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Ehrhart theory on periodic graphs II:
Stratified Ehrhart ring theory

Takuya Inoue & Yusuke Nakamura

ABSTRACT We investigate the “stratified Ehrhart ring theory” for periodic graphs, which
gives an algorithm for determining the growth sequences of periodic graphs. The growth
sequence (S z,,4)i>0 is defined for a graph I" and its fixed vertex zo, where sp ;,; is defined
as the number of vertices of I" at distance i from xg. Although the sequences (st z,i)i>0 for
periodic graphs are known to be of quasi-polynomial type, their determination had not been
established, even in dimension two. Our theory and algorithm can be applied to arbitrary
periodic graphs of any dimension. As an application of the algorithm, we determine the growth
sequences in several new examples.

1. INTRODUCTION

An n-dimensional periodic graph (T, L) is a pair of a directed graph I" (that may have
loops and multiple edges) and a free abelian group L of rank n such that L freely
acts on I' and its quotient graph I'/L is finite (see Definition 3.2). For a vertex zg
of T', the growth sequence (sr z,.:)i>0 (resp. cumulative growth sequence (br gy.i)i>0)
is defined as the number of vertices of I whose distance from x is ¢ (resp. at most ).
Periodic graphs naturally appear in crystallography, also appear as periodic tilings in
combinatorics, and as Cayley graphs of virtually abelian groups in geometric group
theory (see [10, Section 13]). Furthermore, it is shown in [15] that the theory of
growth sequence of periodic graphs potentially includes the Ehrhart theory of rational
polytopes.

In [11], Grosse-Kunstleve, Brunner and Sloane conjectured that the growth se-
quences of periodic graphs are of quasi-polynomial type, i.e., there exist an integer M
and a quasi-polynomial fs : Z — Z such that sr4,; = fs(¢) holds for any ¢ > M
(see Definition 3.9). In [20], the second author, Sakamoto, Mase, and Nakagawa prove
that this conjecture is true for any periodic graphs (Theorem 3.8). Although it was
proved to be of quasi-polynomial type, determining the explicit formulae of growth
sequences is still difficult. Thus, the following natural question arises.

QUESTION 1.1 (cf. [15, Question 1.1]). Find an effective algorithm to determine the
explicit formulae of the growth sequences.
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So far, various computational methods have been established for several special
classes of periodic graphs. In [6], Conway and Sloane study the growth sequences of
the contact graphs of some lattices from the viewpoint of the Ehrhart theory, and
they give explicit formulae for the root lattices A4. In [3], Bacher, de la Harpe, and
Venkov give the proof for the conjectural formulae for the root lattices By, Cy and Dy
(cf. [2]). We note that the periodic graphs (I', L) obtained from the lattices satisfy
#(Vr/L) = 1, where Vi denotes the set of vertices of I'. When #(Vr/L) = 1, Vr
has a monoid structure, and the growth sequence can be directly studied by the
Hilbert series of the corresponding graded monoid. However, when #(Vr/L) > 1, it
is more difficult to study the growth sequence. In [10], Goodman-Strauss and Sloane
proposed “the coloring book approach” and obtained the growth sequence for some
periodic tilings. In [21, 22], Shutov and Maleev obtained the growth sequences for
tilings satisfying certain conditions that contain the 20 2-uniform tilings. In [15], the
authors introduce a class of periodic graphs called “well-arranged”; and they give
an algorithm to calculate their growth sequences. However, as far as we know, no
algorithm has been proposed that can be applied to any periodic graph, even in
dimension two.

The purpose of this paper is to give an algorithm for determining the growth se-
quences that can be applied to all periodic graphs in all dimensions. In Subsection 4.1,
we define invariants 5 € R>g and cpxp € Z~¢ from combinatorial information of I'. In
Corollary 4.23, we prove that the growth sequence (sr ,,i)i>0 is a quasi-polynomial
on ¢ > [ and cpxp is its quasi-period. More precisely, we prove that its generating
function Gr 4, () is given by

Gray(t) == srapil’ =

i>0

Q(t)
(1 — topsr)yn

with some polynomial Q(t) of deg@ < 5+ n - cpxp. On the other hand, with the
help of a computer program (breadth-first search algorithm), we can compute the
first few terms of (Sr z,.i)i>0. After we compute the first |5] +n - cpxp +1 terms, we
can determine the generating function as follows: For v := | 3] 4+ n - cpxp, we have

(The terms of (1 — tP*r)" 377 'sp 4 it* of degree 7 or less)
(1 _ tcpxp)n :

Corollary 4.23 follows from Theorem 4.20, which we call the “stratified Ehrhart
ring theory”. Theorem 4.20 gives an algebraic meaning to the growth sequence, and
by using it, Corollary 4.23 can be proved by a standard technique in algebraic com-
binatorics. In what follows, we will outline the statement of Theorem 4.20.

First, we briefly review the Ehrhart ring of a rational polytope and its structure.
Let @ C R™ be a rational polytope. Then, the Ehrhart ring of a rational polytope
Q@ C R™ is defined as the group ring k[A] corresponding to the (commutative) monoid

A:={(d,y) € Zzo x Z" | y € dQ}.

This A has a graded monoid structure with respect to the degree function deg :
Zso X L™ — Zxp : (d,y) — d. When 0 € int(Q), the monoid A has a nice algebraic
structure as follows:

GF,ZO (t) =

Fact 1.2 (cf. [4, Section 3.2]). Suppose 0 € int(Q). For each o € Facet(Q), we take
a triangulation T, of o satisfying V(A) C V(o) for any A € T, (see Section 2 for
the notation of triangulations). For v € V(Q), let a, be the minimum positive integer
satisfying ayv € Z". For o € Facet(Q), A € T, and A’ € Face(A), we define

La = R}()A/ Cc R", A (LA/) = AN (Z;Q X LA/) .

Algebraic Combinatorics, Vol. 8 #5 (2025) 1194



Ehrhart theory on periodic graphs 11

We also define a free submonoid M, nr C Zxo X Z™ by

Mo—,A’ = Z)O(l, 0) + Z Z;o(av,avv).
veEV (A’)

Then, for o € Facet(Q), A € T, and A" € Face(A), it follows that

o cach A(La+) is a free M, nr-module. Furthermore, A(Las) is freely generated
by finitely many elements whose degrees are less than ZUEV(A’) Ay -

By using this structure (and the inclusion-exclusion principle), we can prove the count-
ing function

Lo — Lxzo; d—=#{y € Z" |y cdQ} =#{ycZ" | (d,y) € A}

is a quasi-polynomial.

Next, we shall explain the “stratified Ehrhart ring theory” for periodic graphs,
which is an analogy of Fact 1.2. Let (I', L) be an n-dimensional strongly connected
periodic graph, and let xy be a vertex of I'. Let Vi denote the set of vertices of I'. We
define

B := {(d, y) S Z)O x Vr | dr(mo,y) < d}
Unlike the case of the Ehrhart ring, B itself does not have a monoid structure when
#(Vr/L) > 1, and the situation is more complicated. In the statement of The-
orem 4.20, the growth polytope Pr plays an important role. The growth polytope
Pr C Ly := L®zR is a rational polytope and is canonically defined from the periodic
graph I" (Definition 3.10). Furthermore, we fix a periodic realization ® : Vr — Lg, that
is a map satisfying ®(u+1y) = u+ ®(y) for any y € Vi and u € L (see Definition 3.4).

THEOREM 1.3 (cf. Theorem 4.20). There exist

e € Ry,

e a triangulation T, for each o € Facet(Pr), and

® cpx,(v) € Zso and Ban € Rxo for any o € Facet(Pr), A € T, andv € V(A)
with the condition (&) below: For o € Facet(Pr), A € T,,, A’ € Face(A) and A" €
Face(A'), we define Las, La, a7, a7 C Lr by

LA’ = ]R}OA/7 LA,A’,A” = Z (ﬁA’v, OO) v+ Z [0, ,BA’U] - V.
veV (A VeV (A)NV(A™)
(Note that we have Lar = L] Laarar.) For a subset F' C Ly, we define
A’ €Face(A’)

B(F) := BN (Zzo x 7' (F)). We also define a free submonoid My nr C Zzo % L by
My ari=Z20(1,0)+ Y Zso(epx, (v), cpx, (v)v).
VeV (AY)
Then, for o € Facet(Pr), A € T,, A" € Face(A) and A" € Face(A'), it follows that

(®) each B(Lanarav) is a free My av-module. Furthermore, B (La ar,ar)
is freely gemerated by finitely many elements whose degrees are at most

ﬂ + ZUEV(A”) Cpxg(v),
We define
cpxp := LOM{cpx, (v) | o € Facet(Pr), A € T,, ve V(A)}.

In Corollary 4.23, by using the algebraic structure in Theorem 1.3 (and the inclusion-
exclusion principle), we prove that the generating function Gr ., (t) is given by the

form
Q(t)

Oranlt) = T oy
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with some polynomial Q(t) of deg @ < S+ n - cpxp.

In [22] and [10], similar ideas of calculating the growth sequence by partitioning Vi
into finite regions, as in Theorem 1.3, also appear (although in both papers, the
construction is explained only for a specific class of planar graphs and not for general
graphs in arbitrary dimension). Theorem 1.3 can be said to be a rigorous formulation
and a generalization of their ideas.

In [15], the authors introduce a class of periodic graphs called “well-arranged”.
For well-arranged periodic graphs, they prove that 8 = 0 and Sa, = 0 satisfy the
statement of Theorem 1.3 (see [15, Claim 4.10]). As a consequence, they prove that
their growth sequences are quasi-polynomial on ¢ > 0.

In the two-dimensional case, it is relatively simple to implement our algorithm into
a computer program since there is no need to consider the complicated triangulations
of the facets of Pr (see Subsection 4.2 and Remark 5.1). In fact, using the computer
program, the growth sequences of the examples treated in [10] can be computed
automatically without separate consideration (see Subsection 5.1). In Subsection 5.1,
we examine a 6-uniform tiling using our algorithm.

In higher dimensions, although it is possible to implement the algorithm in a com-
puter program, it is practical to give the triangulation by hand. In Subsections 5.2
and 5.3, we illustrate the algorithm for the periodic graphs corresponding to two car-
bon allotropes called K6 and CFS. There, the triangulation and other calculations
are partially given by hand, and the rest is done by a computer program. As far as
we know, this is the first time the growth series of these two examples have been
determined with proofs.

The paper is organized as follows: in Section 3, we introduce notations related
to periodic graphs following [15]. In Subsection 4.1, we define the invariants 5 and
cpxp. In Subsection 4.2, we explain the invariants for 2-dimensional periodic graphs.
In Subsection 4.3, we prove the main theorem (Theorem 4.20 and Corollary 4.23). In
Section 5, we apply our algorithm to some specific periodic graphs. In Appendix A,
we briefly describe an input form of periodic graphs to implement the algorithm in a
computer program.

