runs over the isomorphism classes of marked floor diagrams with New-
ton polygon A and genus 0.

REMARK 2.9. The theorem implies that the right-hand side does not depend on the
pairing S as long as it has order s. Thus, to study Go(A, s) we can choose a particular
pairing which makes the calculations easier.

This paper is mainly devoted to prove that we can define an analogous combinato-
rial quantity for any genus, see Theorem 3.3. More precisely, we will give a combina-
torial proof that, in any genus g, the sum of the right hand side of Theorem 2.8 does
not depend on S, leading to a quantity we will denote by G4(A, s).

EXAMPLE 2.10. Let Dy, Dy and D3 be the diagrams of Figures 2a, 2b and 2c. The
following Table 2 gives their contributions to the Gottsche-Schroeter invariant, using
the pairing S = {{1,2},...,{2s — 1,2s}} of order s. Hence one has Gy(A,,s) =
g+ (10 — 2s) + ¢~ L.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1359
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s=0 s=1 s=2 s=3 s=4
D, 5 3 1 1 1
D, q+2+qt | g+24+q¢ | g+2+q | qg+qt q+qt
Ds 3 3 3 3 1
Go(Aass) || q+10+q ' | g+8+¢ | qg+6+q¢ ' |g+4+qg | qg+2+q!

TABLE 2. Computation of Go(A,, s).

2.3. OPERATIONS ON FLOOR DIAGRAMS. We will use the following operations on
floor diagrams, introduced in [7].

(a) Operation A™. (b) Operation A™.

FIGURE 4. Operations AT and A™.

AT : If there are vertices v; < vy connected by an edge e; and another edge e
leaving v; but not entering vy, then we construct a new diagram as depicted
in Figure 4a.

A~ : Similarly if e; is entering vy but not leaving vy, see Figure 4b.

LEMMA 2.11 ([7, Lemma 3.2]). Genus and Newton polygon are invariant under oper-
ations A*. Moreover, the codegree decreases by w(ez) under operations AT,

3. REFINED INVARIANTS IN THE NON-RATIONAL CASE

3.1. DEFINITION OF Gy(A,s).

DEFINITION 3.1. Let A be a h-transverse polygon, g € N, s € {0, ..., Smax(A,9)} and
S be a pairing of order s of {1,...,y(A) — 1+ g}. We define

Gy(A,8) = > ps(D,m) € Zjg*™]
(D,m)

where the sum runs over the isomorphism classes of marked floor diagrams with New-
ton polygon A and genus g.

The goal is now to turn the S-dependence into a s-dependence. We start with
a technical lemma on quantum integers. Remember we denote [n]? = [n](q)? and

[n]2 = [n](¢*).

Algebraic Combinatorics, Vol. 8 #5 (2025) 1360
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LEMMA 3.2. Let a,b € Z be integers. Then
2[a][b]a + 8] = [2] ([a + b]*[a]2 — [a + b]2[a]*)
= [2] ([a]*[t]2 + [a]2[0]?) -
Proof. The first quantity is
(qa/z _ qfa/2)(qb/2 _ qu/2>(q(a+b)/2 _ qf(a+b)/2)
(¢\/2 — q—1/2)3
qa+b _ q—a—b _ qa + q—a _ qb + q—b
(q1/2 — q—1/2)3 :
To show the equalities, for any integers ¢, d we first compute
-1 c/2 _ ,—c/2 2 c_ ,—c
2 _ _49—4q q q a —q
[2][c]"[d]2 = qt/2 —q-1/2 X (q1/2 _ q1/2) x q—q 1

qc+d _ qcfd _ 2(qd _ qfd) 4 q7c+d _ qfcfd
(q1/2 _ q—1/2)3 :

Applying this to (¢,d) = (a + b,a) and (¢,d) = (a,a + b) we deduce that

q2a+b _ qb _ 2(qa _ q—a) + q—b _ q—2a—b
(q1/2 — ¢~ 1/2)3
q2a+b _ qu _ 2(qa+b _ qfafb) + qb _ q72a7b
(q1/2 _ q—1/2)3
qa-‘rb _ q—a—b _ qa + q—a _ qb =+ q—b
(q1/2 — ¢~ 1/2)3
= 2(a][b][a + b],
and applying it to (¢,d) = (a,b) and (¢,d) = (b,a) we get
qa+b _ qafb _ 2(qb o qu) 4 q7a+b _ qfafb
(¢/2 — q~1/2)3
qa+b _ q—a+b _ 2(qa _ q—a) + qa—b _ q—a—b

2[a][b][a + b] =2

=2

(2] ([a+ b*[al2 — [a + bl2[a]?) =

=2

(2] ([a)*[Bl2 + [a]2[b]*) =

+ (¢ /2 — q=1/72)3
_ 2qa+b gt gt — P g
(q'/2 — ¢—1/2)3
= 2[a][b][a + b]
so the three quantities are equal. O

We can now prove the main result of this paper.

THEOREM 3.3. Let A be h-transverse polygon and g € N. Let s € {0, ..., Smax(4A, g)}
and S, S’ be two pairings of order s. Then G4(A,S) = Gy4(A,S").

The strategy to prove the theorem is the following. We will determine a partition
(Py) of the marked floor diagrams such that for any k one has

Z s (Da m) = Z MS’(’Dv m)
(D,m)€Py (D,m)ePy

To do so, we inductively construct the partition (Py)x. We start with a marked floor
diagram (D1, m1) and we determine a set P; of marked floor diagrams such that P;
contains (D1, my) and

Z ﬂS(Da m) = Z /LS’(IDvm)'

(D,m)eP, (D,m)ePy

Algebraic Combinatorics, Vol. 8 #5 (2025) 1361
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We then choose another marked floor diagram (Ds, m2) ¢ P;, and similarly determine
a set P, disjoint from Py, etc. Hence, given an arbitrary marked floor diagram it
suffices to give the part P of the partition it is contained in. More precisely, in the
proof we introduce partial markings and we will simultaneously handle the case of
several marked diagrams, all coming from the same partial marked diagram.

