
ALGEBRAIC
 COMBINATORICS

Takuya Inoue & Yusuke Nakamura
Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory
Volume 8, issue 5 (2025), p. 1193-1232.
https://doi.org/10.5802/alco.445

© The author(s), 2025.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.445
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 8, issue 5 (2025), p. 1193–1232
https://doi.org/10.5802/alco.445

Ehrhart theory on periodic graphs II:
Stratified Ehrhart ring theory

Takuya Inoue & Yusuke Nakamura

Abstract We investigate the “stratified Ehrhart ring theory” for periodic graphs, which
gives an algorithm for determining the growth sequences of periodic graphs. The growth
sequence (sΓ,x0,i)i⩾0 is defined for a graph Γ and its fixed vertex x0, where sΓ,x0,i is defined
as the number of vertices of Γ at distance i from x0. Although the sequences (sΓ,x0,i)i⩾0 for
periodic graphs are known to be of quasi-polynomial type, their determination had not been
established, even in dimension two. Our theory and algorithm can be applied to arbitrary
periodic graphs of any dimension. As an application of the algorithm, we determine the growth
sequences in several new examples.

1. Introduction
An n-dimensional periodic graph (Γ, L) is a pair of a directed graph Γ (that may have
loops and multiple edges) and a free abelian group L of rank n such that L freely
acts on Γ and its quotient graph Γ/L is finite (see Definition 3.2). For a vertex x0
of Γ, the growth sequence (sΓ,x0,i)i⩾0 (resp. cumulative growth sequence (bΓ,x0,i)i⩾0)
is defined as the number of vertices of Γ whose distance from x0 is i (resp. at most i).
Periodic graphs naturally appear in crystallography, also appear as periodic tilings in
combinatorics, and as Cayley graphs of virtually abelian groups in geometric group
theory (see [10, Section 13]). Furthermore, it is shown in [15] that the theory of
growth sequence of periodic graphs potentially includes the Ehrhart theory of rational
polytopes.

In [11], Grosse-Kunstleve, Brunner and Sloane conjectured that the growth se-
quences of periodic graphs are of quasi-polynomial type, i.e., there exist an integer M
and a quasi-polynomial fs : Z → Z such that sΓ,x0,i = fs(i) holds for any i ⩾ M
(see Definition 3.9). In [20], the second author, Sakamoto, Mase, and Nakagawa prove
that this conjecture is true for any periodic graphs (Theorem 3.8). Although it was
proved to be of quasi-polynomial type, determining the explicit formulae of growth
sequences is still difficult. Thus, the following natural question arises.

Question 1.1 (cf. [15, Question 1.1]). Find an effective algorithm to determine the
explicit formulae of the growth sequences.
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So far, various computational methods have been established for several special
classes of periodic graphs. In [6], Conway and Sloane study the growth sequences of
the contact graphs of some lattices from the viewpoint of the Ehrhart theory, and
they give explicit formulae for the root lattices Ad. In [3], Bacher, de la Harpe, and
Venkov give the proof for the conjectural formulae for the root lattices Bd, Cd and Dd

(cf. [2]). We note that the periodic graphs (Γ, L) obtained from the lattices satisfy
#(VΓ/L) = 1, where VΓ denotes the set of vertices of Γ. When #(VΓ/L) = 1, VΓ
has a monoid structure, and the growth sequence can be directly studied by the
Hilbert series of the corresponding graded monoid. However, when #(VΓ/L) > 1, it
is more difficult to study the growth sequence. In [10], Goodman-Strauss and Sloane
proposed “the coloring book approach” and obtained the growth sequence for some
periodic tilings. In [21, 22], Shutov and Maleev obtained the growth sequences for
tilings satisfying certain conditions that contain the 20 2-uniform tilings. In [15], the
authors introduce a class of periodic graphs called “well-arranged”, and they give
an algorithm to calculate their growth sequences. However, as far as we know, no
algorithm has been proposed that can be applied to any periodic graph, even in
dimension two.

The purpose of this paper is to give an algorithm for determining the growth se-
quences that can be applied to all periodic graphs in all dimensions. In Subsection 4.1,
we define invariants β ∈ R⩾0 and cpxΓ ∈ Z>0 from combinatorial information of Γ. In
Corollary 4.23, we prove that the growth sequence (sΓ,x0,i)i⩾0 is a quasi-polynomial
on i > β and cpxΓ is its quasi-period. More precisely, we prove that its generating
function GΓ,x0(t) is given by

GΓ,x0(t) :=
∑
i⩾0

sΓ,x0,it
i = Q(t)

(1 − tcpxΓ)n

with some polynomial Q(t) of deg Q ⩽ β + n · cpxΓ. On the other hand, with the
help of a computer program (breadth-first search algorithm), we can compute the
first few terms of (sΓ,x0,i)i⩾0. After we compute the first ⌊β⌋ + n · cpxΓ +1 terms, we
can determine the generating function as follows: For γ := ⌊β⌋ + n · cpxΓ, we have

GΓ,x0(t) =
(
The terms of (1 − tcpxΓ)n

∑γ
i=0 sΓ,x0,it

i of degree γ or less
)

(1 − tcpxΓ)n
.

Corollary 4.23 follows from Theorem 4.20, which we call the “stratified Ehrhart
ring theory”. Theorem 4.20 gives an algebraic meaning to the growth sequence, and
by using it, Corollary 4.23 can be proved by a standard technique in algebraic com-
binatorics. In what follows, we will outline the statement of Theorem 4.20.

First, we briefly review the Ehrhart ring of a rational polytope and its structure.
Let Q ⊂ Rn be a rational polytope. Then, the Ehrhart ring of a rational polytope
Q ⊂ Rn is defined as the group ring k[A] corresponding to the (commutative) monoid

A := {(d, y) ∈ Z⩾0 × Zn | y ∈ dQ} .

This A has a graded monoid structure with respect to the degree function deg :
Z⩾0 × Zn → Z⩾0 : (d, y) 7→ d. When 0 ∈ int(Q), the monoid A has a nice algebraic
structure as follows:

Fact 1.2 (cf. [4, Section 3.2]). Suppose 0 ∈ int(Q). For each σ ∈ Facet(Q), we take
a triangulation Tσ of σ satisfying V (∆) ⊂ V (σ) for any ∆ ∈ Tσ (see Section 2 for
the notation of triangulations). For v ∈ V (Q), let av be the minimum positive integer
satisfying avv ∈ Zn. For σ ∈ Facet(Q), ∆ ∈ Tσ and ∆′ ∈ Face(∆), we define

L∆′ := R⩾0∆′ ⊂ Rn, A (L∆′) := A ∩ (Z⩾0 × L∆′) .
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We also define a free submonoid Mσ,∆′ ⊂ Z⩾0 × Zn by

Mσ,∆′ := Z⩾0(1, 0) +
∑

v∈V (∆′)

Z⩾0(av, avv).

Then, for σ ∈ Facet(Q), ∆ ∈ Tσ and ∆′ ∈ Face(∆), it follows that
• each A (L∆′) is a free Mσ,∆′-module. Furthermore, A (L∆′) is freely generated

by finitely many elements whose degrees are less than
∑

v∈V (∆′) av.

By using this structure (and the inclusion-exclusion principle), we can prove the count-
ing function

Z⩾0 → Z⩾0; d 7→ # {y ∈ Zn | y ∈ dQ} = # {y ∈ Zn | (d, y) ∈ A}
is a quasi-polynomial.

Next, we shall explain the “stratified Ehrhart ring theory” for periodic graphs,
which is an analogy of Fact 1.2. Let (Γ, L) be an n-dimensional strongly connected
periodic graph, and let x0 be a vertex of Γ. Let VΓ denote the set of vertices of Γ. We
define

B := {(d, y) ∈ Z⩾0 × VΓ | dΓ(x0, y) ⩽ d} .

Unlike the case of the Ehrhart ring, B itself does not have a monoid structure when
#(VΓ/L) > 1, and the situation is more complicated. In the statement of The-
orem 4.20, the growth polytope PΓ plays an important role. The growth polytope
PΓ ⊂ LR := L⊗ZR is a rational polytope and is canonically defined from the periodic
graph Γ (Definition 3.10). Furthermore, we fix a periodic realization Φ : VΓ → LR, that
is a map satisfying Φ(u+y) = u+Φ(y) for any y ∈ VΓ and u ∈ L (see Definition 3.4).