2. NOTATION

e For a set X, #X denotes the cardinality of X, and 2% denotes the power set
of X.

e For a finite subset S C Zs, LCM(S) denotes the least common multiple of
the elements of S.

e For a polytope P C RY, Facet(P) denotes the set of facets of P, Face(P)
denotes the set of faces of P, and V(P) denotes the set of vertices of P. Note
that both P itself and the empty set @ are considered as faces of P.

e For aset C C RY, int(C) denotes the interior of C, and relint(C) denotes the
relative interior of C.

e For a polytope ¢ C RY of dimension d, a triangulation T, means a finite
collection of d-simplices with the following two conditions:

- o= UAeTG A.
— For any Ay, As € T,;, A1 N As is a face of Ay.

e Let M be a set equipped with a binary operation *. For ©v € M and subsets
X, Y C M, we define subsets ux X, X *Y C M by

ux X :={uxz|z€ X}, X«Y :={zxy|(r,y) e X xY}.

e In this paper, monoids always mean commutative monoids. We refer the
reader to [5] and [20] for the terminology of monoid and its module theory.
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3. PRELIMINARIES
Following [15], we introduce notations related to periodic graphs.

3.1. GRAPHS AND WALKS. In this paper, a graph means a directed weighted graph
which may have loops and multiple edges. A graph ' = (Vr, Er, sr, tr, wr) consists
of the set Vi of vertices, the set Er of edges, the source function sr : Er — Vp, the
target function tr : Er — Vp, and the weight function wr : Er — Zsg. We often
abbreviate sr, tr and wr to s, t and w when no confusion can arise.

DEFINITION 3.1. Let ' = (Vr, Er, s, t,w) be a graph.

(1) T is said to be unweighted if w(e) = 1 holds for any e € Er. I' is said to
be undirected when there exists an involution Er — Er; e — €’ such that
s(e) =t(e), t(e) = s(e’) and w(e) = w(e’).

(2) A walk pinT is a sequence ejeg - - - e of edges e; of I" satisfying t(e;) = s(e;41)
foreach i =1,...,¢ — 1. We define

¢
s(p) = s(er), t(p):=tle), w(p):=Y wle;), length(p):="~.
i=1
Note that we have w(p) = length(p) if T' is unweighted.
We say that “p is a walk from x to y” when x = s(p) and y = ¢(p). We also
define the support supp(p) C Vr of p by

Supp(p> = {5(61)7 t(el>7 t(eQ)v s at(ef)} C VF~
By convention, each vertex v € Vr is also considered as a walk of length 0.
This is called the trivial walk at v and denoted by @,: i.e., we define

s(Dy) =v, (D) :=v, w(D,):=0, length(z,):=0, supp(<,):= {v}.

(3) A pathinT isawalk e; - - - ey such that s(ey),t(e1), t(e2),. .., t(es) are distinct.
A walk of length 0 is considered as a path.

(4) A cycleinT isawalk eg - - - e with s(e1) = t(eg) such that t(e1), t(ez2), ..., t(er)
are distinct. A walk of length 0 is NOT considered as a cycle. Cycp denotes
the set of cycles in I'.

(5) For z,y € Vr, dr(z,y) € Zso U {oo} denotes the smallest weight w(p) of
any walk p from x to y. By convention, we define dr(z,y) = co when there
is no walk from z to y. A graph I is said to be strongly connected when
we have dr(z,y) < oo for any z,y € Vp. When I' is undirected, we have
dr(z,y) = dr(y,x) for any x,y € Vr.

(6) C1(T,Z) denotes the group of 1-chains on T" with coefficients in Z, i.e., C1(T", Z)
is a free abelian group generated by Er. For a walk p=e;1---¢;, in T, let (p)
denote the 1-chain Zle e; € C1(I,Z). H1(T',Z) C C1(T,Z) denotes the 1-st
homology group, i.e., Hy(T',Z) is a subgroup generated by (p) for p € Cycr.
We refer the reader to [24] for more detail.

3.2. PERIODIC GRAPHS.

DEFINITION 3.2. Let n be a positive integer. An n-dimensional periodic graph (I, L)
is a graph I' and a free abelian group L ~ Z" of rank n with the following two
conditions:
o L freely acts on both Vr and Er, and their quotients Vr/L and Er/L are
finite sets.
e This action preserves the edge relations and the weight function, i.e., for any
u € L and e € Ep, we have sp(u(e)) = u(sr(e)), tr(u(e)) = u(tr(e)) and
wr (u(e)) = wr(e).

Algebraic Combinatorics, Vol. 8 #5 (2025) 1197
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If (I',L) is an n-dimensional periodic graph, then the quotient graph I'/L =
(VF/LaEF/LaSF/L7tF/LawF/L> is defined by VF/L = VF/L, EF/L = EF/L, and the
functions Sr/L - EF/L — VF/L, tF/L : EF/L — Viﬂ/L7 and wr/L : EF/L — Z>0
induced from sr, tr, and wr. Note that the functions sp,r, tr/p and wr, are
well-defined due to the second condition in Definition 3.2.

DEFINITION 3.3. Let (T, L) be an n-dimensional periodic graph.

(1) Since L is an abelian group, we use the additive notation: for v € L, x € Vp,

e € Er and awalk p=-e;1---ey,
ut+z:=ulx), ute:=ule), u+p:=uler)- - ulep)
denote their translations by w.

(2) For any x € Vr and e € Er, let T € Vp/p, and € € Ep/p, denote their images
in Vp/p, = Vr/L and Er,;, = Ep/L. For a walk p = e ---¢; in I, we define
its image in I'/L by p:=e7-- - €.

(3) When z,y € Vr satisfy T = 7, there exists an element v € L such that
u + x = y. Since the action is free, such v € L uniquely exists and is denoted
by y — x.

(4) For a walk p in I with s(p) = t(p), we define

vec(p) = t(p) — s(p) € L.
DEFINITION 3.4.Let (T, L) be an n-dimensional periodic graph. We define Lg :=
L ®zR.
(1) A periodic realization ® : Vp — Ly is a map satisfying ®(u + z) = u + ®(x)
for any u € L and x € Vr.
(2) Let @ be a periodic realization of (I', L). For an edge e and a walk p in T', we
define
veco(€) := ®(t(e)) — @(s(e)) € Lg,
veeu (p) == @(t(p)) - 2(s(p)) € Le.
It is easy to see that the value vece(e) € Lgr depends only on the class
€ € Er/p, and therefore, the map
pe : Bryp — Lr; €+ vecs(e)

is well-defined. It can be extended to a homomorphism
po : C1(T/L,Z) = Lr; Y _ai&i > Y aijia(&).
By construction, we have uqg((p)) = vece(p) for any walk p in T
(3) It is known that the restriction map pe|m,(r/r,z) @ Hi(I'/L,Z) — Ly is
independent of the choice of ® and that its image is contained in L (see [15,
Lemma 2.7]). This restriction map is denoted by u : H;(I'/L,Z) — L.
REMARK 3.5.In Definition 3.4(2), we have vece(p) = vec(p) for any p satisfying

s(p) = t(p).

We finish this subsection with an observation from [15] on the decomposition and
the composition of walks. The notation differs slightly from that in [15], but is essen-
tially the same.

DEFINITION 3.6 (cf. [15, Definition 2.11]). Let (I', L) be an n-dimensional periodic
graph. Let go be a path in I'/L, and let a : Cycry, — Zzo be a function. The
pair (go,a) is said to be walkable if there exists a walk ¢’ in I'/L such that (¢') =

{a0) + 2 gecyer,, ©D(@)-

Algebraic Combinatorics, Vol. 8 #5 (2025) 1198
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LEMMA 3.7 ([15, Lemma 2.12, Remark 2.13]). Let (I', L) be an n-dimensional periodic
graph.

(1) For a walk ¢' in T'/L, there exists a walkable pair (qo,a) such that (¢') =
(qo) + quCyCI‘/L a(q){(q). Furthermore, if ¢’ satisfies s(q') = t(q'), then qo
should be a trivial path.

(2) Let qo be a path in '/L, and let a : Cycr,, — Zzo be a function. Then,
(qo, a) is walkable if and only if there exists a sequence qi,...,q € a~(Z=o)
satisfying a=1(Z=o) = {q1,--.,qe} such that

(SUPP(CIO)U U supp(q»)msupp(qkﬂwe
1<i<k

holds for any 0 < k </ —1.
(3) For a walk q in T'/L and a vertex x € Vr satisfying s(q) = T, there exists a
unique walk p in T such that ¢ =D and s(p) = x.

3.3. GROWTH SEQUENCES OF PERIODIC GRAPHS. Let I be a locally finite graph, and
let zp € Vr. For i € Z3(, we define subsets Br 4., Sr,z,,; C VI by

Br zoi :={y € Vr | dr(zo,y) < i}, Sraei:={y € Vr |dr(zo,y) =i}

Let br zy,i = #DBrz,: and Sr gz, = #S5T,2,,: denote their cardinalities. The se-
quences (ST,g,.:)i and (br g,.:): are called the growth sequence and the cumulative
growth sequence of T" with the start point x(, respectively.

The growth series Gr 4, (t) of I' with the start point xg is the generating function

Grag(t) =Y s1.00il"
i>0
of the growth sequence (Sr z.i)i-

The growth sequences of periodic graphs are known to be of quasi-polynomial type.
THEOREM 3.8 ([20, Theorem 2.2]). Let (I', L) be a periodic graph, and let o € V.
Then, the functions b: i br z,; and s : i Sr 4, are of quasi-polynomial type (see
Definition 3.9 below). In particular, its growth series is rational.

DEFINITION 3.9 (cf. [23, Chapter 0]).
(1) A function f : Z — C is called a quasi-polynomial if there exist a positive
integer N and polynomials Qq,...,Qn—1 € C[z] such that
Qo(n) ifn=0 (mod N),

Q1(n ifn=1 (mod N),
s LG (mod N)

QN.—l(Tl) ifn=N-1 (mod N).

(2) A function g : Z — C is said to be of quasi-polynomial type if there exists a
non-negative integer M € Z>( and a quasi-polynomial f such that g(n) =
f(n) holds for any n > M. The positive integer N is called a quasi-period
of g when f is of the form in (1). Note that the notion of quasi-period is not
unique. The minimum quasi-period is called the period of g. We say that the
function g is a quasi-polynomial on n = m if g(n) = f(n) holds for n > m.

3.4. GROWTH POLYTOPE. In this subsection, according to [15], we define the growth
polytope Pr C Lg for a periodic graph (I, L). The concept of a growth polytope has
been defined and studied in various papers [16, 17, 25, 7, 18, 8, 1].

DEFINITION 3.10. Let (T, L) be an n-dimensional periodic graph.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1199
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(1) We define the normalization map v : Cycr,, — Lr := L ®z R by

p((p))
w(p)

v:Cycp,p = Lr; prr

We define the growth polytope
Pr := conv(Im(v) U{0}) C Lg
as the convex hull of the set Im(v) U {0} C Lg.
(2) For a polytope Q C Lg and y € Lg, we define
do(y) := min{t € R>o | z € tQ} € R U {o0}.

When 0 € int(Q), we have dg(y) < oo for any y € Lg.
(3) For a periodic realization ® : Vi — Lg, we define

dPF,@(xay) = dPr ((I)(y) - ‘I)(LL'))
for z,y € V.