Proof of Theorem 3.3. Tt is sufficient to suppose that S and S’ differ by one pair, and
we can assume that this pair is {i,i+ 1} € S and {i+ 1,9+ 2} € §’. Given D a floor
diagram of Newton polygon A and genus g, a partial marking of D is an application
that associates to all but three elements of D an integer of {1,...,n(D)}~{i,i+1,i+2}
in a bijective and increasing way. A partial marking gives several markings by labeling
the three remaining elements of D with ¢, i + 1 and i + 2.

Let D be a floor diagram of Newton polygon A and genus g. Assume we are given
a partial marking of D. We will investigate the possibilities to construct a marked
floor diagram from this data. To do so, for any relative positions of the three elements
left aside by the partial marking, we look at the possible choices to extend the partial
marking. We will distinguish cases according to the number of vertices left aside by
the partial marking. In all the proof, W will be the contribution to us(D,m) and
ws (D, m) of the edges marked by the partial marking.

3 VERTICES. In that case both S and S’ are incompatible whatever the marking m
extending the partial marking is, i.e.

/J’S(D7 m) = ps’ (D7 m) = 0.
So take P = {(D, m), m extension of the partial marking}.

2 VERTICES. The unique edge left aside by the partial marking can :

> link the two vertices (Figure 5a),

> be adjacent to only one of the two vertices (Figure 5b, and the symmetric
case where the edge is above the vertex),

> or be adjacent to none of the vertices (Figure 5c).

On those pictures we do not represent other vertices and edges of D.

I 9oloc
(a) (b)

()

FIGURE 5. Possible configurations with 2 vertices.

We deal with the three cases separately.
(a) There is only one possible marking m and one has
I’LS(Da m) = Hs’ (Da m)
so take P = {(D,m)}.

(b) There are three possible markings. Let my, be the extension where the right
vertex is i+k for k = 0, 1, 2. The marking m; is incompatible with both .S and
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S’ ie. pug(Dy,my) = ps/ (D,my) = 0, and one has pg(D,mg) = ps (D,ms) =0
and pg(D, ma) = pg (D, mg). Thus
)

ps(Dymo) + ps(D,ma) + ps(D,m2) = ps (D, mo) + ps (D, ma) + ps: (D, mz)
and we take P = {(D,myg), (D, m1), (D, ma)}.
(¢) Any marking m is incompatible with both S and S’ i.e.

ps(D,m) = ps (D, m) =0
and take P = {(D,m), m extension of the partial marking}.
1 VERTEX. The unique vertex left aside by the partial marking can :

> be adjacent to both edges (Figure 6a where the edges can share a second
common vertex or not, the symmetric case where the edges are above the
vertex, and Figure 6b),

> be adjacent to one of the two edges (Figures 6¢ where the edges are adjacent
to a common vertex, the symmetric case where the common vertex is above
the edges, Figure 6d and its symmetric case),

> or be adjacent to none of the edges (Figure 6e if the edges are adjacent to at
least one common vertex, its symmetric case, and Figure 6f).

On those pictures, solid lines are for elements left aside by the partial marking,
and we represent other vertices with dashed lines if they are relevant (i.e. play a role)
in the calculations. Note that in cases (a) and (e), the two edges can share a second
common vertex. This has no influence on the computations, and hence is not shown
on the picture.

w1
w1 w2
w1 wa w L-"=<
2 \ )
(b)

()

s
\

N4

\
2 wi[ |we O O B

(d) (e) ()

FIGURE 6. Possible configurations with 1 vertex.

We deal with the different cases separately.

(a) Denote mg (resp. mq) the marking where the left edge is ¢ (resp. i + 1).
w1 ||we2||lwr + w
[w1]?[wa]aW and ps/ (D, m1) = [wi]a2ws]*W. Lemma 3.2 shows that

Then one has pug(D, mg) = pus(D,my) =

/J'S(Dvm()) + NS(Dvml) = Hs (D7m0) + s (D7m1)
so take P = {(D,myg), (D, m1)}.
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If wi = wsy, it is possible that there is an isomorphism which exchanges
the two edges. In that case, the marked diagrams (D, mg) and (D, m;) are
isomorphic and we take P = {(D, mg)}.

If the diagram D is in case (b), it might be necessary to include marked
diagrams of case (c) to the part P containing (D, m), where m is the unique
marking extending the partial marking of D. For that reason, cases (b) and
(¢c) are handled together.

In case (b), first assume w; = wy. Then one has ps(D, m) = ps/ (D, m) and
we take P = {(D,m)} ; when w; = wsy there is no corresponding diagram of
case (c).

Otherwise w; # wsy and we assume wy > wy. In particular, one has ws > 1 so
the edge with weight wy cannot be an infinite edge and is necessarily adjacent
to a second vertex. Moreover we can be written w; 4+ (we — wy) with both
terms positive. In the end, this case (b) is related to case (¢) via an operation
AT, see Figure 7. Conversely any case (c) gives a case (b) with we > w; via
an operation A™T.

w1 A+
Wy — W1 e

FIGURE 7. Passing from case (c) to case (b).

Let D’ be the floor diagram of case (c) which gives the diagram D of case
(b) with the AT operation of Figure 7. Let m) be the marking of D" where
the right edge is ¢ + k for £k = 0,1,2. One has :

2]
> ps(D',m)) = WW and pg (D', m}) =0,

> pus(D',mb) = [wi]?[ws — wi]oW and ug (D', mh) = 0.

> us(D',my) = W and pg (D',mf) = [w1]?[wa — wi1]aW,

For D we have pus(D,m) = [wi]?[w2]oW and ps/ (D, m) = [wi]a[ws]?W.