Theorem 1.3 (cf. Theorem 4.20). There exist
• β ∈ R⩾0,
• a triangulation Tσ for each σ ∈ Facet(PΓ), and
• cpxσ(v) ∈ Z>0 and β∆,v ∈ R⩾0 for any σ ∈ Facet(PΓ), ∆ ∈ Tσ and v ∈ V (∆)

with the condition (♠) below: For σ ∈ Facet(PΓ), ∆ ∈ Tσ, ∆′ ∈ Face(∆) and ∆′′ ∈
Face(∆′), we define L∆′ , L∆,∆′,∆′′ ⊂ LR by

L∆′ := R⩾0∆′, L∆,∆′,∆′′ :=
∑

v∈V (∆′′)

(β∆,v, ∞) · v +
∑

v∈V (∆′)∖V (∆′′)

[0, β∆,v] · v.

(Note that we have L∆′ =
⊔

∆′′∈Face(∆′)
L∆,∆′,∆′′ .) For a subset F ⊂ LR, we define

B (F ) := B ∩
(
Z⩾0 × Φ−1 (F )

)
. We also define a free submonoid Mσ,∆′ ⊂ Z⩾0 × L by

Mσ,∆′ := Z⩾0(1, 0) +
∑

v∈V (∆′)

Z⩾0 (cpxσ(v), cpxσ(v)v) .

Then, for σ ∈ Facet(PΓ), ∆ ∈ Tσ, ∆′ ∈ Face(∆) and ∆′′ ∈ Face(∆′), it follows that
(♠) each B (L∆,∆′,∆′′) is a free Mσ,∆′′-module. Furthermore, B (L∆,∆′,∆′′)

is freely generated by finitely many elements whose degrees are at most
β +

∑
v∈V (∆′′) cpxσ(v).

We define
cpxΓ := LCM

{
cpxσ(v)

∣∣ σ ∈ Facet(PΓ), ∆ ∈ Tσ, v ∈ V (∆)
}

.

In Corollary 4.23, by using the algebraic structure in Theorem 1.3 (and the inclusion-
exclusion principle), we prove that the generating function GΓ,x0(t) is given by the
form

GΓ,x0(t) = Q(t)
(1 − tcpxΓ)n
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with some polynomial Q(t) of deg Q ⩽ β + n · cpxΓ.
In [22] and [10], similar ideas of calculating the growth sequence by partitioning VΓ

into finite regions, as in Theorem 1.3, also appear (although in both papers, the
construction is explained only for a specific class of planar graphs and not for general
graphs in arbitrary dimension). Theorem 1.3 can be said to be a rigorous formulation
and a generalization of their ideas.

In [15], the authors introduce a class of periodic graphs called “well-arranged”.
For well-arranged periodic graphs, they prove that β = 0 and β∆,v = 0 satisfy the
statement of Theorem 1.3 (see [15, Claim 4.10]). As a consequence, they prove that
their growth sequences are quasi-polynomial on i > 0.

In the two-dimensional case, it is relatively simple to implement our algorithm into
a computer program since there is no need to consider the complicated triangulations
of the facets of PΓ (see Subsection 4.2 and Remark 5.1). In fact, using the computer
program, the growth sequences of the examples treated in [10] can be computed
automatically without separate consideration (see Subsection 5.1). In Subsection 5.1,
we examine a 6-uniform tiling using our algorithm.

In higher dimensions, although it is possible to implement the algorithm in a com-
puter program, it is practical to give the triangulation by hand. In Subsections 5.2
and 5.3, we illustrate the algorithm for the periodic graphs corresponding to two car-
bon allotropes called K6 and CFS. There, the triangulation and other calculations
are partially given by hand, and the rest is done by a computer program. As far as
we know, this is the first time the growth series of these two examples have been
determined with proofs.

The paper is organized as follows: in Section 3, we introduce notations related
to periodic graphs following [15]. In Subsection 4.1, we define the invariants β and
cpxΓ. In Subsection 4.2, we explain the invariants for 2-dimensional periodic graphs.
In Subsection 4.3, we prove the main theorem (Theorem 4.20 and Corollary 4.23). In
Section 5, we apply our algorithm to some specific periodic graphs. In Appendix A,
we briefly describe an input form of periodic graphs to implement the algorithm in a
computer program.

2. Notation
• For a set X, #X denotes the cardinality of X, and 2X denotes the power set

of X.
• For a finite subset S ⊂ Z>0, LCM(S) denotes the least common multiple of

the elements of S.
• For a polytope P ⊂ RN , Facet(P ) denotes the set of facets of P , Face(P )

denotes the set of faces of P , and V (P ) denotes the set of vertices of P . Note
that both P itself and the empty set ∅ are considered as faces of P .

• For a set C ⊂ RN , int(C) denotes the interior of C, and relint(C) denotes the
relative interior of C.

• For a polytope σ ⊂ RN of dimension d, a triangulation Tσ means a finite
collection of d-simplices with the following two conditions:

– σ =
⋃

∆∈Tσ
∆.

– For any ∆1, ∆2 ∈ Tσ, ∆1 ∩ ∆2 is a face of ∆1.
• Let M be a set equipped with a binary operation ∗. For u ∈ M and subsets

X, Y ⊂ M , we define subsets u ∗ X, X ∗ Y ⊂ M by

u ∗ X := {u ∗ x | x ∈ X}, X ∗ Y := {x ∗ y | (x, y) ∈ X × Y }.

• In this paper, monoids always mean commutative monoids. We refer the
reader to [5] and [20] for the terminology of monoid and its module theory.
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3. Preliminaries
Following [15], we introduce notations related to periodic graphs.

3.1. Graphs and walks. In this paper, a graph means a directed weighted graph
which may have loops and multiple edges. A graph Γ = (VΓ, EΓ, sΓ, tΓ, wΓ) consists
of the set VΓ of vertices, the set EΓ of edges, the source function sΓ : EΓ → VΓ, the
target function tΓ : EΓ → VΓ, and the weight function wΓ : EΓ → Z>0. We often
abbreviate sΓ, tΓ and wΓ to s, t and w when no confusion can arise.

Definition 3.1. Let Γ = (VΓ, EΓ, s, t, w) be a graph.
(1) Γ is said to be unweighted if w(e) = 1 holds for any e ∈ EΓ. Γ is said to

be undirected when there exists an involution EΓ → EΓ; e 7→ e′ such that
s(e) = t(e′), t(e) = s(e′) and w(e) = w(e′).

(2) A walk p in Γ is a sequence e1e2 · · · eℓ of edges ei of Γ satisfying t(ei) = s(ei+1)
for each i = 1, . . . , ℓ − 1. We define

s(p) := s(e1), t(p) := t(eℓ), w(p) :=
ℓ∑

i=1
w(ei), length(p) := ℓ.

Note that we have w(p) = length(p) if Γ is unweighted.
We say that “p is a walk from x to y” when x = s(p) and y = t(p). We also

define the support supp(p) ⊂ VΓ of p by
supp(p) := {s(e1), t(e1), t(e2), . . . , t(eℓ)} ⊂ VΓ.

By convention, each vertex v ∈ VΓ is also considered as a walk of length 0.
This is called the trivial walk at v and denoted by ∅v: i.e., we define

s(∅v) := v, t(∅v) := v, w(∅v) := 0, length(∅v) := 0, supp(∅v) := {v}.

(3) A path in Γ is a walk e1 · · · eℓ such that s(e1), t(e1), t(e2), . . . , t(eℓ) are distinct.
A walk of length 0 is considered as a path.

(4) A cycle in Γ is a walk e1 · · · eℓ with s(e1) = t(eℓ) such that t(e1), t(e2), . . . , t(eℓ)
are distinct. A walk of length 0 is NOT considered as a cycle. CycΓ denotes
the set of cycles in Γ.

(5) For x, y ∈ VΓ, dΓ(x, y) ∈ Z⩾0 ∪ {∞} denotes the smallest weight w(p) of
any walk p from x to y. By convention, we define dΓ(x, y) = ∞ when there
is no walk from x to y. A graph Γ is said to be strongly connected when
we have dΓ(x, y) < ∞ for any x, y ∈ VΓ. When Γ is undirected, we have
dΓ(x, y) = dΓ(y, x) for any x, y ∈ VΓ.