REMARK 3.11. Note that Pr is a rational polytope (i.e., Pr is a polytope whose vertices
are on Lo := L®z Q). This is because Cycr, is a finite set, and we have Im(v) C Lq.
Furthermore, when I' is strongly connected, we have 0 € int(Pr) by [8, Proposition 21]
(cf. [15, Lemma A.1]).

We define C (T, ®, ) and Co(T', ®,x0) as invariants that measure the difference
between dr and dp. ¢.

DEFINITION 3.12. Let (T, L) be a strongly connected periodic graph. Let ® : Vr — Lg
be a periodic realization, and let g € Vp. Then, we define
Cl (Fa (I)u fEO) ‘= Sup (dPr,'@(xU7 y) - dF($07 y))7

yEVR

02(F7 (D’ 'TO) = Su‘l/? (dr(ﬂfo, y) - dPIH‘I)(an y))
yeVr

By [15, Theorem A.2], we have Cy(T", ®,z¢) < oo and Ca(T, &, z0) < 0.

REMARK 3.13. As in Proposition 3.14(1), it is easy to determine Cy(T", ®, (). How-
ever, it is not easy to determine Cy(I", ®,x0) in general, and we just give an upper
bound of it in Proposition 3.14(2). In Theorem 4.26, we give an algorithm to determine
Co(T, @, 29) using the invariants defined in Section 4.

PROPOSITION 3.14 (cf. [15, Theorem A.2]). Let (T', L) be a strongly connected periodic
graph. Let ® : Vi — Ly be a periodic realization, and let xo € Vp.

(1) We have

Cl(ra q)7x0> = ynga/X (dPr,‘@(:L'07y) - dl—‘(‘r07y))7

where ¢ := #(Vr /L) and
B!_, :={y € Vi | there exists a walk p from zo to y with length(p) < ¢ — 1}.
(2) We have Co(T', @, x0) < C4 when we define Ch as follows:
o First, we define d, := minge,—1(,) w(q) for each v € V(Pr).
e For each o € Facet(Pr), we fix a triangulation T, of o such that V(A) C
V(o) holds for any A € T,.
o We define a bounded set Q C Ly as follows:

Q= U > [0, 1)dy | C Lg.

o€Facet(Pr), V(A
AeT, veV(A)
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e Fory € Vr, we define d'(xo,y) as the smallest weight w(p) of a walk p
from xqg to y satisfying supp(p) = Vr/L.
o Then, we set

Cé = max{dl(fo,y) —dpr o (0, Y) | y € Vr, ®(y) — ®(w) € Q}~
Proof. In the proof of [15, Theorem A.2], (1) and (2) are proved. O

4. STRATIFIED EHRHART RING THEORY

Throughout this section, we fix a strongly connected n-dimensional periodic
graph (I',L). We also fix zp € Vpr. Let (b(d))q be the cumulative growth se-
quence of I' with the start point xg. By Theorem 3.8, it is known that the function
b : dw— b(d) is of quasi-polynomial type. The goal of this section is to give an
algorithm for finding a quasi-period and an integer m such that the function b is a
quasi-polynomial on d > m.

In Subsection 4.1, we will define invariants cpxp € Zso and 5 € Rx¢. In Subsec-
tion 4.3, we will prove that the function b is a quasi-polynomial on d > § — 1, and
cpxp is its quasi-period (Corollary 4.23).

4.1. INVARIANTS. Let P := Pr be the growth polytope of I'. We define v : Cycp,;, —
Ly as in Definition 3.10. We also fix a periodic realization ® : VI — Ly such that
®(z9) = 0. Let C1 := C1(T', @, z0) and Cy := Co(T, @, z0) (see Definition 3.12).
We will define $ and cpxp in Subsection 4.1.5:
e In Subsection 4.1.1, for each o € Facet(P), we take a triangulation T, with
conditions ()1 and ({)a.
e In Subsection 4.1.2, for each o € Facet(P) and v € o, we define a subset
Hg,v C 2Im(u)ﬂa'
e In Subsection 4.1.3, for o € Facet(P), A € T,,, v € V(A) and F € H ,,, we
take invariants c¢px, (v) € Zso, rfw € Z>o and sfm € Zxo.
e In Subsection 4.1.4, for o € Facet(P), A € T,, v € V(A) and F € H ,, we
take invariants aj ,(v) € (0,1) and h} , € (0,1).
o In Subsection 4.1.5, using the invariants above, we define invariants 5 € Rxg
and cpxp € Zxg.

4.1.1. Triangulation T,. For each facet o of P, we take a triangulation T, of o (see

Section 2) with the following two conditions:

($)1 V(A) C Lg holds for any A € Ty,.
($)2 For any A € T, and any subset F' C Im(v) N o, A Nconv(F) is a face of A.

See Lemma 4.1 for the existence of such a triangulation. The rationality condition ({)1
will be used in the proof of Lemma 4.7. Condition ({»)s will be used in the proof of
Lemma 4.10 (see Lemma 4.9).

LEMMA 4.1. For each o € Facet(P), there exists a triangulation T, of o with the
conditions ({)1 and (O)a.

Proof. We fix o € Facet(P). First, we define a set S of polytopes by
S = {conv(F) ‘ F e 21“‘(”)m"}.

Then, since S is a finite set of polytopes, by taking a subdivision, we can construct a
triangulation T, of o with the following condition:

(i) For any @Q € S, there exist Aj,..., A, € {A"| A € T,, A’ € Face(A)} such
that Q = Ui_, Al
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Since Im(v) C Lg, S consists of rational polytopes. Therefore, we may take such a
triangulation T, to satisfy ().

We prove that the T, satisfies ({)2. Let F C Im(v) No and A € T,. By (i), AN
conv(F') is a union of some faces of A. Since ANconv(F) is a convex set, ANconv(F)
should be a face of A. O

EXAMPLE 4.2. Figure 1 shows the example of T,. In this example, we assume that
o is a quadrilateral with vertices uy,...,us and Im(v) No = V(o) = {uy,...,uq}.
Then, T, = {A1, Ag, A3, Ay} in the figure satisfies the condition ($)s.

U9 CP)
o TU:{A177A4}
) U1 U3 Ay | Ay U1
us
Az | Ay

Uy Uy

FiGure 1. T, for a quadrilateral o.

4.1.2. HI,.

DEFINITION 4.3. Let o € Facet(P). Let & denote the hyperplane of Ly that contains o.
For v € 7, let H, , denote the set of all closed half-spaces H of 7 satisfying v € 0H :=
H \ relint(H). Let

H::,v ={Im(v)NH|H€Hy} C olm(¥)No

Note that #/, , is a finite set since Im(v) is a finite set. Let H , C H/, , be the set of
minimal elements of H;, , with respect to the inclusion.

See Lemma 4.4 for a property of H .

LEMMA 4.4. Let 0 € Facet(P) and v € 0. For each F' € H],, we pick arbitrary
up € F. For any choice of up, we have v € conv({up | F € 1} ,}).

Proof. Suppose the contrary that v € conv({ur | F € H/,}). Then, conv({up |
F c Hf,”v}) should be contained in an open half-space of @ whose boundary passes
through v, and hence, we have

{fup |FeM, }NH=0

for some H € Hy,. Let Fy := Im(v) N H € H,, . Then, by the definition of H ,
there exists F' € H,, , such that F’ C Fg. Since we have

UF/E{UF|F€'HZW}, uF/GF'CFHCH,

we get a contradiction. d
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EXAMPLE 4.5. For example, in Figure 2, we have
H, o, = {{z1}, {or, mo}, {m1, w2, 26}, {22, 36}, {22, w6, 23},
{2, 26, 73, v}, {2, T6, T3, ¥4, 5}, {26, T3, ¥4, T35},
{3, 24,25}, {@3, 24, w5, 21}, {wa, w5, 21}, {ws, 21} },
H//

oo = Uz} {wo, w6}, {23, 24,25} }.

FIGURE 2. Im(v)No = {x1,...,26}.

4.1.3. cpx, (v), 7L, and sk .

DEFINITION 4.6. For a subset F' C Lg, we define Cycp,(F) := v~ (F) C Cycr .

We fix o € Facet(P), A € T, and v € V(A). We pick cpx,, (v) € Zwgand rf, sE €

o, 20,

Z> for each F' € H!, satisfying the following two conditions (R) and (S):

o,V

(R) Suppose that a function a : Cycp (o) = Zxo satisfies

Y al@) - wle) >y,
q€Cycp 1 (F)
for any F' € H; . Then, there exists a function b : Cycr, (o) — Zxo satisfy-
ing
® b1 (Z>o) C a”(Z>o), and
i ZqECycF/L(o‘) b(q) : lu‘(<q>) = CpXU(’U)’U.
(S) Suppose that a function a : Cycp (o) — Zxo satisfies

> alg) - w(g) > sk,
q€Cyer 1, (F)

for any I € H; . Then, there exists a function b : Cycr, (o) — Zxo satisfy-
ing

® b(q) < a(g) holds for any q € Cycp (o),

i ZqECycF/L(o‘) b(q) . lu‘(<q>) = Can.(’U)’U, and

e for any ¢ € b~'(Zxo), there exists ¢’ € Cycr 1, (o) such that b(¢') < a(q’)

and supp(¢) C supp(q')-
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See Lemma 4.7 for the existence and a construction of cpx, (v), rf, and sf »- These

o,V

technical conditions will be used in the proof of Theorems 4.16 and 4.17.

LEMMA 4.7. Fiz 0 € Facet(P), A € T, and v € V(A). Then, there exist cpx,(v) €
Zso and vl sk, € L for each F € H , satisfying the conditions (R) and (S).
Proof. We set Sy, :=Upeyr F Clm(v)No.
We define cpx,, (v) as the minimum positive integer with the following condition.
e If a subset G C Cycr,(S,,0) satisfies v € conv(v(G)), then we have
pX, (V) € Y Zo - pu({q))-
qeG

Such cpx,(v) € Zs( exists since we have v € Lg by the assumed condition ({);
on T,, and the choice of G has finitely many possibilities.

Next, for u € S,,,,, we define m, ,(u) as the minimum positive integer ¢ with the
following condition.

o Let G C S, , be a set of R-linear independent elements satisfying v € G and
v € conv(G). For v/ € G, we define projg , (v) € Ryo by the unique

expression v = 3, Projg . (v) - u'. Then, we require ¢ to satisfy

CPX, (’U) ! prOjG,u(v) < l.
For u € Im(v) and d € Z~¢, we define

Len({u}) := {w(q) | ¢ € Cycr/({u})},
CYC%/L({U}) = {q € CyCF/L({u}) | w(g) = d}»
num(u, d) := #{supp(q) | ¢ € Cycf,, ({u})}.
Then, we define 5%, by
5571} = Z Z (Mo (u) + d(num(u, d) — 1)).
welm(v)NF deLen({u})

In what follows, we shall show that cpx,(v) and sZ, satisfy condition (S).
Suppose that a function a : Cycr, (o) — Zxo satisfies

> alg)-wlg) > sk,
q€Cycr,(F)

for each F' € Hy; . Note that

Yo algwlg = Y, > a(q)>-

d
q€Cycr, 1 (F) u€lm(v)NF deLen({u}) < q€Cycﬁ/L({u})
Therefore, for each F, we can pick up € Im(v) N F and dp € Len({ur}) such that
dr - Z a(q) > mgy(ur) + dp (num(up, dr) - 1).
g€Cyept, ({ur})

By Lemma 4.4, we have v € conv({up | F € HJ,}). We take a minimal subset
I C H], such that
v € conv({up | F € I}).