Hence taking a = w; and b = wy — w1 in lemma 3.2 we see that
/’LS(Da m) + MS’(D/7 mé)) + MS(D/7 mll) + ,U/S(D/v m/2)
= ps/(Dym) + ps: (D', mp) + pg: (D' miy) + psr (D', mi)

and we can take P = {(D,m), (D’',my), (D',m}),(D',m)}. If wy > wa the
proof is analogous using the symmetric case of Figure 6¢ and an operation
A~
This is similar to Figure bb. There are three possible markings. Let mj be
the extension where the right edge is ¢ + k for £ = 0, 1,2. The marking m; is
incompatible with both S and S’ i.e. us(D,m1) = ps/ (D, my1) = 0, and one
has pug(D,mo) = ps (D, mz2) = 0 and ps(D,mz2) = ps (D, mo) so

ps(D,mg) + ps(D,my) + ps(D,mz) = ps (D, mo) + ps (D, m1) + ps (D, mz)

and take P = {(D,mq), (D, m1), (D, ms)}.
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(e) Let my and mj, be the two markings where the vertex is i + k for £ =0, 1, 2.
One has
1s(D,m1) = ps (D, ma) = ps(D,mo) = ps(D, mf)) = ps (D, m2) = ps (D, m,2) =0
and

[wr][we][w1 + wo]

2

ps(D,ma) = ps(D,my) = ps (D, mo) = ps (D, mg) =
S0
/~LS(D7 mO) + /‘S(Da m6) + “S(Dv ml) + MS(Dv m/l) + NS(Dv m2) + NS(Da ml2)
= ps (D, mo) + ps (D, m(]) + ps (D,ma) + psi (D, m/l) + ps (D, m2) + psi (D, m/2)
and we take P = {(D,my), (D, my), (D, m1), (D, m}), (D,mz), (D, m})}.
(f) Any marking m is incompatible with both S and S’ i.e.
ps(D,m) = ps/(D,m) =0
and take P = {(D,m), m extension of the partial marking}.

0 VERTEX. The edges left aside by the partial marking can :

> be adjacent to a common vertex (Figure 8a and the symmetric case where
the vertex is below the edge),

> one can share at least a common vertex with any of the others, but the other
two do not have a common vertex (Figure 8b),

> two of them can share at least one common vertex, and the last edge has no
common vertex with the other two (Figure 8c),

> have no common vertex (Figure 8d).

On those pictures, solid lines are for elements left aside by the partial marking, and
we represent other vertices with dashed lines if they are relevant (i.e. play a role) in
the calculations. Note that in case (a) (resp. (b), (c)), any two out of the three edges
(resp. the leftmost or rightmost two edges, resp. the leftmost two edges) can share a
second common vertex. This has no influence on the computations, and hence is not
shown on the picture.

( ) 7~ \ )
So_ - XQ‘ w3 ~___7
w1 w3
w1 wWo w3 _ w1 wa w1 w2 w3
e

FIGURE 8. Possible configurations with 0 vertex.

We deal with the different cases separately.

(a) There are six possible markings. The contributions are summed up in Table
3, where (j,k, ) denotes the markings of the edges from left to right. The
sums of the two columns are the same, so these marked floor diagrams give
the same contributions to G4(A,S) and G4(A, S’") and we take P to be the
set of these marked floor diagrams.
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S S’
[wi]lwa]lwr +wa] 5] [we]lws][ws + ws] ]2
[2] [W3] [2] [ 1]
[wi][ws][wi + ws] fwol? [wa][ws][ws + ws] fwn]?
2] [2]

[wi][wa][wi + wz][ 2 [wi][ws][wi + ws] [wa]?
2] 2]
[wi][ws][w1 + ws] foo]? [wi][wa][w1 + wo]
2] ? 2]
[wa]ws][ws + ws] o1 ]2 [wi]ws][w + ws]
2] ' 2]

[wa][ws][w2 + w‘s][ 2 [wi][wa][wr + wo] [ws]?

(i,i+1,i+2)

(,i+2,1+1)

(i +1,i,i+2)

(i+1,i+2,4)

(i+2,i,i41)

(i+2,i+1,4)

TABLE 3. Contribution of the markings in case (a).

Note that depending on the unshown part of the diagram and on the precise
value of the weights, some markings may give isomorphic marked diagrams:
there may be only 3 or 1 marked floor diagrams instead of 6. However, in that
case some of the weights among w1, ws and w3 are equal, and removing the
superfluous rows if the table does not affect the equality of the sums of the
columns.

(b) Similarly to the previous case we get Table 4. We see that the sums of the
two columns are the same, so these marked floor diagrams give the same
contributions to G4(A, S) and G4(A, S”) and we take P to be the set of these
marked floor diagrams.

S S’

[wi]lwa][w1 + wo]

o
(i,i+2,i+1) 0

2 [wa]ws][ws + ws] w12

2]

[wa][ws][ws + ws] wn]?

(ii+1,i+2)

[wi][wa][w1 + wa]
2]

(i + 1,0 +2,9) 0

[wa[ws][ws + ws] fn?

2]

[wa][ws][w2 + ws] fon? [wi][wa][w1 + wo]

2]

(i +1,i,0+2) [w3]? 0

(i+ 2,00+ 1)

(i+2,i+1,)

TABLE 4. Contribution of the markings in case (b).

(c) This is the same as in Figure 6e. Let mj, and mj, be the two markings where
the right edge is i+ k for k = 0,1, 2. Both m; and m] are incompatible with .S
and S’, and the contributions of mg and my, balance with those of mq and mj.
Hence we take P = {(D, myg), (D, my), (D, m1), (D, m}), (D, ma), (D, m})}.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1366



Combinatorial Géttsche-Schroeter invariants in any genus

(d) Any marking m is incompatible with both S and S’ i.e.
/’LS(Da m) = Hs’ (Da m) =0

and take P = {(D,m), m extension of the partial marking}.

We can thus abusively write G4(A, s) instead of G4(A, S).

DEFINITION 3.4. Let A be a h-transverse polygon, g € N, s € {0,..., smax(A,g)} and
S be any pairing of order s of {1,...,y(A) — 1+ g}. We define

Gy(A,s) = Z 1s(D,m) € Z[g*]
(D.;m)

where the sum runs over the isomorphism classes of marked floor diagrams with New-
ton polygon A and genus g. The Laurent polynomial G4(A,s) is called Gottsche-
Schroeter (refined) invariant of genus g.