(6) C1(Γ,Z) denotes the group of 1-chains on Γ with coefficients in Z, i.e., C1(Γ,Z)
is a free abelian group generated by EΓ. For a walk p = e1 · · · eℓ in Γ, let ⟨p⟩
denote the 1-chain

∑ℓ
i=1 ei ∈ C1(Γ,Z). H1(Γ,Z) ⊂ C1(Γ,Z) denotes the 1-st

homology group, i.e., H1(Γ,Z) is a subgroup generated by ⟨p⟩ for p ∈ CycΓ.
We refer the reader to [24] for more detail.

3.2. Periodic graphs.

Definition 3.2. Let n be a positive integer. An n-dimensional periodic graph (Γ, L)
is a graph Γ and a free abelian group L ≃ Zn of rank n with the following two
conditions:

• L freely acts on both VΓ and EΓ, and their quotients VΓ/L and EΓ/L are
finite sets.

• This action preserves the edge relations and the weight function, i.e., for any
u ∈ L and e ∈ EΓ, we have sΓ(u(e)) = u(sΓ(e)), tΓ(u(e)) = u(tΓ(e)) and
wΓ(u(e)) = wΓ(e).
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If (Γ, L) is an n-dimensional periodic graph, then the quotient graph Γ/L =
(VΓ/L, EΓ/L, sΓ/L, tΓ/L, wΓ/L) is defined by VΓ/L := VΓ/L, EΓ/L := EΓ/L, and the
functions sΓ/L : EΓ/L → VΓ/L, tΓ/L : EΓ/L → VΓ/L, and wΓ/L : EΓ/L → Z>0
induced from sΓ, tΓ, and wΓ. Note that the functions sΓ/L, tΓ/L and wΓ/L are
well-defined due to the second condition in Definition 3.2.

Definition 3.3. Let (Γ, L) be an n-dimensional periodic graph.
(1) Since L is an abelian group, we use the additive notation: for u ∈ L, x ∈ VΓ,

e ∈ EΓ and a walk p = e1 · · · eℓ,
u + x := u(x), u + e := u(e), u + p := u(e1) · · · u(eℓ)

denote their translations by u.
(2) For any x ∈ VΓ and e ∈ EΓ, let x ∈ VΓ/L and e ∈ EΓ/L denote their images

in VΓ/L = VΓ/L and EΓ/L = EΓ/L. For a walk p = e1 · · · eℓ in Γ, we define
its image in Γ/L by p := e1 · · · eℓ.

(3) When x, y ∈ VΓ satisfy x = y, there exists an element u ∈ L such that
u + x = y. Since the action is free, such u ∈ L uniquely exists and is denoted
by y − x.

(4) For a walk p in Γ with s(p) = t(p), we define
vec(p) := t(p) − s(p) ∈ L.

Definition 3.4. Let (Γ, L) be an n-dimensional periodic graph. We define LR :=
L ⊗Z R.

(1) A periodic realization Φ : VΓ → LR is a map satisfying Φ(u + x) = u + Φ(x)
for any u ∈ L and x ∈ VΓ.

(2) Let Φ be a periodic realization of (Γ, L). For an edge e and a walk p in Γ, we
define

vecΦ(e) := Φ(t(e)) − Φ(s(e)) ∈ LR,

vecΦ(p) := Φ(t(p)) − Φ(s(p)) ∈ LR.

It is easy to see that the value vecΦ(e) ∈ LR depends only on the class
e ∈ EΓ/L, and therefore, the map

µΦ : EΓ/L → LR; e 7→ vecΦ(e)
is well-defined. It can be extended to a homomorphism

µΦ : C1(Γ/L,Z) → LR;
∑

aiei 7→
∑

aiµΦ(ei).

By construction, we have µΦ(⟨p⟩) = vecΦ(p) for any walk p in Γ.
(3) It is known that the restriction map µΦ|H1(Γ/L,Z) : H1(Γ/L,Z) → LR is

independent of the choice of Φ and that its image is contained in L (see [15,
Lemma 2.7]). This restriction map is denoted by µ : H1(Γ/L,Z) → L.

Remark 3.5. In Definition 3.4(2), we have vecΦ(p) = vec(p) for any p satisfying
s(p) = t(p).

We finish this subsection with an observation from [15] on the decomposition and
the composition of walks. The notation differs slightly from that in [15], but is essen-
tially the same.

Definition 3.6 (cf. [15, Definition 2.11]). Let (Γ, L) be an n-dimensional periodic
graph. Let q0 be a path in Γ/L, and let a : CycΓ/L → Z⩾0 be a function. The
pair (q0, a) is said to be walkable if there exists a walk q′ in Γ/L such that ⟨q′⟩ =
⟨q0⟩ +

∑
q∈CycΓ/L

a(q)⟨q⟩.
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Lemma 3.7 ([15, Lemma 2.12, Remark 2.13]). Let (Γ, L) be an n-dimensional periodic
graph.

(1) For a walk q′ in Γ/L, there exists a walkable pair (q0, a) such that ⟨q′⟩ =
⟨q0⟩ +

∑
q∈CycΓ/L

a(q)⟨q⟩. Furthermore, if q′ satisfies s(q′) = t(q′), then q0

should be a trivial path.
(2) Let q0 be a path in Γ/L, and let a : CycΓ/L → Z⩾0 be a function. Then,

(q0, a) is walkable if and only if there exists a sequence q1, . . . , qℓ ∈ a−1(Z>0)
satisfying a−1(Z>0) = {q1, . . . , qℓ} such that(

supp(q0) ∪
⋃

1⩽i⩽k

supp(qi)
)

∩ supp(qk+1) ̸= ∅

holds for any 0 ⩽ k ⩽ ℓ − 1.
(3) For a walk q in Γ/L and a vertex x ∈ VΓ satisfying s(q) = x, there exists a

unique walk p in Γ such that q = p and s(p) = x.

3.3. Growth sequences of periodic graphs. Let Γ be a locally finite graph, and
let x0 ∈ VΓ. For i ∈ Z⩾0, we define subsets BΓ,x0,i, SΓ,x0,i ⊂ VΓ by

BΓ,x0,i := {y ∈ VΓ | dΓ(x0, y) ⩽ i}, SΓ,x0,i := {y ∈ VΓ | dΓ(x0, y) = i}.

Let bΓ,x0,i := #BΓ,x0,i and sΓ,x0,i := #SΓ,x0,i denote their cardinalities. The se-
quences (sΓ,x0,i)i and (bΓ,x0,i)i are called the growth sequence and the cumulative
growth sequence of Γ with the start point x0, respectively.

The growth series GΓ,x0(t) of Γ with the start point x0 is the generating function

GΓ,x0(t) :=
∑
i⩾0

sΓ,x0,it
i

of the growth sequence (sΓ,x0,i)i.
The growth sequences of periodic graphs are known to be of quasi-polynomial type.

Theorem 3.8 ([20, Theorem 2.2]). Let (Γ, L) be a periodic graph, and let x0 ∈ VΓ.
Then, the functions b : i 7→ bΓ,x0,i and s : i 7→ sΓ,x0,i are of quasi-polynomial type (see
Definition 3.9 below). In particular, its growth series is rational.

Definition 3.9 (cf. [23, Chapter 0]).
(1) A function f : Z → C is called a quasi-polynomial if there exist a positive

integer N and polynomials Q0, . . . , QN−1 ∈ C[x] such that

f(n) =


Q0(n) if n ≡ 0 (mod N),
Q1(n) if n ≡ 1 (mod N),

...
QN−1(n) if n ≡ N − 1 (mod N).

(2) A function g : Z → C is said to be of quasi-polynomial type if there exists a
non-negative integer M ∈ Z⩾0 and a quasi-polynomial f such that g(n) =
f(n) holds for any n > M . The positive integer N is called a quasi-period
of g when f is of the form in (1). Note that the notion of quasi-period is not
unique. The minimum quasi-period is called the period of g. We say that the
function g is a quasi-polynomial on n ⩾ m if g(n) = f(n) holds for n ⩾ m.

3.4. Growth polytope. In this subsection, according to [15], we define the growth
polytope PΓ ⊂ LR for a periodic graph (Γ, L). The concept of a growth polytope has
been defined and studied in various papers [16, 17, 25, 7, 18, 8, 1].

Definition 3.10. Let (Γ, L) be an n-dimensional periodic graph.
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(1) We define the normalization map ν : CycΓ/L → LR := L ⊗Z R by

ν : CycΓ/L → LR; p 7→ µ(⟨p⟩)
w(p) .