Then by the minimality of I, the elements of {up | F' € I} are R-linear independent.
Therefore, we may uniquely write

cpx, (v)v = Z crdpup
Fel

Algebraic Combinatorics, Vol. 8 #5 (2025) 1204



Ehrhart theory on periodic graphs 11

with ¢p € Rs¢. By the choice of cpx, (v), we have cp € Z~(. Moreover, by the choice
of my . (up), we have cpdp < mg(ur). In particular, we have

mo’,v(uF>

CFr X
dp

<1—num(up,dr) + Z a(q).
q€Cyer, ({ur})

For each F, by the definition of num(ug,dr), we can take qi,...,q¢ € Cyc?‘?L({uF})
such that

o ¢ <num(up,dr),
b a(q1)7 ceey a(Qf) > 07 and
o {supp(q) | q € Cyc{, ({ur}), a(q) >0} = {supp(q1),. .., supp(ar)}-
Then we define a function ff : Cycdr’;L({uF}) — Zso by
a(q) —1 if ¢g=g¢q; for somei=1,...,¢,
fr(q) :={ (@ ,
a(q) otherwise.
Then, we have
(i) {supp(q) | ¢ € Cyef, ({ur}), fi-(q) >0}
C {supp(q1),.-.,supp(qe)}
= {supp(q) | ¢ € Cyclf, ({ur}), alg) > fr(a)}.

Since we have

cp < —num(up,dp) + Z a(q)

qg€CyeF, ({ur})
<—t+ > alg
q€Cyer, ({ur})
= Y file),

chyC?‘/DL({UF})

we can take a function fp : Cycl‘f‘? . ({ur}) — Zx satisfying the following two condi-
tions:

(if) quCycﬁjL({uF}) frlg) =cp.

(iii) fr(q) < fr(g) holds for any ¢ € Cyc?‘;L({uF}).
By (i) and (iii), we have
(iv) {supp(q) | ¢ € Cye{, ({ur}), fr(q) >0}

C {supp(q) | ¢ € Cyef, ({ur}), ale) > fr(a)}-
We define a function b : Cycr, (o) = Zxo by
bg) = fr(q) ifqe Cyc‘IiJ;L({uF}) for some F € I,
V= 0 otherwise.

Then, by (iii) and (iv), the function b satisfies the following two conditions:
® b(q) < a(g) holds for any q € Cycp (o).
e For any q € b=(Zxy), there exists ¢’ € Cycr, (o) such that b(¢') < a(q') and
supp(q) = supp(q’) (in particular, supp(q) C supp(q’)).
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By (ii), we have

Soob@ - ulle)=>_ > frl@)-nulq)

q€Cycr (o) kel qGCyCﬁfL({uF})

=> Y. frl@drur

Fel gecyerd, ({ur})
=Y cpdpurp

Fel
= cpx,, (v)v.

Therefore, this b satisfies the condition (S).
F

We define %, := 0 for any F' € H) ,. Then by the same argument as for s, we
can show that cpx, (v) and rf s satisfy the condition (R). O

4.1.4. aiv(v’) and hiv.

DEFINITION 4.8. For a subset F' C Lgr that consists of R-linear independent n ele-
ments, we define

H(F) := {Zaxx

TEF

a; € R with Zaﬁgl}.

TeF
This is the closed half-space H of Ly satisfying 0 € H and F' C 0H := H ~\ relint(H).

We fix o € Facet(P), A € Ty, v € V(A) and F € H]] . For each v' € V(A), we
pick a} ,(v') € (0,1] with the following conditions:

(A1) aj ,(v) € (0,1).

(A2) Im(v) \ F C H({aX , (') | v/ € V(A)}).
See Lemma 4.10 for the existence of such aiw(v’)’s.

We set

(H) ha ., =max{a € Ryo | aP C H({ax ,(')v" | v € V(A)})}.

We have 0 < hjy , < aj ,(v) < 1since ay ,(v) > 0 for each v' € V(A).

Lemma 4.9 below will be used in the proof of Lemma 4.10. We prove Lemma 4.9
following the proof of the hyperplane separation theorem (cf. [13, Theorem 1.17]). In
the proof below, the finiteness of F’ and the assumption ({)s on the triangulation T,
will be important.

LEMMA 4.9. Fiz o € Facet(P), A € T, and v € V(A). Let F/ C Im(v)No be a subset
satisfying v & conv(F’). Then, there exists a closed halfspace H' of & such that

vg H', relint(A)NH =@, F CH'.

Proof. Note that we have relint(A)Nconv(F’) = &. Otherwise, we have A C conv(F”)
by the assumption ()2, and it contradicts v & conv(F”’). If A Nconv(F’) = &, then
the assertion follows from the hyperplane separation theorem (cf. [13, Theorem 1.17]).
In what follows, we assume that A N conv(F') # @.

We identify & = R"~!, and (-,-) denotes the standard inner product on R"~1.
Let v1 = v,vs,...,v, be the vertices of A, and let x1,...,x, be the elements of F”.
For 1 <i<mnand1<j</{, wedefine y;; := x; — v;. We set

Q=conv({y; | 1<i<n, 1<j<0}).
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Since ANconv(F’) # &, we have 0 € Q. Furthermore, since relint(A)Nconv(F') = &,
we have 0 € relint(Q). Let G be the minimal face of @ satisfying 0 € G. Then, there
exists u € R"™1 < {0} such that
QC {z e R ! ’ (z,u) > 0}7 {z e R ! ‘ (z,u) zo}ﬂQ:G.

We set v := minj¢j<e{z;, u > Then we have
(1) "c{zeR" | (zu) > a}.
Since @ C {z e R"7! | (z,u > 0}, we have (zj,u) > (v;,u) for any 1 < i < n and
1 < j < L. Therefore, we have maxy<;<n (v, u) < o, and hence, we have
(2) AC{ZGR”_l‘ (z,u) < a}.

In what follows, we prove (v, u) < a. We define

I={(i,5) e {l,...,n} x {1,...,€} | yi; € G}.
By the minimality of G, we have 0 € relint(G). Therefore, there exist ¢;; € Rsq for

(i,7) € I such that

Z cijlij =0, Z cij = 1.

(i.4)el (i.4)€l
Then, we have
(3) Z CijU; = Z CijTj.

(i,5)€l (7)€l
Let A’ be the face of A such that V(A') = {v; | (4,4) € I}. Then, by (3), we have
relint(A’) N conv(F’) # @. Therefore, by ()2, we have A’ C conv(F’). Since v ¢
conv(F"), we can conclude that v; = v € V(A’). Therefore, by the definition of I,
we have yi1,...,y10 € G, and hence, (y1;,u) > 0 for any 1 < j < ¢. Thus, for j
satisfying (x;,u) = o, we have
(4) (v1,u) = (zjr,u) = (Y17, u) < e,
By (1), (2) and (4), we conclude that

H :={zeR" | (z,u) > a}

satisfies the desired conditions. O

LEMMA 4.10. Fiz o € Facet(P), A € T,, v € V(A) and F € H . Then, for each
v € V(A), there exists ai)v(v’) € (0,1] such that

(A1) of,(v) € (0,1), and

(A2) Im(v) N\ F C H({ai’v(v’)v’ | v € V(A)})

Proof. We set F, := (Im(v)No)\ F. By the definition of H ,, we have v ¢ conv(F).

Therefore, by Lemma, 4.9, there exists a closed halfspace H' of @ such that
vg H', relint(A)co~H', F.,CH.

Let ¢ := 0(H') = H' \ relint(H').

For a € Ry, let H(¢,av) denote the closed halfspace of Ly uniquely determined
by the following conditions:

0 Hl,av), (CO(H({, av)), ave d(H, av)),
where O(H (¢, av)) := H (¢, av) ~relint(H (¢, av)). Note that O(H (¢,v)) = 7. Therefore,
we have Im(v) \ o C relint(H (¢,v)). Since Im(v) is a finite set, there exists € € (0,1)
such that
Im(v) N o C H{, (1 —€)v).
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a\ H H

FiGURE 3. H' and /.

For each v’ € V(A), we take a(v') € R5g so that
H(,(1—e€)v) =H({a@ ) [ € V(A)}).

This a(v') can also be determined by a(v’)v’ € (H (¢, (1—€)v)). We have a(v) = 1—€ €
(0,1). Note that on 7, A is on the same side as v with respect to the hyperplane £.
Therefore, we have a(v') < 1 for any v' € V(A).
Since v € H and 1 — € < 1, we have
H =H(,(1-¢ev)Na.

Therefore, we have

Im(v) \ F = (Im(v) \ o) UF.,
C (Im(v) ~o)UH'
CH( (1—ev)=H({a@ ) |0 € V(A)}).
Therefore, aZv(v’) = a(v") € (0, 1] satisfies the desired conditions. O

4.1.5. C4, B and cpxp. We define
W := max{w(e) | e € Er}.

We have W < oo by the definition of periodic graphs. We pick C% € Rxq satisfying
Cy < C} (cf. Proposition 3.14(2)).

Let o € Facet(P), A € T, and v € V(A). For F € H ,, we set ai)v,a’ﬁv € Ry

by v
E F
ba aAU(U) Ch ’ lihAv F
= d Cy+ ———— W(#(Vr/L) -1
e Tag ) L, T g, e W HIRD =) )
F F
1F an U(U) Ol / 1- hA v/ F
= : Cy+ —%— W(#(Vr/L) -1 .
B =g \ng, TR g, e P WEA/D 2 D)
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Then, we define aa ,,a/y , € Rxg as follows.

— F / —
Qaw = 18X 0p App = NAX QA .
o,v

We define 4,0, B , € R>o by

Baw = max{aA)v, O/Aw — cpxa(v)}, B’A,U = Baw + cpx, (v).

Furthermore, for A’ € Face(A), we define

Ba,ar = Z Baw-
VeV (AY)
We also define 3 € R by
B:=CYy+max{Baa | 0 € Facet(P), A€ T,}.
Let o € Facet(P), A € T, and A’ € Face(A). Then we define cpx, (A’) € Zso by
cpx, (A") := LOM{cpx, (v) | v € V(A")}.
We also define cpxp € Z~¢ by
cpxp := LOM{cpx, (A) | o € Facet(P), A € T, }.

REMARK 4.11. (1) The notations 8a a+ and cpx,(A’) for A’ # A were not used
to define 8 and cpxp, but they will be used in Theorem 4.22. The notation
B, Will be used in Definition 4.19.
(2) When we use the invariants cpx, (v), r
Lemma 4.7, we have

F

I, and % constructed in the proof of

Baw = ap, — X, (v)
by Lemma 4.12 below.