3.2. PROPERTIES OF THE INVARIANT. In this section we prove few properties sat-
isfied by the higher genus Gottsche-Schroeter invariant. We essentially adapt, when
necessary, the proofs given by Brugallé and Jaramillo-Puentes in [7] for the case of
genus 0 invariants.

We start with [7, Proposition 2.16 and Corollary 2.17], whose proofs only rely on
calculations on quantum integers. More precisely, it uses the facts that for integers k
and ¢ one has

2]

see the appendix in [7]. In particular, the genus does not play any role, so their proofs
apply and give the following.

€ N[g™'] and [K](q)* - [K](¢*) € Nlg™"],

PROPOSITION 3.5. Let (D, m) be a marked floor diagram of genus g, and S; C S be
two pairings of the set {1,...,n(D)}. Then one has ug, (D, m) — s, (D, m) € N[g*F?].

COROLLARY 3.6. Let A be a h-transverse polygon and g € N. For any i € N one has
(Gg(A,0))i 2 (Gg(A,1))i = -+ = (Gg(A, smax(A, 9)))i-

The decrease with respect to S for pug(D,m), and with respect to s for G4(A, s)
can be observed in the examples of section 4.1.

The following generalizes [7, Proposition 2.19] to arbitrary genus. Again, the proof
is the same.

PROPOSITION 3.7. Let A be a h-transverse polygon whose top is depicted in Figure
9a and A be the polygon obtained in Figure 9b by cutting of the top corner of A. If
$ < Smax(4\, g), then
Go(As+1) = Gy(A, s) — 2G4 (A, s).
We now extend [7, Theorem 1.7] to arbitrary genus.
THEOREM 3.8. Let A be a h-transverse polygon and g < gmax(A). If 2i < e”(A)
and i < gmax(A), then the values (Gg(A,s))i for 0 < s < smax(A, g) are interpolated

by a polynomial of degree i, whose leading coefficient is (75)1 (g““‘g"_i).

Proof. The beginning of the proof is as in [7, Theorem 1.7], hence we will just briefly
recall the arguments and not give the details of the computations before step 2(B)
below. Let first introduce few notations.
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‘ : [ ] . I [ ) [ ] Q\
| (a) A | (b) A

FIGURE 9

We denote by a; the polynomial of degree at most Smax = Smax (4, g) which inter-
polates the values ((G (A, 5))i)o<s<smar- Lhe i-th discrete derivative of a,(s) is given
by

o0 = 30 (et 0

=0
and has degree at most spax — ¢. We want to show that

g
Let 0 < s < Smax — ¢ and S be a pairing of order s of {2i +1,...,y(A) — 1+ g}.

For I C {1, ... ,z} we denote
St=S5u U2 - 1,2}
Jjel

the pairing of order s + |I] of {1,...,y(A) — 1+ g}. Given (D, m) a marked floor
diagram with Newton polygon A and genus g we define

Z Z 1) psr (D, m).

£=0 IC{1,...,i}

)=t
One has
Gmax—9 Fmax—9 i .
> _f;ni OIS Z(—l)e@)agnﬁx—gﬂﬂ(s+€)qj
J=—9gmax+g j:—gmx—s-g =0

_Z () (A,s+0)
=> (1" > > psi(D,m)

£=0 IC{l, i} (D,m)
|I]=¢

Hence the diagrams with degree at least giax —g—1, i-e. codegree at most 4, contribute
to a(l)

Let (D, m) be such a diagram. Denote by iy the minimal element of {1,...,n(D)}
such that m~t(ig) € V(D), and by J C {1,...,2i} the set of elements j such that
m~1(j) is an elevator in E~°°(D) adjacent to m~1(ig).
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STEP 1. If JU{io} contains a pair {2k — 1,2k} with k < 4, then (D, m) = 0. Indeed,
if I c{1,...,i} ~ {k} then pug:(D,m) = pgropy (D, m). Hence

KDym)= > ((—1)\Ilusf(p7m)+(—1)\f|+1usmk}(z>,m)):o.

IC{1,. iy~ {k}
]<i-1

We assume from now on that J U {ig} does not contain any pair {2k — 1,2k} with
k <. In particular, |J| <.
STEP 2(A). If ip < 2¢ then x(D, m) does not contribute to agi)(s). Indeed, one has
|J] <i—1 and the codegree of D is at least e~ *°(A) — |.J|, and so is at least i + 1.

STEP 2(B). Suppose now that ig > 2i. In particular, m({1,...,2i}) C E=°°(D). Let
K c{2i+1,...,y(A) — 14 g} be the set of elements k such that m(k) is an elevator
in E=°°(D) adjacent to m(ip) ; one has |K| < e”*°(A) — 2i. Hence by lemma 2.11
one has
codeg(D) Z e ™ (A) = |J| - |K| 2 e > (A) —i— (e7°(A) — 2i) =i

so D can contribute to agi)(s) if and only if codeg(D) = i — g, which implies |J| =i
and |K| = e~*°(A) — 2i. Thus, i elevators in E~°°(D) are not adjacent to m(ip) and
they are the only elements creating codegree in D. Hence, D contributes to agl)(s) if
and only if the following set of conditions is satisfied :

the order < is total on V (D),
elevators in ET°°(D) are all adjacent to the top floor,
|J| =i and J contains no pair {2k — 1,2k},

m({1,...,2i} N J) consists exactly of elevators in E~°°(D) adjacent to the
second lowest floor,

v Vv Vv V

v

E=>°(D)~m({1,...,2i}) consists of elevators adjacent to the lowest floor,
> the function L : V(D) = bt (A) and R : V(D) — brigne(A) are increasing,

> any bounded edge is between two consecutive vertices, i.e. the genus is created
only by configurations of Figure 10a ; there is no configuration of Figure 10b.