We define the growth polytope
PΓ := conv

(
Im(ν) ∪ {0}

)
⊂ LR

as the convex hull of the set Im(ν) ∪ {0} ⊂ LR.
(2) For a polytope Q ⊂ LR and y ∈ LR, we define

dQ(y) := min{t ∈ R⩾0 | x ∈ tQ} ∈ R⩾0 ∪ {∞}.

When 0 ∈ int(Q), we have dQ(y) < ∞ for any y ∈ LR.
(3) For a periodic realization Φ : VΓ → LR, we define

dPΓ,Φ(x, y) := dPΓ

(
Φ(y) − Φ(x)

)
for x, y ∈ VΓ.

Remark 3.11. Note that PΓ is a rational polytope (i.e., PΓ is a polytope whose vertices
are on LQ := L⊗ZQ). This is because CycΓ/L is a finite set, and we have Im(ν) ⊂ LQ.
Furthermore, when Γ is strongly connected, we have 0 ∈ int(PΓ) by [8, Proposition 21]
(cf. [15, Lemma A.1]).

We define C1(Γ, Φ, x0) and C2(Γ, Φ, x0) as invariants that measure the difference
between dΓ and dPΓ,Φ.

Definition 3.12. Let (Γ, L) be a strongly connected periodic graph. Let Φ : VΓ → LR
be a periodic realization, and let x0 ∈ VΓ. Then, we define

C1(Γ, Φ, x0) := sup
y∈VΓ

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
,

C2(Γ, Φ, x0) := sup
y∈VΓ

(
dΓ(x0, y) − dPΓ,Φ(x0, y)

)
.

By [15, Theorem A.2], we have C1(Γ, Φ, x0) < ∞ and C2(Γ, Φ, x0) < ∞.

Remark 3.13. As in Proposition 3.14(1), it is easy to determine C1(Γ, Φ, x0). How-
ever, it is not easy to determine C2(Γ, Φ, x0) in general, and we just give an upper
bound of it in Proposition 3.14(2). In Theorem 4.26, we give an algorithm to determine
C2(Γ, Φ, x0) using the invariants defined in Section 4.

Proposition 3.14 (cf. [15, Theorem A.2]). Let (Γ, L) be a strongly connected periodic
graph. Let Φ : VΓ → LR be a periodic realization, and let x0 ∈ VΓ.

(1) We have
C1(Γ, Φ, x0) = max

y∈B′
c−1

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
,

where c := #(VΓ/L) and
B′

c−1 := {y ∈ VΓ | there exists a walk p from x0 to y with length(p) ⩽ c − 1}.

(2) We have C2(Γ, Φ, x0) ⩽ C ′
2 when we define C ′

2 as follows:
• First, we define dv := minq∈ν−1(v) w(q) for each v ∈ V (PΓ).
• For each σ ∈ Facet(PΓ), we fix a triangulation Tσ of σ such that V (∆) ⊂

V (σ) holds for any ∆ ∈ Tσ.
• We define a bounded set Q ⊂ LR as follows:

Q :=
⋃

σ∈Facet(PΓ),
∆∈Tσ

 ∑
v∈V (∆)

[0, 1)dvv

 ⊂ LR.
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• For y ∈ VΓ, we define d′(x0, y) as the smallest weight w(p) of a walk p
from x0 to y satisfying supp(p) = VΓ/L.

• Then, we set

C ′
2 := max

{
d′(x0, y) − dPΓ,Φ(x0, y)

∣∣ y ∈ VΓ, Φ(y) − Φ(x0) ∈ Q
}

.

Proof. In the proof of [15, Theorem A.2], (1) and (2) are proved. □

4. Stratified Ehrhart ring theory
Throughout this section, we fix a strongly connected n-dimensional periodic
graph (Γ, L). We also fix x0 ∈ VΓ. Let (b(d))d be the cumulative growth se-
quence of Γ with the start point x0. By Theorem 3.8, it is known that the function
b : d 7→ b(d) is of quasi-polynomial type. The goal of this section is to give an
algorithm for finding a quasi-period and an integer m such that the function b is a
quasi-polynomial on d ⩾ m.

In Subsection 4.1, we will define invariants cpxΓ ∈ Z>0 and β ∈ R⩾0. In Subsec-
tion 4.3, we will prove that the function b is a quasi-polynomial on d > β − 1, and
cpxΓ is its quasi-period (Corollary 4.23).

4.1. Invariants. Let P := PΓ be the growth polytope of Γ. We define ν : CycΓ/L →
LR as in Definition 3.10. We also fix a periodic realization Φ : VΓ → LR such that
Φ(x0) = 0. Let C1 := C1(Γ, Φ, x0) and C2 := C2(Γ, Φ, x0) (see Definition 3.12).

We will define β and cpxΓ in Subsection 4.1.5:
• In Subsection 4.1.1, for each σ ∈ Facet(P ), we take a triangulation Tσ with

conditions (♢)1 and (♢)2.
• In Subsection 4.1.2, for each σ ∈ Facet(P ) and v ∈ σ, we define a subset

H′′
σ,v ⊂ 2Im(ν)∩σ.

• In Subsection 4.1.3, for σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′
σ,v, we

take invariants cpxσ(v) ∈ Z>0, rF
σ,v ∈ Z⩾0 and sF

σ,v ∈ Z⩾0.
• In Subsection 4.1.4, for σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′

σ,v, we
take invariants aF

∆,v(v) ∈ (0, 1) and hF
∆,v ∈ (0, 1).

• In Subsection 4.1.5, using the invariants above, we define invariants β ∈ R⩾0
and cpxΓ ∈ Z>0.

4.1.1. Triangulation Tσ. For each facet σ of P , we take a triangulation Tσ of σ (see
Section 2) with the following two conditions:

(♢)1 V (∆) ⊂ LQ holds for any ∆ ∈ Tσ.
(♢)2 For any ∆ ∈ Tσ and any subset F ⊂ Im(ν) ∩ σ, ∆ ∩ conv(F ) is a face of ∆.

See Lemma 4.1 for the existence of such a triangulation. The rationality condition (♢)1
will be used in the proof of Lemma 4.7. Condition (♢)2 will be used in the proof of
Lemma 4.10 (see Lemma 4.9).

Lemma 4.1. For each σ ∈ Facet(P ), there exists a triangulation Tσ of σ with the
conditions (♢)1 and (♢)2.

Proof. We fix σ ∈ Facet(P ). First, we define a set S of polytopes by

S :=
{

conv(F )
∣∣∣ F ∈ 2Im(ν)∩σ

}
.

Then, since S is a finite set of polytopes, by taking a subdivision, we can construct a
triangulation Tσ of σ with the following condition:

(i) For any Q ∈ S, there exist ∆′
1, . . . , ∆′

ℓ ∈ {∆′ | ∆ ∈ Tσ, ∆′ ∈ Face(∆)} such
that Q =

⋃ℓ
i=1 ∆′

i.
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Since Im(ν) ⊂ LQ, S consists of rational polytopes. Therefore, we may take such a
triangulation Tσ to satisfy (♢)1.

We prove that the Tσ satisfies (♢)2. Let F ⊂ Im(ν) ∩ σ and ∆ ∈ Tσ. By (i), ∆ ∩
conv(F ) is a union of some faces of ∆. Since ∆∩conv(F ) is a convex set, ∆∩conv(F )
should be a face of ∆. □

Example 4.2. Figure 1 shows the example of Tσ. In this example, we assume that
σ is a quadrilateral with vertices u1, . . . , u4 and Im(ν) ∩ σ = V (σ) = {u1, . . . , u4}.
Then, Tσ = {∆1, ∆2, ∆3, ∆4} in the figure satisfies the condition (♢)2.

Figure 1. Tσ for a quadrilateral σ.

4.1.2. H′′
σ,v.

Definition 4.3. Let σ ∈ Facet(P ). Let σ denote the hyperplane of LR that contains σ.
For v ∈ σ, let Hσ,v denote the set of all closed half-spaces H of σ satisfying v ∈ ∂H :=
H ∖ relint(H). Let

H′
σ,v := {Im(ν) ∩ H | H ∈ Hσ,v} ⊂ 2Im(ν)∩σ.

Note that H′
σ,v is a finite set since Im(ν) is a finite set. Let H′′

σ,v ⊂ H′
σ,v be the set of

minimal elements of H′
σ,v with respect to the inclusion.