LEMMA 4.12. Let 0 € Facet(P), A € T,, v € V(A) and F € H],. Suppose that

cpx, (v), rgv and s are the invariants constructed in the proof of Lemma 4.7. Then,

o,
we have a'f’v — aiw > cpx, (v), and hence, Baw = Ay, — cPX, (V).

Proof. Note that we set 7Y, = 0 in the construction. Therefore, it is sufficient to show
the inequality
CLZ’U (U) 1- hi,v

1— aiv(v) . hiv

. Siv > cpx, (v).

(i)

When v € F, we have s, > mg.,(v) = cpx, (v) by the construction. Since hg’v <
ag,v (v) < 1, we obtain the desired inequality (i).

In what follows, we assume v ¢ F. Take any v € F. For each F' € H] , ~ {F},
we take any vgr € F/ \ F. Then by Lemma 4.4, we have

v € conv({vp | F' € HJ ,}).

Take a minimal subset I C M, satisfying v € conv({vps | F’ € I}). Then, by the
minimality of I, the elements of {vg/ | F/ € I} are R-linear independent. Furthermore,
by the definition of H/, ,, we conclude F' € I since vp ¢ F holds for each F' € I~ {F}.

Since v € conv({vps | F' € I}), there exist w € conv({vp | F' € I < {F}}) and

t € [0,1] such that

v="tvp + (1 —t)w.
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We have t # 1 by the assumption v € F. We also have t # 0 by the minimality of I.
Therefore, we conclude that ¢t € (0, 1). Furthermore, by the construction of 85 » in the
proof of Lemma 4.7, we have

(11) 551) 2 mUW(UF) 2 thXa(U)'

)

Let H := H({aX ,(v/)v' | v/ € V(A)}) be the half-space defined in Definition 4.8.
By the conditions (A1) and (A2) on agw(v’)’s in Subsection 4.1.4, we have
v ¢ H, w € conv((Im(v)No) N\ F) C H.

Therefore, 0H intersects with the line through v and w. Let = be the intersection
point. Then the points vp, v, , and w are on the line in this order. Let b € R be the
unique real number such that bvp € 0H. Then, we have hZU < b< 1since vp ¢ H

and hi ,UF € H. Therefore, we have

F
ai,v(v) 1- h’g,v > ‘GA’U(U)U - O‘ . |UF - bUFl

(iii)

1 faiw(v) N ~ ‘v—ag’v(v)v’ |bor — 0]
_ Jor =2
|z =
lvp —w| 1
~lw — v A

Here, we used Menelaus’s theorem for the first equality. From (ii) and (iii), we get the
desired inequality (i). O

4.2. INVARIANTS FOR 2-DIMENSIONAL PERIODIC GRAPHS. In general, it is not easy
to find the invariants in Subsection 4.1. However, it is easy for 2-dimensional periodic
graphs. In what follows, we assume n = 2.

Let o € Facet(P), and let {v1,...,v¢} = Im(v) No. Since dimo = 1, the points
v1, ..., v determine the triangulation 75, of o satisfying Uxer, V(A) = {v1,..., v}
Furthermore, since dim o = 1, this T,, satisfies the required conditions ({); and (<$)a.

Since the triangulation T, is concretely given, cpx, (v) and s%, can be easily com-
puted according to the construction in the proof of Lemma 4.7. We shall explain the
construction of the invariant aZ, below.

Suppose that the points vi,...,vy are on ¢ in this order as in Figure 4. For 1 <
i < l—1,let A; € T, denote the 1-simplex determined by V(A;) = {v;,vit1}.
For 1 < i < 4, we set

F7oo={v1,...,v}, Ff={vi,... 0}

Then we have

{F}={u}} Gfi=1)
Hy o =S {FLFiT} (if2<i<e-1).

{F}={{v}} (fi=20)

o . . Fr Fr
By symmetry, it is sufficient to see the construction of a,’ (vi—1) and a,’ (v;)

i—1,V4q
+ +
for 2 < i < ¢, and aiii vi(vi) and ai‘i vi(vi+1) for2 <i</l—-1 Wefix2<i<V/
First, we define t; € (0,1) by

t = max{e, min{o € Rxo | Im(v) N F;' C H(Ui,havi)}},
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+
where € is any real number satisfying ¢ € (0,1). Then, aii_il i (v;) = t1 and

+
ai’;ihvi (vi—1) := 1 satisfy the conditions (A1) and (A2) in Subsection 4.1.4 for A;_;

and v;. When ¢ < £ — 1, we define ¢5 € (0,1) to satisfy
H(vi_1,t1v;) = H(tlvivt2vi+l)'

+ +
Then, aifi v (v;) :=t; and aiii . (vit1) := to satisfy the conditions (A1) and (A2) in
Subsection 4.1.4 for A; and v;.

Vi—1 Ai, 1 v Ai Vit1 o
U1 Vy

H(vi_1,t1v;) = H(t1vi, tavig)

FIGURE 4. 2-dimensional case.

EXAMPLE 4.13. We shall calculate the invariants in Subsection 4.1 for the Wakatsuki
graph and the start point xy = v} in Figure 5. See [15, Example 2.6] for the detailed
definition of the Wakatsuki graph.

/] AA AA
/] AA »»

FIGURE 6. e¢,...,¢}.

It is known that C; = 1 and we can take C = 3 ([15, Example A.3]). Im(v) consists
of 11 points as in Figure 7 ([15, Example 2.22]).

Let 01, 09,03 € Facet(P) and wuy,us, us, ug € V(P) as in Figure 7. Then, we have
cpx,(v) = 2 for any v € V(P) and o € Facet(P), and the values sgf)g, a§?3 (v), Bow
and (., are given by Table 1. By symmetry, we have cpxp = 2 and 8 = C} +
maX;=1,2,3 Boi,ai = 25.
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/
e

H (a({,'ll?jl(ul)ul, uz)

/
/

/
® U2
/

01

Uy

FIGURE 7. 01,09,03, and uq, us, U3, Ug.

(o,v)  (o1,u1) (01,u2) (02,u2) (02,u3) (o3,us3) (03,u4)

s 2 2 2 2 2 2
{v} 2 2 2 1 1 2

asy (v) 3 3 3 2 2 3
Bow 11 11 11 7 7 11
Bo,o 22 18 18

TABLE 1. Invariants for the Wakatsuki graph.

We shall briefly explain the values cpx,, (u1), s({ffﬂ}l and ag?fgl (uq). First, we can

see that -
Cyeryp({un}) = {ef &, & -

Therefore, we have cpx, (u1) = LCM{2,2} = 2. Since supp (% %) = {%, 171} =
supp (% %), we have num(uq,2) = 1, and therefore, we have s({fflgl = CpX,, (u1) = 2.
Next, ai’f}u}l (u1) is defined as the minimum real number « satisfying

Im(v) N~ {u1} C H(owuq,usz).
H (auq,ug) is illustrated in Figure 7.
4.3. MAIN THEOREM. We keep the notations in Subsection 4.1.
DEFINITION 4.14. Let ¢ € Facet(P) and A € T,,. For x € Lg and v € V(A), we define
proja () € R by the unique expression @ = 3 oy, (a) Proja , ().

The following lemma explains why we defined aa , and O/A,U as in Subsection 4.1.5.

LEMMA 4.15. Let o € Facet(P), A € T, and v € V(A). Let y € Vr N ®7H(R50A),
and let p be a shortest walk in T' from xg to y. By applying Lemma 3.7(1) to D, we
take a path qo in U'/L and a function a : Cycp,;, — Zxo such that (p) = (qo) +
quCyCI‘/L a(q){(q). Then the following assertions hold.
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(1) We fix any F € H), and t € Rxo. If proja ,(®(y)) > fF(t) holds for

o,V

ag,v(v) O + O+ 1- hg,v
1-— ai’v(v) hg,v 2

FE) = (t+W(#(Vr/L) - 1))) )

then we have

> alg)-w(g) >t

q€Cycr ) (F)

(2) In particular, if proja ,(®(y)) > aa, (resp. proja ,(®(y)) > ol ) holds,
then we have

Z a(q) - w(q) > 7‘5,1} (resp. Z a(q) - w(q) > sfv)
q€Cycr, L (F) q€Cycr,(F)

for each F € H .
Proof. We prove (1). Let F' € H , and t € Ryo. We assume

> alg) - w(g) <t
q€Cycr, (F)

First, we have
o p((g) € w(g) - H({ax ,(v")v" [ v € V(A)}) for g € Cycr,p, ~ Cycr, 1 (F),
e u((q)) € w(q) - P for g € Cycr,, and

® i({q0)) € (C1 + w(qo))P.
For simplicity, we put

lo = w(qo),

= Y alg)-w(g),
q€Cycr . (F)

£2 = Z a(q) . w(‘])?

q€Cycr/, ~ Cyep, 1, (F)
H':= H({ax ()0 | v € V(A)}).
Then, we have
> alg) - ulle) € LP, > a(q) - u((q)) € Lo H'.
q€Cycr, 1 (F) q€Cycr,, ~ Cycr,  (F)
Furthermore, we have

o lo+ 4y + Lo = w(p) = dr(xo,y),
o (o < W -length(qo) < W(#(Vr/L) — 1), and

o b= ZQECYCF/L(F) a(q) -w(g) < t.
Therefore, we have
D(y) = pn((p))
=ulloo) + >, alg)-p((9) + > a(q) - n({a))

q€Cycr, 1 (F) q€Cycp, ~ Cycp, . (F)
S (Cl + éo)P + 0P+ £2Hl.

Since we have P C (hiv)*lH’ by the choice of hiv, we have

D(y) € ((ha ) " (Cr+ Lo+ 1) + £2)H'.
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Since we have
(ha) HCL+ Lo+ 1) + £y
= (hi,v)_lcl + ((hi,v)_l - 1) (80 + gl) + dF(x07y)
< (hRo) 7' C1 A+ ((hA )™ = 1) (¢ + W(H#(Ve/L) = 1)) + dr(z0, y),
we have
a(y) € ((WE.)7'Co+ ((hE,) ™ = 1) (¢4 WHVE/L) 1)) + dr(0,9) ) H.

Therefore, we have

prOjA,v’ ((I)(y)) Cl 1- hg,v
> < +
ak  (v') hE hE
v EV(A) Ajv Av A
On the other hand, by the definition of C5, we have
dr(wo,y) < Cy +dpa(ro,y) = Cs + Z proja . (2(y))-
v eV (A)

(t + W(#H(Or/L) — 1)) + dr(zo,y).

Since aiv(v’) < 1 holds for any v" € V(A), we have

1-— ag »(V)
U . o
)
proja . (2(y)) .