(a) (b)

F1GURE 10. Possible configuration for the genus.

The first conditions are those of [7], and the last is added to take into account
the genus. These conditions ensure that the marked floor diagrams which contribute
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to agi)(s) all satisfy x(D,m) = ug(D, m) and have the shape depicted in Figure 11,

where a = a(A) is the number of vertices.

—~ N~
e~ ®(A)—i i

FIGURE 11. The diagrams that contribute to al(-i)(s).

There are 2° possible choices for J, and given a J it remains to determine how
many marked diagrams of genus g have a marking that corresponds to J. Starting
with the unique marked diagram (Dy, mg) of genus 0 corresponding to J, we need to
choose a decomposition g = g1 + - -+ + g4—1, and then split the unique edge between
v; and vj41 in g; +1 edges. If the weight of the edge is w;, then there are (wzl) ways
to divide the weight and to mark the new edges. Hence the total number of marked
diagrams for a given J is

3 1:[1 (wk - 1>
g1t Agaa=ghz1 N IE
g; 20, ordered

which is just

a—1

(1) = () = (=) < ()

Hence the total number of marked diagrams is 2° (g‘“"g’ri). Since the dominant coeffi-
cients of the multiplicities are 1 we conclude. O
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3.3. LINK WITH OTHER INVARIANTS. In this section we show that the combinatorial
Gottsche-Schroeter invariant matches the invariant of [25, Theorem 5.8]. We refer to
[25, Section 5] for the definition of RBy(A, g, (n1,n2)), especially definition 5.2 for
the multiplicity and remark 5.4. Note that this invariant is a count of tropical curves,
while the combinatorial Goéttsche-Schroeter invariant is a count of floor diagrams. The
correspondence between tropical curves and floor diagrams is as follows.

To enumerate tropical curves in R?, one has to choose a configuration of points and
impose the tropical curves to pass through. If the configuration of points is stretched
in a direction (vertically or horizontally), then the tropical curves decompose into
elevators, i.e. edges parallel to the chosen direction, and floors, i.e. connected compo-
nents of the complementary of the elevators. Vertices of floor diagrams correspond to
floors, and their edges show how the floors are connected by the elevators (see [10]).

A pairing is a way to encode, at the floor diagrams level, pairs of complex conju-
gated points when enumerating curves in the real world. In the tropical setting, the
counterparts of pairs of complex conjugated points are fat points, which are points of
the configuration that must be at vertices of the tropical curves we count. The set F;
encodes such fat points for which the corresponding vertex is not a collinear vertex
(meaning the span of the direction vectors of its adjacent edges is not 1-dimensional),
i.e. fat points lying on floors of the curve. The set Es corresponds to the fat points
at collinear vertices. In that case, the vertex has two adjacent edges going to the
same direction. They possibly end at different vertices (Figure 12a), or at the same
vertex which is also collinear (Figures 12b and 12c¢) ; on those pictures we also show
the corresponding situations at the level of floor diagrams. By [25, Lemma 4.6] this
second vertex cannot be at a fat point.

(a) (b) (c)

FIGURE 12. Fat points at collinear vertices.

REMARK 3.9. Note that floor diagrams do not distinguish between whether the fat
point is at the top or bottom vertex of the collinear cycle, i.e. between Figures 12b
and 12c. Hence, at the level of marked floor diagrams one might want to count this
case twice.

However, in [25] the authors consider tropical curves whose collinear cycles are
centrally embedded, i.e. the two adjacent edges of a collinear cycle have the same
length ([25, Lemma 4.6]). This implies that, given a set of points in R?, there cannot
be two tropical curves through these points yielding the same floor diagram, and such
that the first curve has the fat point at the top of the collinear cycle, while the second
one as the fat point at the bottom of the collinear cycle. Indeed, replacing the collinear
cycle and its two adjacent edges by a single edge, and the fat point by a simple point,
one obtains a tropical curve of genus one less, passing through one point less. To
recover the original curve, one has to replace the single edge by a collinear cycle and
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its adjacent edges, but by the centrally embedded condition there is only one way to
do it. Hence, a pair in Fy for a marked floor diagram corresponds to either Figure
12b or Figure 12¢, but not both.

REMARK 3.10. The condition of having centrally embedded cycles is an example of
Speyer’s well-spacedness condition [26].

Remember we denote
e 2 2 2
[n](q) = m, [n]” = [n](q)” and [n]2 = [n](¢7).
We also set P P
e
{n}(Q) - q1/2 + q_1/2 :

PrOPOSITION 3.11. Let A be a h-transverse polygon and g € N be an integer. Let
s €{0,...,Smax(A, g)}. The combinatorial Gottsche-Schroeter invariant corresponds
to the invariant of [25], i.e.

Gy(A,5)(q) = RBy(A, g, (y(A) =14 g — 2s,5)).
Proof. We will show a correspondence between the multiplicities used to compute

both quantities. To do so, we examine the different terms appearing in the products
that define both multiplicities.

FIGURE 13

The situation of Figure 13a where an edge is unpaired in a floor diagram cor-
responds to the situation of Figure 13b at the level of tropical curves. In the floor
diagram, the edge contributes [w]? to the multiplicity, while in the tropical curve the

two adjacent vertices contribute [w] x [w] = [w]?. Hence the contributions are the
same.
_/
w w
(a) (b)
FIGURE 14

The situation of Figure 14a where an edge is paired with an adjacent vertex in a
floor diagram corresponds to the situation of Figure 14b in the tropical curve, where
a vertex adjacent to the corresponding edge is marked. In the floor diagram, the
edge contributes [w]s to the multiplicity, while in the tropical curve the two adjacent
vertices contribute [w] X {w} = [w]s. Hence the contributions are the same.
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w1 + wo
w1 || W2

w1 wWo w1 + wo

FIGURE 15

The situation of Figure 15a where two edges with two common adjacent vertices are
paired corresponds to the situation of Figure 15b where there is a centrally embedded
cycle (note that the fat point could also be on top of the collinear cycle, see remark
3.9). Assume first that wy # ws. At the level of floor diagrams, there are two possible
markings and so the contribution to the multiplicity is

ln]wa]fw +wo]
2]
At the level of tropical curves, the contribution to the multiplicity is
2 [wi][ws]
[wl + UJQ] X [2] [wl n UJQ] X [wl + wg] =2
hence the contributions are the same.