See Lemma 4.4 for a property of H′′
σ,v.

Lemma 4.4. Let σ ∈ Facet(P ) and v ∈ σ. For each F ∈ H′′
σ,v, we pick arbitrary

uF ∈ F . For any choice of uF , we have v ∈ conv
(
{uF | F ∈ H′′

σ,v}
)
.

Proof. Suppose the contrary that v ̸∈ conv
(
{uF | F ∈ H′′

σ,v}
)
. Then, conv

(
{uF |

F ∈ H′′
σ,v}

)
should be contained in an open half-space of σ whose boundary passes

through v, and hence, we have

{uF | F ∈ H′′
σ,v} ∩ H = ∅

for some H ∈ Hσ,v. Let FH := Im(ν) ∩ H ∈ H′
σ,v. Then, by the definition of H′′

σ,v,
there exists F ′ ∈ H′′

σ,v such that F ′ ⊂ FH . Since we have

uF ′ ∈ {uF | F ∈ H′′
σ,v}, uF ′ ∈ F ′ ⊂ FH ⊂ H,

we get a contradiction. □

Algebraic Combinatorics, Vol. 8 #5 (2025) 1202



Ehrhart theory on periodic graphs II

Example 4.5. For example, in Figure 2, we have
H′

σ,v =
{

{x1}, {x1, x2}, {x1, x2, x6}, {x2, x6}, {x2, x6, x3},

{x2, x6, x3, x4}, {x2, x6, x3, x4, x5}, {x6, x3, x4, x5},

{x3, x4, x5}, {x3, x4, x5, x1}, {x4, x5, x1}, {x5, x1}
}

,

H′′
σ,v =

{
{x1}, {x2, x6}, {x3, x4, x5}

}
.

Figure 2. Im(ν) ∩ σ = {x1, . . . , x6}.

4.1.3. cpxσ(v), rF
σ,v and sF

σ,v.

Definition 4.6. For a subset F ⊂ LR, we define CycΓ/L(F ) := ν−1(F ) ⊂ CycΓ/L.

We fix σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). We pick cpxσ(v) ∈ Z>0 and rF
σ,v, sF

σ,v ∈
Z⩾0 for each F ∈ H′′

σ,v satisfying the following two conditions (R) and (S):
(R) Suppose that a function a : CycΓ/L(σ) → Z⩾0 satisfies∑

q∈CycΓ/L(F )

a(q) · w(q) > rF
σ,v

for any F ∈ H′′
σ,v. Then, there exists a function b : CycΓ/L(σ) → Z⩾0 satisfy-

ing
• b−1(Z>0) ⊂ a−1(Z>0), and
•
∑

q∈CycΓ/L(σ) b(q) · µ(⟨q⟩) = cpxσ(v)v.
(S) Suppose that a function a : CycΓ/L(σ) → Z⩾0 satisfies∑

q∈CycΓ/L(F )

a(q) · w(q) > sF
σ,v

for any F ∈ H′′
σ,v. Then, there exists a function b : CycΓ/L(σ) → Z⩾0 satisfy-

ing
• b(q) ⩽ a(q) holds for any q ∈ CycΓ/L(σ),
•
∑

q∈CycΓ/L(σ) b(q) · µ(⟨q⟩) = cpxσ(v)v, and
• for any q ∈ b−1(Z>0), there exists q′ ∈ CycΓ/L(σ) such that b(q′) < a(q′)

and supp(q) ⊂ supp(q′).
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See Lemma 4.7 for the existence and a construction of cpxσ(v), rF
σ,v and sF

σ,v. These
technical conditions will be used in the proof of Theorems 4.16 and 4.17.

Lemma 4.7. Fix σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Then, there exist cpxσ(v) ∈
Z>0 and rF

σ,v, sF
σ,v ∈ Z⩾0 for each F ∈ H′′

σ,v satisfying the conditions (R) and (S).

Proof. We set Sσ,v :=
⋃

F ∈H′′
σ,v

F ⊂ Im(ν) ∩ σ.
We define cpxσ(v) as the minimum positive integer with the following condition.

• If a subset G ⊂ CycΓ/L(Sσ,v) satisfies v ∈ conv(ν(G)), then we have

cpxσ(v)v ∈
∑
q∈G

Z⩾0 · µ(⟨q⟩).

Such cpxσ(v) ∈ Z>0 exists since we have v ∈ LQ by the assumed condition (♢)1
on Tσ, and the choice of G has finitely many possibilities.

Next, for u ∈ Sσ,v, we define mσ,v(u) as the minimum positive integer ℓ with the
following condition.

• Let G ⊂ Sσ,v be a set of R-linear independent elements satisfying u ∈ G and
v ∈ conv(G). For u′ ∈ G, we define projG,u′(v) ∈ R⩾0 by the unique
expression v =

∑
u′∈G projG,u′(v) · u′. Then, we require ℓ to satisfy

cpxσ(v) · projG,u(v) ⩽ ℓ.
For u ∈ Im(ν) and d ∈ Z>0, we define

Len({u}) :=
{

w(q)
∣∣ q ∈ CycΓ/L({u})

}
,

Cycd
Γ/L({u}) :=

{
q ∈ CycΓ/L({u})

∣∣ w(q) = d
}

,

num(u, d) := #
{

supp(q)
∣∣ q ∈ Cycd

Γ/L({u})
}

.

Then, we define sF
σ,v by

sF
σ,v :=

∑
u∈Im(ν)∩F

∑
d∈Len({u})

(
mσ,v(u) + d(num(u, d) − 1)

)
.

In what follows, we shall show that cpxσ(v) and sF
σ,v satisfy condition (S).

Suppose that a function a : CycΓ/L(σ) → Z⩾0 satisfies∑
q∈CycΓ/L(F )

a(q) · w(q) > sF
σ,v

for each F ∈ H′′
σ,v. Note that∑

q∈CycΓ/L(F )

a(q) · w(q) =
∑

u∈Im(ν)∩F

∑
d∈Len({u})

(
d ·

∑
q∈Cycd

Γ/L
({u})

a(q)
)

.

Therefore, for each F , we can pick uF ∈ Im(ν) ∩ F and dF ∈ Len({uF }) such that

dF ·
∑

q∈CycdF
Γ/L

({uF })

a(q) > mσ,v(uF ) + dF

(
num(uF , dF ) − 1

)
.

By Lemma 4.4, we have v ∈ conv
(
{uF | F ∈ H′′

σ,v}
)
. We take a minimal subset

I ⊂ H′′
σ,v such that

v ∈ conv
(
{uF | F ∈ I}

)
.

Then by the minimality of I, the elements of {uF | F ∈ I} are R-linear independent.
Therefore, we may uniquely write

cpxσ(v)v =
∑
F ∈I

cF dF uF

Algebraic Combinatorics, Vol. 8 #5 (2025) 1204



Ehrhart theory on periodic graphs II

with cF ∈ R>0. By the choice of cpxσ(v), we have cF ∈ Z>0. Moreover, by the choice
of mσ,v(uF ), we have cF dF ⩽ mσ,v(uF ). In particular, we have

cF ⩽
mσ,v(uF )

dF
< 1 − num(uF , dF ) +

∑
q∈CycdF

Γ/L
({uF })

a(q).

For each F , by the definition of num(uF , dF ), we can take q1, . . . , qℓ ∈ CycdF

Γ/L({uF })
such that

• ℓ ⩽ num(uF , dF ),
• a(q1), . . . , a(qℓ) > 0, and
•
{

supp(q)
∣∣ q ∈ CycdF

Γ/L({uF }), a(q) > 0
}

= {supp(q1), . . . , supp(qℓ)}.

Then we define a function f ′
F : CycdF

Γ/L({uF }) → Z⩾0 by

f ′
F (q) :=

{
a(q) − 1 if q = qi for some i = 1, . . . , ℓ,
a(q) otherwise.

Then, we have{
supp(q)

∣∣ q ∈ CycdF

Γ/L({uF }), f ′
F (q) > 0

}
(i)

⊂ {supp(q1), . . . , supp(qℓ)}

=
{

supp(q)
∣∣ q ∈ CycdF

Γ/L({uF }), a(q) > f ′
F (q)

}
.