<\ X —Fm ]| 2 polav@e)

VeV (A) A v’ eV (A)

C 1—hk
< th + Oy — o (E+ WH(VR/L) - 1)

Av Av

3

Therefore, we have

af (v 1—hk
PrOjA,v(‘I>(y)) < A’v( ) < 9 144w

(t+W(#(Vr/L) - 1)))

S 1-af ) \ PR, MR
=),
which completes the proof of (1).
(2) follows from (1) and the definitions of aa , and oy . O

THEOREM 4.16. Let o € Facet(P), A € T, and v € V(A). Then for any y € Vr N
&1 (Rx0A) with proja ,(®(y)) > aaw, we have
dF (x(Jv Y+ CPX, (’U)’U) < dF (5C07 y) + CPX, (U)

Proof. Suppose that y € Vp N @~ (Rx0A) satisfies proj, ,(®(y)) > aa,.. Let p be a
shortest walk in T" from z( to y. By applying Lemma 3.7(1) to p, we can take a path
qo in T'/L and a function a : Cycp,, — Zxo such that (p) = (qo) +Zq€CyCF/L a(q)(q)-
Then, by Lemma 4.15, we have
> alg) - w(q) >k,
q€Cycr, [, (F)

for each F' € H ,. Then, by the condition (R) in Subsection 4.1.3, there exists a
function b : Cycy (o) = Zxo such that b~ (Zso) C a~"(Z>o) and that

> b(@)- ullg) = cpx, (v)v.

q€Cycr, (o)
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Since any g € Cycr, (o) satisfies % € o, we also have

D bla) - wlg) = cpx,(v).
q€Cycr 1, (0)

We define a function a’ : Cycp,;, — Zxo by

d(q) = a(q) +b(q) ifqge CycF/L(a),
a(q) if ¢ € Cycrp, \ Cycp (o).

Then, we have a'~}(Z~o) = a=1(Zs) since b=1(Z~g) C a=*(Zso). Therefore, (go,a’)
is also a walkable pair by Lemma 3.7(2). Hence, there exists a walk p’ in T' with
s(p’) = xo such that

P)y=(g)+ Y. d@-(@=@+ > ba)- (g
q€Cycr,, q€Cycr, (o)
Hence, we have

wp)=wp)+ Y, blg)-wlg) = dr(we,y) + cpx, (v),
4€Cyer (o)

tp)=tp)+ Y blg)-ul(g) =y +cpx,(v).
q€Cycr, (o)
Therefore, p’ is a walk from g to y + cpx,, (v)v of weight equal to dr(xo,y) + cpx, (v),
which shows the desired inequality. O

THEOREM 4.17. Let o € Facet(P), A € T, and v € V(A). Then for any y € Vr N
D=1 (Rx0A) with proja ,(®(y)) > oy ,, we have
dF (*TOv Yy — CpX(r(U)U> < dF(.’L‘07 y) - CpX(r(U)'

Proof. Suppose that y € Vr N @~ (RxA) satisfies proj ,(®(y)) > a/p - Let p be a
shortest walk in T from ¢ to y. By applying Lemma 3.7(1) to P, we can take a path
qo in I'/L and a function a : Cycr,, — Zxo such that (p) = (qo) +quCyCF/L a(q){q).
Then, by Lemma 4.15, we have
> alg)-w(g) > sk,
q€Cycr (F)

for each F' € H] . Then, by the condition (S) in Subsection 4.1.3, there exists a
function b : Cycp, (o) = Zzo such that

® b(q) < a(g) holds for any g € Cycp, (o),

o % pccsen o) b0) - 1(()) = cpx, (0], and

e for any ¢ € b="(Zxy), there exists ¢’ € Cycp (o) such that b(¢') < a(q’) and

supp(q) C supp(q’).

Since any ¢ € Cycr (o) satisfies & <( >)) € o0, we also have

> blg) - w(g) = cpx, (v).
q€Cycr, (o)
We define a function o’ : Cycp,, — Zzo by

q) = {a(q) —~b(q) (if g € Cyery, (o))
a(q) (if ¢ € Cycp/p \ Cycp (o).
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Then, by the third condition on b above, (gg,a’) is also a walkable pair by
Lemma 3.7(2). Hence, there exists a walk p’ in I with s(p’) = x¢ such that

)=o)+ Y. d@-(@=@—- > ba): (g

q€Cycr,p, q€Cycr, (o)
Therefore, we have
wp)=wp)— Y,  bg)-wlg) = dr(we,y) - cpx,(v),
q€Cycr (o)
tp)=tp)— > blg)-u((g) =y — cpx, (v)v.
q€Cycr 1, (o)

Therefore, p’ is a walk from ¢ to y — c¢px,, (v)v of weight equal to dr(xo,y) — cpx, (v),
which shows the desired inequality. (]

THEOREM 4.18. Let 0 € Facet(P), A € T, and v € V(A). Then for any y € Vr N
P~ (Rx0A) with proja ,(®(y)) > Ba,, we have

dF (SC(), Y+ CPX, (U)U) = dF (1’07 y) + CPX, (U)
Proof. Since fa ., = max{aA,v, O/A,U — CpXU(’U)}, we have
prOjA,v((I)(y)) > ﬁA,v Z QA
proja ., (®(y + cpx, (v)v)) > Baw + cpx, (v) = s -
Therefore, the assertion follows from Theorems 4.16 and 4.17. O

DEFINITION 4.19.
(1) We define
B:={(d,y) € Z=o x Vr | dr(zo,y) < d} C Zxo x Vr.
(2) For any subset F' C Lg, we define
B(F) :=Bn (Zso x @ (F)).
We also define S(F') by
S(F) = {(dr(zo,),y) | y € Ve N @7 (F)}.

Note that we have B(F) = Z>0(1,0) + S(F).
(3) Let o € Facet(P), A € T, and A’ € Face(A). We define

Las = RsA’ C Ly.
For v € V(A), we also define
L3, = {z € La | proja ,(2) > Ba}s
LY’ = {2z € La | proja ,,(2) < Baw}
LT = {z € La| Bh, > Proja,(2) > Ban} € L3
For A" € Face(A'), we define
Laaan:=LanN ( N Li{i) N < N )LZ?U> C La,

VEV (A)NV(AM) vEV (A

Laanar:=LaN ( N Lii) n < n LYy ]> C Laaar
VEV(A)NV(A)
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Then we have
LA/ = |_| LA,A’,A”'

A’ €Face(A’)
(4) For o € Facet(P), A € T, and A’ € Face(A), we define a monoid M, A+ by
My A =Z>0(1,0) + Z Z>0(cpx,(v), cpx, (v)v) C Zzg x L.
VeV (AY)

This is a free submonoid of Zx( x L generated by (1, 0) and (cpx, (v), cpx, (v)v)
for v € V(AY).

Ly
Laan, i
L
i /YA,U:,UQ
Banva |, i
Pawt2 Lo Laarg Baon B 02
v
q
Al = {v}, Ay = {w},
o Face(A") = {0, A}, Ay, A'}. o

FIGURE 8. LA/, LA,A’,A“, and ZA,A’,A”-

THEOREM 4.20. Let o € Facet(P), A € T,, A’ € Face(A) and A" € Face(A'). Then,
the following assertions hold.

(1) B(La,ar,an) is a free My av-module with basis S (La,ar,ar)-

(2) For any (d,y) € S (La,ar,ar), we have d < Ch + Ba,ar + 2 vev(ar) CPXq (V).
Proof. We prove (1). First, we prove that B (La a,a») is an M, o»-module. By def-
inition, it is easy to see that B (La arav) + (1,0) C B (Laarar). We fix (d,y) €
B(La,arar) and v € V(A”). By the definition of La ar A, we have proju ,(®(y)) >
Ba,v- Therefore, By Theorem 4.18, we have

dr (:L'Oa Y + CPX, ('U)’U) =dr (:L'Oa y) + CpXJ(’U) <d+ CPX, (’U)
Furthermore, we have ®(y + cpx, (v)v) € La as,a». Hence, we conclude that
(d,y) + (epx, (v), cpx, (v)v) € B (La,ar,ar) -

We fix (d,y) € B (La,a’,a). By the definitions of La A/ a» and ZAA/,A//, there
exist y' € Ve N @~ (La,ar,av) and by, € Zsg for v € V(A”) such that

y=y'+ > by-cpx,(v)-0v
VeV (AY)

By Theorem 4.18, we have

dr(zo,y) = dr(zo,y Z by - cpx, (V).
veV(A”)
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Therefore, for d’ := dr(zg,y’), we have (d’ ’) € S(La,ar,av) and
(da y) = (dlv y/) + (d - dp(l'o, Z b CpX )7 CpXU(’U)U)

veV(A')
< (d/, y/) + MU,A”~
We have proved that B (La ar,a») is an M, ov-module generated by S (ZA,A/,A“)~
Suppose that (d,y), (d',y') € S (ZA Ar,av) satisfies

(d,y) +a- + > by-cpx,
veV(AT)
=(d,y)+d Z bl - cpx,
VeV (AY)

with some a,a’ € Z>¢ and b,,b), € Z( for v € V(A”). Then, for each v € V(A"), we
have

proja ,(®(y)) + by - cpx, (v) = proja ,(®(y)) + b}, - cpx, (v).
Here, by the definition of La as.a~, we have

proja o (P(y)), proja.(®y")) € (Baw: Ba -
Since S} ,—Ba,w = cpx,(v), we have y =y’ and b, = b;, for any v € V/(A"). Since y =
y', we have d = dr(xo,y) = dr(zo,y’) = d’ by the definition of S (LA A Au) Thus,
we also have a = a’. Therefore, we conclude that B (La ara~) is freely generated
by S (La,a,a). We complete the proof of (1).
Next, we prove (2). For y € Vo N ®~! (La a,a7), we have

dr(zo,y) < Cy +dpa(zo,y)
=Cy+ Y proja,(®y)

vEV(A’)
+ D Py > Baw
veEV (A vGV(A’)\V(A”)
< Cy+ Ban + Z cpXq(v),
veEV (A)
which completes the proof. O

DEFINITION 4.21. For d € Z> and a subset S C Z>q x Vr, we define
Sq:={zeVr|(d,zx)e S}
Furthermore, we define a function fg : Z>o — Zxo by fs(d) :== #Sa.
THEOREM 4.22. Let o € Facet(P), A € T,, A’ € Face(A) and A" € Face(A'). Then
the following assertions hold.
(1) The generating function of fB(LA,A’.A”) s given by

Q)
ZfB (La ar,am)\? ) (1 — 1) HvGV(A”)(l _tcpxg(v))a

120

where Q(t) is a polynomial with deg Q@ < C) + Ba.ar + EvEV(A”) cpx,, (v).
(2) The generating function of fp(r,,) is given by

i Q)
Nt = 7
i;fB(LA ) (2) (1—1) HUEV(A,) (1 — tcpxa(v))
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where Q(t) s a polynomial with deg @ < C3 + Ba,ar + X v (ar) CPXe (V).
(3) The generating function of fg is given by

i Q)
;fB(l)t = U= DR0)

where

R(t):=LCM{ [ (1—tP")) | 5 € Facet(P), A€T, p,
veV(A)

and Q(t) is a polynomial with deg @ < B+ deg R.
Proof. We prove (1). By Theorem 4.20(1), B (La ar,ar) is freely generated by the

finite set S (ZA7A/7A//) as an M, a»-module. Note that M, A~ is a free monoid with
basis (1,0) and (cpx,(v),cpx, (v)v) for v € V(A”). Therefore, we have

i Q)
fB(L ’ //)(Z)tl = cpx, (v))’
; Sana (1=t [Toevam (1 —tere0)

where
Q(t) = Z JCS(ZA N A,,)(i)tl-
i>0 T
Here, by Theorem 4.20(2), we have

deg Q(t) = max {d ‘ (d,y) € S (La,arar)}

<Cy+fBan + Z cpx, (v),
veEV(A')
which completes the proof of (1).
Since we have Las = UA,,eFace(A,) Laarav, (2) follows from (1).
(3) follows from (2) by the inclusion-exclusion principle as detailed below. We fix
a face 7 of 0. We set

E,:={A"| A eT,,A" € Face(A),A’ C 7}.