If w; = wy then there is a single marking of the floor diagram, so the factor 2
does not appear in the multiplicity. This is balanced by the fact that there is now a
non-trivial automorphism of the tropical curve, hence we should also divide by 2 the
contribution to the multiplicity of the tropical curve.

2

[wr][wa][w1 + wo

2] ’

w1 + wo

w2

FIGURE 16

The situation of Figure 16a where two edges with a unique common adjacent vertex
are paired corresponds to the situation of Figure 16b. At the level of floor diagrams,
there are two possible markings and so the contribution to the multiplicity is
[wi][wa][wr + wo]

2]

At the level of tropical curves, the contribution to the multiplicity is

2

[wi][wa][w1 + wo]

2]

[wl +(JJ2] X X [wl] X [CUQ] =2

2
[2]

Algebraic Combinatorics, Vol. 8 #5 (2025) 1373



GURVAN MEVEL

so the contribution is the same.

These are the only possibilities appearing in a floor diagram. By [25, Lemma 4.6]
these are also the only terms that appear when computing RB,(A, g, (y(A) —1+¢g—
2s,)). Hence the multiplicities match, and the counts are equal. O

REMARK 3.12.Let n = y(A) — 1 + g. By proposition 3.11 and [25, Corollary 5.11],
the integer G4(A,s)(1) corresponds to the number of curves with Newton polygon
A, passing through n — 2s points on the toric surface X and with a fixed tangent
direction at s prescribed points. Here is an heuristic explanation of this fact, which
has been communicated to us by Erwan Brugallé.

Take s = 1. On the toric surface X = X we choose n— 2 points and another point
with a prescribed direction, as in Figure 17. Blowing-up this point gives a (—1)-curve
E{ with a point on it that corresponds to the direction we chose. If we blow-up again
we obtain a (—2)-curve E; and a (—1)-curve Eo. The number of curves of genus g and
class A on X, through the n — 2 points, and passing through the last point with the
prescribed direction is then equal to the number of curves of genus g on X, through
n — 2 points, and intersecting E5 but not E1, i.e. of class A — E; — 2E,. We denote
this number by N,(X,A — E; — 2E>).

X X’ X

FIGURE 17

On X one can also choose n points ; we depict on Figure 18 the two added points
compared with the previous situation. Blowing-up these points, we obtain two (—1)-
curves Fq and Fs. The number of curves of genus g and class A on X through the n
points is then equal to the number of curves on X through n—2 points and intersecting
E; and FEs, i.e. of class A — Ey — E>. We denote this number by Ng()N(, A —Fy — E»).

-

FIGURE 18

Under degeneration, E5 corresponds to Eo and E; corresponds to Eq, + E5. The
Abramovich-Bertram formula [1, 28, 6, 5] states that

N,(X,A —E, —2Ey) = Ny(X,A — E; — Ey) — 2N, (X, A — 2E)).
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One can reason similarly for any s, and this shows that the numbers of curves
with s 4+ 1 tangency conditions can be calculated from the numbers of curves with
s tangency conditions, and recursively from the numbers of curves without tangency
condition. But these last numbers correspond to G4(A,0)(1), and we know that the
invariants G4(A, s) satisfy the formula of proposition 3.7. In particular, their values
at ¢ = 1 also satisfy this recursive formula and have the same initial (with respect to
s € N) values as the number of curves with point and tangency conditions. Hence the
evaluations at ¢ = 1 of the combinatorial Gottsche-Schroeter invariants recover some
numbers of curves on toric surfaces.

4. EXAMPLES AND CONJECTURES

4.1. SOME CALCULATIONS. In this section we run the calculations on some examples.
When possible, we use Theorem 3.8 to compute G4(A, s) for few values of s before
interpolating. Otherwise, we compute G4(A,s) for 0 < s < Smax(4, g). However, in
our examples we notice that (G4(4A, s)); is always given by a polynomial of degree ¢ in
s, even when Theorem 3.8 does not apply. We use some tables to present the compu-
tations. In a column corresponding to a floor diagram we indicate its contribution to
Gg4(A, s). We put a * when this contribution does not change passing from s to s+ 1,
to highlight which diagrams contribute to the decrease of G4(A, s) with respect so s,
see corollary 3.6. Note that for g = gmax(A) one always has G, (a)(4,s) = 1. Also,
because the refined invariants are symmetric we do not precise the coefficients of the
negative exponents. In all this section we use the pairing S = {{1,2},...,{2s—1,2s}}.
We essentially deal with some examples where the Newton polygon is A;b for some
special values of (n,a,b), see Figure 19.

(0,a)4 b,a)

(0: 0) (an + b,0)

FIGURE 19. The trapezoid A},

EXAMPLE 4.1. We compute Gy(Af ,,s) for 0 < g < 2. Tables 5 and 6 give
Go(AS,,5) = ¢+ (12— 2s)g + (25* — 225 + 70) +
G1(AS5,5) =2¢ + (16 — 2s) +.
GQ(A%Z, s) =1

s G(A32, s)
01 [2% | [2]? 4 4 4 2 +16 + ...
1 * * * 2 * 2+ 14+ ...

TABLE 5. Computation of G1(A§,, s).
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EXAMPLE 4.2. We compute Gy(AJ 3,5) for 0 < g < 2. Tables 7 and 8 give

Go(AY 5, 8) = ¢ + (12 — 2s)g + (25° — 225 + 70) +
G1(AS3,5) =2¢ + (16 — 2s) +.
GQ(A37375) =1.