Since we have

cF ⩽ − num(uF , dF ) +
∑

q∈CycdF
Γ/L

({uF })

a(q)

⩽ −ℓ +
∑

q∈CycdF
Γ/L

({uF })

a(q)

=
∑

q∈CycdF
Γ/L

({uF })

f ′
F (q),

we can take a function fF : CycdF

Γ/L({uF }) → Z⩾0 satisfying the following two condi-
tions:

(ii)
∑

q∈CycdF
Γ/L

({uF }) fF (q) = cF .

(iii) fF (q) ⩽ f ′
F (q) holds for any q ∈ CycdF

Γ/L({uF }).
By (i) and (iii), we have{

supp(q)
∣∣ q ∈ CycdF

Γ/L({uF }), fF (q) > 0
}

(iv)

⊂
{

supp(q)
∣∣ q ∈ CycdF

Γ/L({uF }), a(q) > fF (q)
}

.

We define a function b : CycΓ/L(σ) → Z⩾0 by

b(q) :=
{

fF (q) if q ∈ CycdF

Γ/L({uF }) for some F ∈ I,
0 otherwise.

Then, by (iii) and (iv), the function b satisfies the following two conditions:
• b(q) ⩽ a(q) holds for any q ∈ CycΓ/L(σ).
• For any q ∈ b−1(Z>0), there exists q′ ∈ CycΓ/L(σ) such that b(q′) < a(q′) and

supp(q) = supp(q′) (in particular, supp(q) ⊂ supp(q′)).
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By (ii), we have ∑
q∈CycΓ/L(σ)

b(q) · µ(⟨q⟩) =
∑
F ∈I

∑
q∈CycdF

Γ/L
({uF })

fF (q) · µ(⟨q⟩)

=
∑
F ∈I

∑
q∈CycdF

Γ/L
({uF })

fF (q)dF uF

=
∑
F ∈I

cF dF uF

= cpxσ(v)v.

Therefore, this b satisfies the condition (S).
We define rF

σ,v := 0 for any F ∈ H′′
σ,v. Then by the same argument as for sF

σ,v, we
can show that cpxσ(v) and rF

σ,v’s satisfy the condition (R). □

4.1.4. aF
∆,v(v′) and hF

∆,v.

Definition 4.8. For a subset F ⊂ LR that consists of R-linear independent n ele-
ments, we define

H(F ) :=
{∑

x∈F

axx

∣∣∣∣∣ ax ∈ R with
∑
x∈F

ax ⩽ 1
}

.

This is the closed half-space H of LR satisfying 0 ∈ H and F ⊂ ∂H := H ∖ relint(H).

We fix σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′
σ,v. For each v′ ∈ V (∆), we

pick aF
∆,v(v′) ∈ (0, 1] with the following conditions:

(A1) aF
∆,v(v) ∈ (0, 1).

(A2) Im(ν) ∖ F ⊂ H
({

aF
∆,v(v′)v′

∣∣ v′ ∈ V (∆)
})

.
See Lemma 4.10 for the existence of such aF

∆,v(v′)’s.
We set

(H) hF
∆,v := max

{
α ∈ R⩾0

∣∣ αP ⊂ H
({

aF
∆,v(v′)v′ | v′ ∈ V (∆)

})}
.

We have 0 < hF
∆,v ⩽ aF

∆,v(v) < 1 since aF
∆,v(v′) > 0 for each v′ ∈ V (∆).

Lemma 4.9 below will be used in the proof of Lemma 4.10. We prove Lemma 4.9
following the proof of the hyperplane separation theorem (cf. [13, Theorem 1.17]). In
the proof below, the finiteness of F ′ and the assumption (♢)2 on the triangulation Tσ

will be important.

Lemma 4.9. Fix σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Let F ′ ⊂ Im(ν) ∩ σ be a subset
satisfying v ̸∈ conv(F ′). Then, there exists a closed halfspace H ′ of σ such that

v ̸∈ H ′, relint(∆) ∩ H ′ = ∅, F ′ ⊂ H ′.

Proof. Note that we have relint(∆)∩conv(F ′) = ∅. Otherwise, we have ∆ ⊂ conv(F ′)
by the assumption (♢)2, and it contradicts v ̸∈ conv(F ′). If ∆ ∩ conv(F ′) = ∅, then
the assertion follows from the hyperplane separation theorem (cf. [13, Theorem 1.17]).
In what follows, we assume that ∆ ∩ conv(F ′) ̸= ∅.

We identify σ = Rn−1, and ⟨·, ·⟩ denotes the standard inner product on Rn−1.
Let v1 = v, v2, . . . , vn be the vertices of ∆, and let x1, . . . , xℓ be the elements of F ′.
For 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ ℓ, we define yij := xj − vi. We set

Q := conv
(
{yij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ ℓ}

)
.
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Since ∆∩conv(F ′) ̸= ∅, we have 0 ∈ Q. Furthermore, since relint(∆)∩conv(F ′) = ∅,
we have 0 ̸∈ relint(Q). Let G be the minimal face of Q satisfying 0 ∈ G. Then, there
exists u ∈ Rn−1 ∖ {0} such that

Q ⊂
{

z ∈ Rn−1 ∣∣ ⟨z, u⟩ ⩾ 0
}

,
{

z ∈ Rn−1 ∣∣ ⟨z, u⟩ = 0
}

∩ Q = G.

We set α := min1⩽j⩽ℓ⟨xj , u⟩. Then we have

(1) F ′ ⊂
{

z ∈ Rn−1 ∣∣ ⟨z, u⟩ ⩾ α
}

.

Since Q ⊂
{

z ∈ Rn−1
∣∣ ⟨z, u⟩ ⩾ 0

}
, we have ⟨xj , u⟩ ⩾ ⟨vi, u⟩ for any 1 ⩽ i ⩽ n and

1 ⩽ j ⩽ ℓ. Therefore, we have max1⩽i⩽n⟨vi, u⟩ ⩽ α, and hence, we have

(2) ∆ ⊂
{

z ∈ Rn−1 ∣∣ ⟨z, u⟩ ⩽ α
}

.

In what follows, we prove ⟨v, u⟩ < α. We define
I :=

{
(i, j) ∈ {1, . . . , n} × {1, . . . , ℓ}

∣∣ yij ∈ G
}

.

By the minimality of G, we have 0 ∈ relint(G). Therefore, there exist cij ∈ R>0 for
(i, j) ∈ I such that ∑

(i,j)∈I

cijyij = 0,
∑

(i,j)∈I

cij = 1.

Then, we have

(3)
∑

(i,j)∈I

cijvi =
∑

(i,j)∈I

cijxj .

Let ∆′ be the face of ∆ such that V (∆′) = {vi | (i, j) ∈ I}. Then, by (3), we have
relint(∆′) ∩ conv(F ′) ̸= ∅. Therefore, by (♢)2, we have ∆′ ⊂ conv(F ′). Since v ̸∈
conv(F ′), we can conclude that v1 = v ̸∈ V (∆′). Therefore, by the definition of I,
we have y11, . . . , y1ℓ ̸∈ G, and hence, ⟨y1j , u⟩ > 0 for any 1 ⩽ j ⩽ ℓ. Thus, for j′

satisfying ⟨xj′ , u⟩ = α, we have
(4) ⟨v1, u⟩ = ⟨xj′ , u⟩ − ⟨y1j′ , u⟩ < α.

By (1), (2) and (4), we conclude that
H ′ :=

{
z ∈ Rn−1 ∣∣ ⟨z, u⟩ ⩾ α

}
satisfies the desired conditions. □

Lemma 4.10. Fix σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′
σ,v. Then, for each

v′ ∈ V (∆), there exists aF
∆,v(v′) ∈ (0, 1] such that

(A1) aF
∆,v(v) ∈ (0, 1), and

(A2) Im(ν) ∖ F ⊂ H
({

aF
∆,v(v′)v′

∣∣ v′ ∈ V (∆)
})

.

Proof. We set F ′
σ := (Im(ν)∩σ)∖F . By the definition of H′′

σ,v, we have v ̸∈ conv(F ′
σ).

Therefore, by Lemma 4.9, there exists a closed halfspace H ′ of σ such that
v ̸∈ H ′, relint(∆) ⊂ σ ∖ H ′, F ′

σ ⊂ H ′.