Then we have 7 = | NP A’, and furthermore, the set =, is closed under taking
intersection. Therefore, by (2), the generating function of fpw_,-) is given by the

form
Q)
(1 —t)R(t)’
where Q(t) is a polynomial with deg @ < 5 + deg R. Since the set {7 | 7 € Face(P)}
is closed under taking intersection, we can conclude that the generating function of
fB is also given by the same form. We complete the proof of (3). d

Here, we will summarize our main theorem.

COROLLARY 4.23. Let (', L) be a strongly connected n-dimensional periodic graph,
and let kg € Vp. Let (b(d))g and (s(d))a be the cumulative growth sequence and the
growth sequence of I with the start point xo (see Subsection 3.3). Let B € Rxq and
CpXp € Zsg be as in Subsection 4.1. Then, the following assertions hold.

(1) The generating function of b : Zso — Zxo;d + b(d) is given by

i Q(t)
2 W0 = T p i ey

i>0
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where Q(t) is a polynomial with deg@ < B + n - cpxp. In particular, the
function b : Zso — Zxo;d — b(d) is a quasi-polynomial on d > § — 1, and
cpxp is its quasi-period.
(2) The generating function of s : Zxg — Zxo;d — s(d) is given by
i Q@)
Z S<Z)t - (1 _ tcpxr)n ’
20
where Q(t) is a polynomial with deg@ < B + n - cpxp. In particular, the
function s : Zzo — Zso;d — s(d) is a quasi-polynomial on d > B, and cpxp
18 1ts quasi-period.
Proof. Note that the polynomial R(t) in Theorem 4.22(3) divides (1 —¢°P*r)™. There-
fore, (1) follows from Theorem 4.22(3) since b = fp. (2) follows from (1). O

REMARK 4.24. The proof of Corollary 4.23 does not rely on the result in [20]. There-
fore, the proof of Corollary 4.23 also gives a different proof of Theorem 3.8.

EXAMPLE 4.25. We saw in Example 4.13 that C = 3, 8 = 25 and cpxp = 2 for the
Wakatsuki graph I" with the start point g = v}. Therefore, Corollary 4.23 shows that
the growth sequence (sr g, )i is a quasi-polynomial on ¢ > § = 25, and cpxp = 2 is
its quasi-period. Actually, it is known that (sr 4, ;); is a quasi-polynomial on ¢ > 3,
and 2 is its period (see [15, Example 2.18]).

As a corollary of Theorem 4.18, we give an algorithm to compute the precise value
of CQ(F, (b, xo).

THEOREM 4.26. For o € Facet(P) and A € T, we define
Liﬁl ={z € La | proja () < Ba, holds for any v e V(A)}.

We also define
B <B/
= Uy LY.
o€Facet(P),
A€T,

Then, we have
Ca(T', @, z0) = max {dF(wOvi‘/) —dp,a(70,Y) ’ yeVrnd ! (L@’)} .
In particular, we have
Co(T, @, z9) = max {dr(z0,y) — dpa(z0,y) | y € Big},
where we define

B8 = C’é + max{ Z /BIA,’U

veEV(A)

o € Facet(P), A € Ta}.

Proof. Let y € Vp. Take o € Facet(P) and A € T, such that ®(y) € La. For each
v € V(A), we define

b, = max { 0. {projA,U(é(y» - B’A,ﬂ } .

cpx, (v)

We define

y =y - Z b, cpx,, (v)v.
veV(A)

Then, we have ®(y') € Liﬁ/. By Theorem 4.18, we have

dF(‘r()vyl) = dF(any) - Z bv CpXU(U).
veV(A)
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On the other hand, we have

dpa(r0,y") = dpa(ro,y) — Z by cpx4 (V).
veV(A)

Therefore, we have

dr(zo,v') — dp.a(z0,y') = dr(zo,y) — dp.a(xo,y).
Hence, we have
Co(T', @, x9) = sup{dr(zo,y) — dpa(zo,y) | y € V1 }
= max {dr($07y) —dpa(zo,y) ’ yeVrnd ! (ngl)} 7

which proves the first assertion.
For y € Vr with ®(y) € LEB , we have

dr(w0,y) < Cy +dpa(ro,y) <Ch+ > Bh,
veV(A)

Therefore, we have VN &~} (L<5/> C B\a/), which proves the second assertion. [

5. EXAMPLES

In this section, using Corollary 4.23, we calculate the growth series for some specific
periodic graphs. In Subsection 5.1, we examine a 6-uniform tiling. In Subsections 5.2
and 5.3, we treat two 3-dimensional periodic graphs obtained by carbon allotropes.
As far as we know, this is the first time the growth series in these three examples have
been determined with proofs.

5.1. 2-DIMENSIONAL PERIODIC GRAPHS. We begin this subsection with the following
remark on the computability of invariants of 2-dimensional periodic graphs.

REMARK 5.1. When n = 2, it is not difficult to implement our algorithm to compute
the invariants 8 and cpxp as follows (cf. Subsection 4.2):

(1) When n = 2, each facet o of P := Pr is one dimensional. Therefore, the
points in Im(v) N o give a triangulation T, of ¢ with the required conditions
()1 and ()2, and no further subdivision is necessary.

(2) For o € Facet(P), A € T, and v € V(A), the set H[ , can be concretely given
(see Subsection 4.2).

(3) For ¢ € Facet(P), A € T,, v € V(A) and F € H/

o the invariants
cpx,, (v), ri)v and SZ’U can be computed by the construction in the proof of
Lemma 4.15.

(4) For o € Facet(P), A € T,, v € V(A) and F € H/

o,

the invariants aX  (v)
and hi , can be computed by the construction in Subsection 4.2.

Furthermore, the first few terms of the growth sequence can be computed by the
breadth-first search algorithm. Therefore, it is not difficult to implement an algorithm
to compute the growth series of two dimensional periodic graphs.

REMARK 5.2. In [10], Goodman-Strauss and Sloane determine the growth sequences
for seven specific periodic tilings. With the help of a computer program (Remark 5.1
and Appendix A), we can automatically compute the invariants and their growth
series.
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We examine a 6-uniform tiling illustrated in Figure 9, which is the tiling #673 in
the Galebach list of 673 6-uniform tilings [9] (see also A313961 in the OEIS [14]). The
invariants and the growth series are computed as in Table 2. From the form of these
growth series, it can be determined that the actual (minimum) period is 36 for all
cases. To the best of our knowledge, this is the first time the growth series for this
example has been determined with a proof.

W\W&

eA%AV’AeAVQAeA
\/

INONON /NI AVA
NN NONONON NN N

FIGURE 9. The 6-uniform tiling (#673).

5.2. THE CARBON ALLOTROPE K6. In this subsection, we consider the 3-dimensional
periodic graph I' shown in Figure 10. This graph corresponds to a carbon allotrope
called the K6 carbon (#12 in SACADA database). In SACADA database [12], the
fundamental region of the K6 carbon is taken as shown in Figure 10. In what follows,
we will proceed with this fundamental region, although it is possible to replace it with
a smaller fundamental region. Then, we have #(Vr/L) = 12. Note that all vertices
of I are symmetric, and hence, the growth sequence does not depend on the choice
of its start point xg.

With the help of a computer program, Im(v) can be computed as in Figure 11.
The growth polytope P := Pr has 14 vertices (marked in red) and 24 facets, and each
facet is a triangle as in Figure 12. Note that Im(v) has a symmetry such that the 24
facets of P are symmetric.

With the help of a computer program, C; and C) can be computed according to
Proposition 3.14 as follows:

C, =05 C,=13.

We define vg, v1, v2,v3 € Im(v) as in Figure 11. Let o € Facet(P) denote the face
of P satisfying V(o) = {vo,v1,v2}. Then, we have Im(v) N o = {vg, v1,v2,v3}. We
take a triangulation T, = {A1, Az} such that V(A1) = {v1,vs,v3} and V(Ay) =
{vo, v1,v3}. Then, T, satisfies the required conditions ({); and ({)2. Note that vg is
the midpoint of v and vg. Furthermore, Im(») has a symmetry such that the three
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TABLE 2. Growth series of the 6-uniform tiling #673 (Fig. 9).
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FIGURE 10. The K6 carbon.

&0

o &3

..VZ

FIGURE 11. Im(v).

FIGURE 12. P.
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points v, v and vg are translated to v1, vg and v3. In what follows, we shall compute
the invariants for Aj.

First, we shall calculate the invariants sf v, 8 according to the construction in the
proof of Lemma 4.7. We have

Hoo = {1t} Hoo, = H{v2}), HY . = {{vo, v}, {va, vs}}.
With the help of a computer program, we have
Len({vi}) = {4}, Len({vo}) = Len({v2}) = Len({vs}) = {6},
num(vg, 6) = num(vg,6) =1, num(vy,4) = num(vs,6) = 2.
Since vz is the midpoint of vy and vy, we have
CPX (Ul) = Mo, (Ul) =4, cpx, ('U2) = Mo,y (U2) =6,
CPX,(U3) = Moy (V3) =12, Mg 4y (Vo) = Mg s (v2) = 6.
Therefore, we have
sl =8, stz =6, slrovel = glvawal =6 418 = 24,

So , U1 o,v2 o,v3

Next, we have

Im(v) N\ {nm}CH

Cﬂ\»&

V1,02,03

Im(v) ~ {vg,v3} C H | vy, v, vo

(grueers).
Im(v) \ {ve} C H (vl, SU2,V 3)
(st 7) =

6 12
Im(v) \ {ve,v3} C H (vo,vl, 71)2) =H (vl, V2, 13’03) )

Therefore, we can take the invariants agl »(v)’s and hgl » S as in Table 3. According

. F Iq F Yt : - S / 9 Ll
to these ay ,(v)’s and hyy s, the invariants ay| ,’s and oy ’s are computed as in
Table 3.

vl V2 v3
u V1 VU Vg Uz Uz
cpx,(v) || 4 6 12
meu(uw) |4 6 6 6 12
v (% (%) Vs
F {o1} {va} {vo, vs} {v2, v3}
55,1;(”) 8 6 24 24
ax, »(v) 3 7 1 1
MR, o 5 7 ? ?
oF || 5CL+4CY +19 TCy+6C, +17 14C) +12C5 + 70 14C; + 12C% + 70
Ap, o || 5C1+4C5+19  7Cy +6C + 17 14Cy +12C% + 70
Bas.a, 26C + 22C% + 84
I3 260, + 23C% + 84 = 396

TABLE 3. Invariants for T
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Hence, we have
Ba,a, = an o —cpx, (v;)) = 2607 + 22C% + 84.
1,Uq
i=1,2,3
By symmetry, we have
B=Ch+ B, an, =260 + 23C% + 84 = 396.