3 2 2
s Go(AY 5,5)
0l 32| 522 | 10 5[2]2 10 27 || @+ 12¢ +70+...
1| = | 327 4 * * 17 || ¢>+10g+50+...
2 * [2]2 * * * 7 @ +8qg+34+...
31 [32 * x| 2[3] + 3[2)2 * 5 ?+6g+22+. ..
41 * * * 2[3] + [2]2 4 3 P HAg+14+ ...

TABLE 7. Computation of Go(A$ 3, s).

S % ?% Gl(AgB,S)

2q+ 16+ ...

o
DN
)
%)

>—~
*
*
=

2+ 14+ ...

TABLE 8. Computation of G1(A§ 3, s).

S GQ(A%’Q,S)

01 (3% | 6[2) 15 | 4[2)? 6 26 || ®+12¢+70+...
L] * | 4]2)? 7 * * 18 q® +10g+50 + ...
20 x| 2[22 3 * * 10 ?+8¢+34+...

TaBLE 9. Computation of Go(Aj ,, s).

Algebraic Combinatorics, Vol. 8 #5 (2025)
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no

s Gl(A%,Q,S)
ol 2122 | 5 7 | 20+ 16+...
1 * * 5 2+ 14+ ...

TABLE 10. Computation of G1(A},,s).

EXAMPLE 4.3. We compute Gy(Aj 5, s) for 0 < g < 1. Tables 9 and 10 give
Go(A}g,8) =%+ (12— 2s)g + (25* — 225 + 70) +
G1(Aj5,5) =2¢ + (16 — 2s) +.
GQ(A%Q, s)=1.

EXAMPLE 4.4. Let V%Q be the polygon obtained by applying a F-rotation to A%’Q. In
Tables 11 and 12 the number inscribed in a vertex is its divergence. We obtain

Go(Vi,8) =+ (12— 2s)g + (25* — 225 + 70) +
G1(V3,5) =2¢+ (16 — 2s) + . ..
GQ(V%Q, S) =1.

©10:010
©;010%0
=
Se1070
oiolole

offo
0
0
3
*

s Gl(v%,%s)
01| 2[2]% | [2]? 4 4 1 2¢+ 16+ ...
1 * * * 2 * 2+ 14+ ...

TABLE 11. Computation of G1(V3 4, s).
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G(V%Q,s)
¢+ 129 + 70
¢2 + 10q + 50
¢* + 8¢+ 34
q% + 6q + 22
¢ +4qg+ 14

O
(1)
@ ©
10
4
2
*

*

(o)
15
*
*
7
3

(o)
@)

12

6

*

*

2

TABLE 12. Computation of Go(V3 5, s).
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EXAMPLE 4.5. We compute Gy(Af ,,s) for 0 < g < 1. Table 13 gives
Go(A2,8) = ¢+ (10 — 2s) +

Gl(A2,27 ) =1
2
S GO(Ag,QaS)
0| [2]? 4 4 qg+10+...
1 * 2 * q+8+...

TABLE 13. Computation of Go(A9 ,,s).

EXAMPLE 4.6. We compute Gy(A3 ,s) for 0 < g < 1. Table 14 gives

GU(A;O,S) =q+(8—2s)+...
Gl(Ag,Oas) =1

S GO(A%,W S)

01| [2? 6 qg+8+...

1 * 4 q+6+...
2 * 2 qg+4+...
31 [2]2 * q+2+...

TABLE 14. Computation of Go(A3 g, s).

EXAMPLE 4.7. We compute G4(Af 5, s) for 0 < g < 1. For g = 0 = gnax(A7 ) there
is a unique marked floor dlagram and it has multiplicity 1. There is no diagram for
g =1, hence

Go(A%’Q,S) = 1,
G1 (A%Q’ S) =0.

EXAMPLE 4.8. We compute Gy(A3 ,s) for 0 < g < 2. Tables 15 and 16 give
Go(A31,5) =+ (12— 2s)g + (25* — 225 + 67) +
G1(AZ,,5) = 29+ (16 — 25) + .
Gz(Agyl,s) =1
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2
S GO(A%,US)
01 [3% | 3212 | 7[2)? 21 23 || @+ 12¢+67+...
1 * * 5[2]? 11 17 || ¢>+10g + 47+ ...
2 * * 3[2)2 5 11 ¢ +8¢+31+...

TABLE 15. Computation of Go(A3 ,,s).

i

~
s 5 5 Gl(A%l,s)
01| 2[2)2 4 8 2+ 16+ ...
1 * * 6 2q+ 14+ ...

TABLE 16. Computation of G1(A3 ,,s).

EXAMPLE 4.9. We compute G4(AZ 3, s) for 0 < g < 1. For g = 0 = gmax (A7 3) there
is a unique marked floor diagram and it has multiplicity 1. There is no diagram for
g =1, hence

Go(Af4,5) =1,
Gl(Ai?,,s) =0.
ExAMPLE 4.10. We compute Gg(Ag37 s). Table 17 gives
G3(Af 5, s) =4q+ (26 — 2s) + ...

EXAMPLE 4.11. We compute G3(A3 ,s). Table 18 gives
Gg(Ag,O, s)=4q+ (24 —2s)+...

EXAMPLE 4.12. We compute G3(A3,,s). For g = 3 = gmax(A35) there is a unique
marked floor diagram and it has multiplicity 1, hence

Gg(Ag’Q,S) =1.
EXAMPLE 4.13. We compute G3(Af 4, s). Since gmax(AT 1) = 0, one has
G3(A%4,5) =0.

EXAMPLE 4.14. As a last example, we perform the computation for A}Lo and with
genus g = gmaX(A}LO) —-1= % — 1, with d > 3. We take s < d/2 and use
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2
2
5
6

01 222 | 2/22]| 6

G3 (Ag,3v S)
6

49+ 26+ ...

1 * * 4 * * dg+24+ ...

TABLE 17. Computation of G3(Af 3, ).

Tk

s ‘ ’ ‘ G3(Afy,5)
0 [2]2 3[2)? 10 6 dg+24+ ...
1 * * 8 * 49422+ ...