Let ℓ := ∂(H ′) = H ′ ∖ relint(H ′).
For a ∈ R>0, let H(ℓ, av) denote the closed halfspace of LR uniquely determined

by the following conditions:
0 ∈ H(ℓ, av), ℓ ⊂ ∂(H(ℓ, av)), av ∈ ∂(H(ℓ, av)),

where ∂(H(ℓ, av)) := H(ℓ, av)∖relint(H(ℓ, av)). Note that ∂(H(ℓ, v)) = σ. Therefore,
we have Im(ν) ∖ σ ⊂ relint(H(ℓ, v)). Since Im(ν) is a finite set, there exists ϵ ∈ (0, 1)
such that

Im(ν) ∖ σ ⊂ H(ℓ, (1 − ϵ)v).
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Figure 3. H ′ and ℓ.

For each v′ ∈ V (∆), we take a(v′) ∈ R>0 so that

H(ℓ, (1 − ϵ)v) = H
(
{a(v′)v′ | v′ ∈ V (∆)}

)
.

This a(v′) can also be determined by a(v′)v′ ∈ ∂(H(ℓ, (1−ϵ)v)). We have a(v) = 1−ϵ ∈
(0, 1). Note that on σ, ∆ is on the same side as v with respect to the hyperplane ℓ.
Therefore, we have a(v′) ⩽ 1 for any v′ ∈ V (∆).

Since v ̸∈ H ′ and 1 − ϵ < 1, we have

H ′ = H(ℓ, (1 − ϵ)v) ∩ σ.

Therefore, we have

Im(ν) ∖ F = (Im(ν) ∖ σ) ∪ F ′
σ

⊂ (Im(ν) ∖ σ) ∪ H ′

⊂ H(ℓ, (1 − ϵ)v) = H
(
{a(v′)v′ | v′ ∈ V (∆)}

)
.

Therefore, aF
∆,v(v′) := a(v′) ∈ (0, 1] satisfies the desired conditions. □

4.1.5. C ′
2, β and cpxΓ. We define

W := max{w(e) | e ∈ EΓ}.

We have W < ∞ by the definition of periodic graphs. We pick C ′
2 ∈ R⩾0 satisfying

C2 ⩽ C ′
2 (cf. Proposition 3.14(2)).

Let σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). For F ∈ H′′
σ,v, we set αF

∆,v, α′F
∆,v ∈ R⩾0

by

αF
∆,v :=

aF
∆,v(v)

1 − aF
∆,v(v)

(
C1

hF
∆,v

+ C ′
2 +

1 − hF
∆,v

hF
∆,v

(
rF

σ,v + W (#(VΓ/L) − 1)
))

,

α′F
∆,v :=

aF
∆,v(v)

1 − aF
∆,v(v)

(
C1

hF
∆,v

+ C ′
2 +

1 − hF
∆,v

hF
∆,v

(
sF

σ,v + W (#(VΓ/L) − 1)
))

.

Algebraic Combinatorics, Vol. 8 #5 (2025) 1208



Ehrhart theory on periodic graphs II

Then, we define α∆,v, α′
∆,v ∈ R⩾0 as follows.

α∆,v := max
F ∈H′′

σ,v

αF
∆,v, α′

∆,v := max
F ∈H′′

σ,v

α′F
∆,v.

We define β∆,v, β′
∆,v ∈ R⩾0 by

β∆,v := max
{

α∆,v, α′
∆,v − cpxσ(v)

}
, β′

∆,v := β∆,v + cpxσ(v).

Furthermore, for ∆′ ∈ Face(∆), we define

β∆,∆′ :=
∑

v∈V (∆′)

β∆,v.

We also define β ∈ R⩾0 by

β := C ′
2 + max

{
β∆,∆

∣∣ σ ∈ Facet(P ), ∆ ∈ Tσ

}
.

Let σ ∈ Facet(P ), ∆ ∈ Tσ and ∆′ ∈ Face(∆). Then we define cpxσ(∆′) ∈ Z>0 by

cpxσ(∆′) := LCM{cpxσ(v) | v ∈ V (∆′)}.

We also define cpxΓ ∈ Z>0 by

cpxΓ := LCM
{

cpxσ(∆)
∣∣ σ ∈ Facet(P ), ∆ ∈ Tσ

}
.

Remark 4.11. (1) The notations β∆,∆′ and cpxσ(∆′) for ∆′ ̸= ∆ were not used
to define β and cpxΓ, but they will be used in Theorem 4.22. The notation
β′

∆,v will be used in Definition 4.19.
(2) When we use the invariants cpxσ(v), rF

σ,v and sF
σ,v constructed in the proof of

Lemma 4.7, we have

β∆,v = α′
∆,v − cpxσ(v)

by Lemma 4.12 below.

Lemma 4.12. Let σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′
σ,v. Suppose that

cpxσ(v), rF
σ,v and sF

σ,v are the invariants constructed in the proof of Lemma 4.7. Then,
we have α′F

∆,v − αF
∆,v ⩾ cpxσ(v), and hence, β∆,v = α′

∆,v − cpxσ(v).

Proof. Note that we set rF
σ,v = 0 in the construction. Therefore, it is sufficient to show

the inequality

(i)
aF

∆,v(v)
1 − aF

∆,v(v)
·

1 − hF
∆,v

hF
∆,v

· sF
σ,v ⩾ cpxσ(v).

When v ∈ F , we have sF
σ,v ⩾ mσ,v(v) = cpxσ(v) by the construction. Since hF

∆,v ⩽
aF

∆,v(v) < 1, we obtain the desired inequality (i).
In what follows, we assume v ̸∈ F . Take any vF ∈ F . For each F ′ ∈ H′′

σ,v ∖ {F},
we take any vF ′ ∈ F ′ ∖ F . Then by Lemma 4.4, we have

v ∈ conv
(
{vF ′ | F ′ ∈ H′′

σ,v}
)
.

Take a minimal subset I ⊂ H′′
σ,v satisfying v ∈ conv

(
{vF ′ | F ′ ∈ I}

)
. Then, by the

minimality of I, the elements of {vF ′ | F ′ ∈ I} are R-linear independent. Furthermore,
by the definition of H′

σ,v, we conclude F ∈ I since vF ′ ̸∈ F holds for each F ′ ∈ I∖{F}.
Since v ∈ conv

(
{vF ′ | F ′ ∈ I}

)
, there exist w ∈ conv

({
vF ′

∣∣ F ′ ∈ I ∖ {F}
})

and
t ∈ [0, 1] such that

v = tvF + (1 − t)w.
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We have t ̸= 1 by the assumption v ̸∈ F . We also have t ̸= 0 by the minimality of I.
Therefore, we conclude that t ∈ (0, 1). Furthermore, by the construction of sF

σ,v in the
proof of Lemma 4.7, we have

(ii) sF
σ,v ⩾ mσ,v(vF ) ⩾ t cpxσ(v).

Let H := H
({

aF
∆,v(v′)v′

∣∣ v′ ∈ V (∆)
})

be the half-space defined in Definition 4.8.
By the conditions (A1) and (A2) on aF

∆,v(v′)’s in Subsection 4.1.4, we have

v ̸∈ H, w ∈ conv
(
(Im(ν) ∩ σ) ∖ F

)
⊂ H.

Therefore, ∂H intersects with the line through v and w. Let x be the intersection
point. Then the points vF , v, x, and w are on the line in this order. Let b ∈ R be the
unique real number such that bvF ∈ ∂H. Then, we have hF

∆,v ⩽ b < 1 since vF ̸∈ H

and hF
∆,vvF ∈ H. Therefore, we have

aF
∆,v(v)

1 − aF
∆,v(v)

·
1 − hF

∆,v

hF
∆,v

⩾

∣∣∣aF
∆,v(v)v − 0

∣∣∣∣∣∣v − aF
∆,v(v)v

∣∣∣ · |vF − bvF |
|bvF − 0|

(iii)

= |vF − x|
|x − v|

⩾
|vF − w|
|w − v|

= 1
t
.

Here, we used Menelaus’s theorem for the first equality. From (ii) and (iii), we get the
desired inequality (i). □

4.2. Invariants for 2-dimensional periodic graphs. In general, it is not easy
to find the invariants in Subsection 4.1. However, it is easy for 2-dimensional periodic
graphs. In what follows, we assume n = 2.

Let σ ∈ Facet(P ), and let {v1, . . . , vℓ} = Im(ν) ∩ σ. Since dim σ = 1, the points
v1, . . . , vℓ determine the triangulation Tσ of σ satisfying

⋃
∆∈Tσ

V (∆) = {v1, . . . , vℓ}.
Furthermore, since dim σ = 1, this Tσ satisfies the required conditions (♢)1 and (♢)2.