Therefore, by Corollary 4.23 (and Theorem 4.22(3)), it follows that the growth
series Gy, is of the form

Q1)
(1 —t4)(1 —t6)(1 — t12)’

where Q(¢) is a polynomial of degree deg @ < 8 + 22.

With the help of a computer program (breadth-first search algorithm), the first
B+22+41 (= 419) terms of the growth sequence (Sr s,.i)i>0 can be computed. Using
them, we can calculate Gr 4, (t) as follows:

GF#EO (t) =

(The terms of (1 —t*)(1 —%)(1 — '?) Zfi% ST,z,it" of degree 418 or less.)
Gr.eo (8) = (1= 15)(1—112)
1+ 4t 487 + 1487 + 23" + 34¢° + 31¢° + 28¢7 + 4t° — 4° +¢'0 — 8! 4 8¢'?
(1—3)2(1— %) '

By the form of Gr 4,(t), we can conclude that the growth sequence (sr z.i)iz0 is a
quasi-polynomial on ¢ > 3, and 12 is its period.

REMARK 5.3. By Theorem 4.26, we can obtain Cy = 1.25.

5.3. THE CARBON ALLOTROPE CFS. In this subsection, we consider the 3-dimensional
periodic graph I' shown in Figure 13. This graph corresponds to a carbon allotrope
called CFS (#29 in SACADA database). In SACADA database, the fundamental region
of CFS is taken as shown in Figure 13. In what follows, we will proceed with this
fundamental region. Then, we have #(Vr/L) = 6. Note that all vertices of I" are
symmetric, and hence, the growth sequence does not depend on the choice of its start
point xg.

FicUre 13. The carbon allotrope CFS.
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With the help of a computer program, Im(v) can be computed as in Figure 14. The
growth polytope P := Pr has 32 vertices (marked in red) and 54 facets (48 triangles
and 6 quadrilaterals) as in Figure 15.

FIGURE 14. Im(v).

FIGURE 15. P.

With the help of a computer program, C; and C) can be computed according to
Proposition 3.14 as follows:

C,=06, C,=T.
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We define vy, vs,...,v7 € Im(v) as in Figure 14. Let o4, ..., 04 € Facet(P) denote
the face of P satisfying

V(Ul) = {1)1,1)2,’1)3}, V(UQ) = {1)27037'04}7

V(os) = {va2,va,v5}, V(oa) = {va,vs,v6, v7}.
Then, for each i, we have Im(v)No; = V(0;). For each i = 1,2,3, 0; is a simplex, and
hence o; has the trivial triangulation T,, = {o0;}. The facet o4 is a rhombus. Let v’

be the intersection point of the diagonals vsv7 and vsvg. We take a triangulation
T,, = {A1, Az, Az, Ay} such that

V(Al) = {U/,U47U5}7 V(A2> = {’UI,'U7,’U5},

V(A3) = {v,vg,v6}, V(Ag) ={v, v7,06}.
Note that Im(v) has a symmetry such that any facet of P can be translated to either
o1, 02, 03 or o4. Furthermore, Im(v) also has a symmetry such that A; can be
translated to As, Az or Ay. In what follows, we shall calculate the invariants for the
simplices o1, 09, o3 and Aj.

First, we shall compute the invariants 557 »'s according to the construction in the

proof of Lemma 4.7. For each i = 1,...,4, if v € V(0;), we have H]. , = {{v}}. We
also have

e = Hvasvs}, {vs, vr}, {vr, ve ), {v, va}}
With the help of a computer program, we have
Len({v1}) = Len({vs}) = Len({ve}) = {3},
Len({e2}) = Len({vs}) = {4}, Len({vs}) = Len({vr}) = {6},
num(v1,3) = num(vs, 3) = num(vg, 3) = 2
num(vg, 4) = num(vs,4) = num(vy, 6) = num(vz, 6) = 1.

For each i = 1,...,4, if v € V(0;), we have m,, ,(v) = cpx,, (v). Here, cpx,, (v) is
determined as follows:

CPX4,y (1}1) = CPX,, (’1)5) CPX,4, (05) = CPX4, (UG) =9,
cpX,, (v2) = cpx,, (v2) = cpX,, (v2) = cpx,, (v3) = cpx,, (v3) = 4,
CpX,, (v4) = cpx,, (va) = cpx,, (v4) = cpx,, (v7) = 6.
Since v’ is the center of the rhombus ¢4, we have
Xy, (V) =12, Moy (V4) = Moy 00 (U5) = Moy (V6) = Mey,0 (v7) = 6.

Therefore, the invariants sf » s are computed as in Table 4.
Next, we have
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v H (% V2 U3

CPX4, (V) = mo, (V) 3 4 4
st (v) 6 4 4
abh(v) = hi ; 5 5
afth =ar 40 +3Cs+ 11 5Cy +4C,+9 5Cy +4Ch +9
Bors s 14Cy + 11C% + 18
v H V2 U3 Vg4
CPXq, (V) = Mgy (V) 4 4 6
s8 (v) 4 4 6
abal(v) = hih ! $ 6
ol =al o 50 +4C5+9 5Cy +4C5+9 TCh +6C + 11
602,02 17C + 1405 + 15
v H Vo V4 Us
CPXyy (v) = Mgy (V) 4 6 3
s& (v) 4 6 6
adilo(v) = hEh g § 3
b =al, |90 +8CL+9 TC,+6Cs+11 4C) +3Ch +11
Bos,0s 20C, 4 17C5 + 18
V4 Us Vs U7 v
(3 Vg4 Vs Vg VU7 Vg Vs Vg Uy
cpx,,(v) || 6 3 3 6 12
Me,v(w)|| 6 3 3 6 6 6 6 6
v V4 Us v’
{va} {vs} {va, v} {vs, o7} {vr,ve}  {ve,va}
Sh0(0) 6 6 15 15 15 15
%, (v) g : ez
hE 6 3 6 6 6 6
Apv 7 4 7 7 7 7
Ap o || TCL+6C;+11 4C +3C5 + 11 14Cy + 12C% + 40
Bas.a, 25C) + 21Ch + 41

TABLE 4. Invariants for I'.

Therefore, the invariants a[gi}v(u)’s and h({,?}v’s fori =1,2,3 and a{Avl}v(v)’s and h{:}v’s
for v = v4,v5 can be given as in Table 4. Furthermore, we have

Im(v) \ {v4,vs5} C H(v2,vg,v7).
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Note that the six points

6 6 12,
7 7 13y
are on a same hyperplane. Therefore, we have

6 6 12 6 12
I (0, Co 20 = H (0. 20 220
m(v) \ {vg,v5} C (71)4, 71}5, 1311) <v7, 71}5, 131})

6 12 12
=H (7114,1)67 131}’) =H (1)6,1)77 131}') )

v2, Vs, U7,

Therefore, we can take

, , 12

a7 (W) = a7 () = el ) = ol ) = 35
V4,7V, V4,7, V4,VUs5 V4,V 6

h{Af,L/S} = h{Af,’v/s} = hii = h{Af,LIS} =7

By symmetry, we can also take

12 h{vsﬂw} _ h{”77U6} _ h{”67U4} _ §

Aot ) = kT W) = el ) = 50 R = RRT = R = 2

aAl,’Ul = aAl,’Ul = aAl,U,

Hence, the invariants a’A’v’s and Ba a’s are computed as in Table 4. By symmetry,
we have

B=Ch+ Ba,.a, =25C +22C% + 41 = 210.

Therefore, by Corollary 4.23 (and Theorem 4.22(3)), it follows that the growth
series G, is of the form

Q(t)
(1—1t0)(1—t12)2’

where Q(t) is a polynomial of degree deg @ < 5 + 30.

With the help of a computer program (breadth-first search algorithm), the first
B+30+1 (= 241) terms of the growth sequence (st 4,,i)i>0 can be computed. Using
them, we can calculate Gr 4, (¢) as follows:

GF,OEO (t) =

(The terms of (1 — ¢%)(1 — ¢'2)? Z?i% S .ao,it’ of degree 240 or less.)
(1 —t6)(1 — ¢12)2
144+ 1267 + 256 + 38" + 5265 + 5410 + 44¢7 4 274 + 8¢7 — ¢! + 212 4 2¢13
- (=) - 02 |
By the form of Gr 4, (t), we can conclude that the growth sequence (sr z,.i)i>0 is a
quasi-polynomial on ¢ > 3, and 12 is its period.

Gr,a (t) =

REMARK 5.4. By Theorem 4.26, we can obtain Cy = 1.2414... .

APPENDIX A. IMPLEMENTATION OF THE ALGORITHM

We prepare an implementation of the algorithm in Python to compute the growth
series of unweighted 2-dimensional periodic graphs according to Remark 5.1. For
details, see the source code:
https://github.com/yokozunab7/Ehrhart_on_PG

Here, we will only explain the input format. Let (I, L) be an n-dimensional periodic
graph. Let ¢ := #Vp/L. When we choose representatives of Vr/L and label them as
0,1,...,c—1, we can identify Vp = {0,1,...,¢c— 1} x Z%" where we set dim := n.

Thanks to the definition of the periodic graph, we can recover all the combina-
torial data Er, sp and tr from only the neighborhoods of vertices (0,0), (1,0), ...,
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(¢ —1,0). In the case of the Wakatsuki graph (introduced in Example 4.13 and [15,
Example 2.6]), the input is as follows:

dim=2

c=3

edges=[
[(1,¢0,0)),(1,(-1,0)),(1,(-1,-1)),(2,(0,0))1],
[(0,(¢0,0)),(0,(1,0)),(0,(1,1)),(2,(0,0))],
[(0,(0,0)),(1,(0,0))]

]

pos=[(0,0),(0.5,0.5),(0.5,0)]

Here, we choose v}, v] and v} in Figure 5 as representatives. The variable edge
represents the edges of the quotient graph I'/L. More precisely, edges[i] is the list
of vertices that have an edge from v} = (4, (0,0)) to them. For example,

edges[0] = [(1,(0,0)),(1,(-1,0)),(1,(-1,-1)),(2,(0,0))]

represents the list of edges e with s(e) = v(, namely, e, €}, ¢, and e} in Figure 6.
The right hand side is the list of the target vertices of e, €}, €, and e}.

In addition, the variable pos is used to give information on the periodic realization
®: Vr — Lg := L ®z R. More precisely, the variable pos presents the coordinates of
® ((0,0)), ®((1,0)), ..., ®((¢—1,0)) € Lg. In this example,

edges[0] = [(0,0),(0.5,0.5),(0.5,0)]

represents

D(vg) = (0,0), @(vy) =(1/2,1/2), ®(vh) = (1/2,0)
as in Figure 5. Note that the choice of pos does not affect the graph structure of T,
and hence, it does not affect the growth series of the periodic graph, but it is used
in the program when calculating the values of C and C}. For the program to work
correctly, each element of pos should be chosen in [0,1). If no specific realization is
in mind, you can always choose pos=[(0,0,...,0)]*dim.

Acknowledgements. Figures 10 and 13 are drawn by using VESTA ([19]). We would
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