TaBLE 18. Computation of G3(A3 g, s).

the pairing S = {{1,2},...,{2s — 1,2s}}. Note that thanks to Theorem 3.8 we could
make the computation only for s < 1. Let vg < --- < vo < v; be the vertices of the
unique floor diagram with genus gmaX(A}w). There are two possible ways to construct
a diagram of genus g.

> One can merge two bounded edges into an edge of weight 2, see Figure 20a.

> One can choose a vertex v; for 2 < i < d, delete an edge below and above
v;, then add an edge adjacent to v;_; and v;1, see Figures 20b, 20c and 20d
(in Figure 20d, one understands v441 as a vertex at infinity, hence the added
edge is infinite).

In case (a), the S-multiplicity is [2]?. If the bounded edge of weight 2 is adjacent
to v; and wv;y1, then there are ¢ — 1 markings compatible with S. One can choose
2 < i< d—1, hence the case (a) contributes

d—1
22y - 1) ==

to Gg(Agm, s).

In cases (b), (¢) and (d) the S-multiplicity is 1. In case (b) the number of markings
is 3. In case (c¢) the number of markings is 2¢ — 1. Last, in case (d) the number of
compatible markings is 2d — 1 — 2s. Hence the contribution of cases (b), (¢) and (d)
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(a)2<i<d—1 (b)i=2 ()3<i<d—1

F1GUure 20. The floor diagrams with Newton polygon Aé,o and
ZEeNus gmax (Af o) — 1.

to Gg(Aj g s) is

d—1
34> (2i—1)+2d—1—-2s=d>—1-2s.
i=3
In the end one has
(d—1)(d-2)
Ggmax(A}LO)fl(Ab,Oa 5) = —y——a+t (2d> —3d+1—2s)+...

_ < gmax(A}l’Q)

PN )_1)q+(2d2—3d+1—23)+...
max d,0

In particular, for d = 3 we get Go(Asz, s) = ¢+ (10 —25) +¢~! and we recover example
2.10.

4.2. OBSERVATIONS AND CONJECTURE. From the calculations of the previous section
4.1, one can make several observations leading to few conjectures.

4.2.1. Invariance under lattice preserving transformation. A lattice preserving trans-
formation is an application f : R? — R? obtained as a composition of

> isomorphisms of R? induced by elements of GLo(Z),

> translations that preserves the lattice Z2, i.e. translations by a vector u € Z2.

In other words, a lattice preserving transformation is an element of the affine group
of R? for which the lattice Z? is invariant. We say that A and A’ are congruent if
there exists a lattice preserving transformation f such that A’ = f(A). If A and A’
are congruent, then Go(A, s) = Go(A’, s). Indeed, a translation does not change the
family of floor diagrams defined by A. Moreover, a marked floor diagram is a way to
encode a tropical curve C'. Via the dual subdivision of A corresponding to C, a matrix
of GL2(Z) which acts on A also acts on C, and preserves its multiplicity. Hence the
genus 0 count of floor diagrams for A and A’ are the same.
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Several examples of the previous section suggest that this invariance is true also
for higher genus. First, examples 4.1 and 4.2 show that for 0 < g < 2 one has

GQ(Ag,Bv 5) = Gg(Ag,zv s).
Second, examples 4.3 and 4.4 show that for 0 < g < 2 one has

G!I(Aéﬂv 5) = Gg(v%,% 5)
Although not detailed in this paper, one can check for instance that for 0 < g < 2
one also has

G!J(Ag,lﬁ S) = GQ(AAg,la 5)

10

where A is the matrix A = (1 1

), and for g = 3 one has

G3(A3 0, 5) = G3(AAL, 5).
All these observations lead to the following conjecture.

CONJECTURE 4.15. Let A and A’ be two h-transverse polygons. If there exists a lattice
preserving transformation f such that f(A) = A', then for any g € {0,..., gmax(A)}
and s € {0,...,Smax(A, g)} one has

Gy(A,s) = Gy(A)s).

We already know the conjecture is true for g = 0. By the results of [4] it is asymp-
totically true in genus 1, if A and A’ are moreover non-singular and horizontal. Indeed,
if the integral lengths of the sides of A are large enough, we know that the coefficients
of small codegree of G1(A, s) are given by polynomials which only depend on y(A),
X(A) and gmax(A), and similarly for A’. Since the triplet (y, X, gmax) is the same for
A and A’ then the coefficients of small codegrees of G1(A,s) and G1(A’,s) are the
same.

4.2.2. Abramovich-Bertram formula. We already know by [5] that Block-Gottsche re-
fined invariants, i.e. G4(A, 0), and genus 0 Gé6ttsche-Schroeter invariants, i.e. Go(A, s),
satisfy the Abramovich-Bertram formula. One can wonder if this formula also holds
for g and s both non-zero. Some examples of the previous section would plea in favor
of a positive answer. From examples 4.2, 4.8 and 4.9 we observe that for 0 < g < 2
one has

GQ(A3,37 s) = GQ(Ag,lv ) +3 x Gg(A%,& 5).
From examples 4.5, 4.6 and 4.7 we observe that for 0 < g < 2 one has
GQ(A8,27 8) = GQ(Ag,Ov 8) +2x GQ(A§,27 8)
From examples 4.10, 4.11, 4.12 and 4.13 we observe that for g = 3 one has
G3(Ag,37 S) = G3(A§,Oa 3) +2x G3(A§,23 8) +6 x G3(A%,47 8)'

Although not detailed here, one can check that the previous equality also holds for
g=2and 0 <s<2.

These examples lead to conjecture that the higher genus Gottsche-Schroeter in-
variants satisfy the Abramovich-Bertram formula.

CONJECTURE 4.16 (Abramovich-Bertram formula). Let a,b € N and g > 0. For any
s >0 one has

‘L (b425
Gg(Ag,a—i-bvs) = Z ( j >Gg(A(21—j,b+2ja5)-

=0
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