Since the triangulation Tσ is concretely given, cpxσ(v) and sF
σ,v can be easily com-

puted according to the construction in the proof of Lemma 4.7. We shall explain the
construction of the invariant aF

σ,v below.
Suppose that the points v1, . . . , vℓ are on σ in this order as in Figure 4. For 1 ⩽

i ⩽ ℓ − 1, let ∆i ∈ Tσ denote the 1-simplex determined by V (∆i) = {vi, vi+1}.
For 1 ⩽ i ⩽ ℓ, we set

F −
i := {v1, . . . , vi}, F +

i := {vi, . . . , vℓ}.

Then we have

H′′
σ,vi

=


{

F −
i

}
= {{v1}} (if i = 1){

F −
i , F +

i

}
(if 2 ⩽ i ⩽ ℓ − 1){

F +
i

}
= {{vℓ}} (if i = ℓ)

.

By symmetry, it is sufficient to see the construction of a
F +

i

∆i−1,vi
(vi−1) and a

F +
i

∆i−1,vi
(vi)

for 2 ⩽ i ⩽ ℓ, and a
F +

i

∆i,vi
(vi) and a

F +
i

∆i,vi
(vi+1) for 2 ⩽ i ⩽ ℓ − 1. We fix 2 ⩽ i ⩽ ℓ.

First, we define t1 ∈ (0, 1) by

t1 := max
{

ϵ, min
{

α ∈ R⩾0
∣∣ Im(ν) ∖ F +

i ⊂ H(vi−1, αvi)
}}

,
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where ϵ is any real number satisfying ϵ ∈ (0, 1). Then, a
F +

i

∆i−1,vi
(vi) := t1 and

a
F +

i

∆i−1,vi
(vi−1) := 1 satisfy the conditions (A1) and (A2) in Subsection 4.1.4 for ∆i−1

and vi. When i ⩽ ℓ − 1, we define t2 ∈ (0, 1) to satisfy

H(vi−1, t1vi) = H(t1vi, t2vi+1
)
.

Then, a
F +

i

∆i,vi
(vi) := t1 and a

F +
i

∆i,vi
(vi+1) := t2 satisfy the conditions (A1) and (A2) in

Subsection 4.1.4 for ∆i and vi.

Figure 4. 2-dimensional case.

Example 4.13. We shall calculate the invariants in Subsection 4.1 for the Wakatsuki
graph and the start point x0 = v′

2 in Figure 5. See [15, Example 2.6] for the detailed
definition of the Wakatsuki graph.

Figure 5. The Wakatsuki
graph Γ. Figure 6. e′

0, . . . , e′
9.

It is known that C1 = 1 and we can take C ′
2 = 3 ([15, Example A.3]). Im(ν) consists

of 11 points as in Figure 7 ([15, Example 2.22]).
Let σ1, σ2, σ3 ∈ Facet(P ) and u1, u2, u3, u4 ∈ V (P ) as in Figure 7. Then, we have

cpxσ(v) = 2 for any v ∈ V (P ) and σ ∈ Facet(P ), and the values s
{v}
σ,v , a

{v}
σ,v (v), βσ,v

and βσ,σ are given by Table 1. By symmetry, we have cpxΓ = 2 and β = C ′
2 +

maxi=1,2,3 βσi,σi
= 25.
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Figure 7. σ1, σ2, σ3, and u1, u2, u3, u4.

(σ, v) (σ1, u1) (σ1, u2) (σ2, u2) (σ2, u3) (σ3, u3) (σ3, u4)
s

{v}
σ,v 2 2 2 2 2 2

a
{v}
σ,v (v) 2

3
2
3

2
3

1
2

1
2

2
3

βσ,v 11 11 11 7 7 11
βσ,σ 22 18 18

Table 1. Invariants for the Wakatsuki graph.

We shall briefly explain the values cpxσ1(u1), s
{u1}
σ1,u1 and a

{u1}
σ1,u1(u1). First, we can

see that
CycΓ/L({u1}) =

{
e′

0 e′
5, e′

5 e′
0

}
.

Therefore, we have cpxσ1(u1) = LCM{2, 2} = 2. Since supp
(

e′
0 e′

5

)
=
{

v′
0, v′

1

}
=

supp
(

e′
5 e′

0

)
, we have num(u1, 2) = 1, and therefore, we have s

{u1}
σ1,u1 = cpxσ1(u1) = 2.

Next, a
{u1}
σ1,u1(u1) is defined as the minimum real number α satisfying

Im(ν) ∖ {u1} ⊂ H(αu1, u2).
H (αu1, u2) is illustrated in Figure 7.
4.3. Main theorem. We keep the notations in Subsection 4.1.
Definition 4.14. Let σ ∈ Facet(P ) and ∆ ∈ Tσ. For x ∈ LR and v ∈ V (∆), we define
proj∆,v(x) ∈ R by the unique expression x =

∑
v∈V (∆) proj∆,v(x)v.

The following lemma explains why we defined α∆,v and α′
∆,v as in Subsection 4.1.5.

Lemma 4.15. Let σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Let y ∈ VΓ ∩ Φ−1(R⩾0∆),
and let p be a shortest walk in Γ from x0 to y. By applying Lemma 3.7(1) to p, we
take a path q0 in Γ/L and a function a : CycΓ/L → Z⩾0 such that ⟨p⟩ = ⟨q0⟩ +∑

q∈CycΓ/L
a(q)⟨q⟩. Then the following assertions hold.
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(1) We fix any F ∈ H′′
σ,v and t ∈ R⩾0. If proj∆,v(Φ(y)) > fF (t) holds for

fF (t) :=
aF

∆,v(v)
1 − aF

∆,v(v)

(
C1

hF
∆,v

+ C ′
2 +

1 − hF
∆,v

hF
∆,v

(
t + W (#(VΓ/L) − 1)

))
,

then we have ∑
q∈CycΓ/L(F )

a(q) · w(q) > t.

(2) In particular, if proj∆,v(Φ(y)) > α∆,v (resp. proj∆,v(Φ(y)) > α′
∆,v) holds,

then we have∑
q∈CycΓ/L(F )

a(q) · w(q) > rF
σ,v (resp.

∑
q∈CycΓ/L(F )

a(q) · w(q) > sF
σ,v)

for each F ∈ H′′
σ,v.

Proof. We prove (1). Let F ∈ H′′
σ,v and t ∈ R⩾0. We assume∑

q∈CycΓ/L(F )

a(q) · w(q) ⩽ t.

First, we have
• µ(⟨q⟩) ∈ w(q) · H

({
aF

∆,v(v′)v′ | v′ ∈ V (∆)
})

for q ∈ CycΓ/L ∖CycΓ/L(F ),
• µ(⟨q⟩) ∈ w(q) · P for q ∈ CycΓ/L, and
• µ(⟨q0⟩) ∈ (C1 + w(q0))P .

For simplicity, we put

ℓ0 := w(q0),

ℓ1 :=
∑

q∈CycΓ/L(F )

a(q) · w(q),

ℓ2 :=
∑

q∈CycΓ/L ∖ CycΓ/L(F )

a(q) · w(q),

H ′ := H
({

aF
∆,v(v′)v′ ∣∣ v′ ∈ V (∆)

})
.

Then, we have∑
q∈CycΓ/L(F )

a(q) · µ(⟨q⟩) ∈ ℓ1P,
∑

q∈CycΓ/L ∖ CycΓ/L(F )

a(q) · µ(⟨q⟩) ∈ ℓ2H ′.

Furthermore, we have
• ℓ0 + ℓ1 + ℓ2 = w(p) = dΓ(x0, y),
• ℓ0 ⩽ W · length(q0) ⩽ W (#(VΓ/L) − 1), and
• ℓ1 =

∑
q∈CycΓ/L(F ) a(q) · w(q) ⩽ t.

Therefore, we have

Φ(y) = µ(⟨p⟩)

= µ(⟨q0⟩) +
∑

q∈CycΓ/L(F )

a(q) · µ(⟨q⟩) +
∑

q∈CycΓ/L ∖ CycΓ/L(F )

a(q) · µ(⟨q⟩)

∈ (C1 + ℓ0)P + ℓ1P + ℓ2H ′.

Since we have P ⊂ (hF
∆,v)−1H ′ by the choice of hF

∆,v, we have

Φ(y) ∈
(
(hF

∆,v)−1(C1 + ℓ0 + ℓ1) + ℓ2
)
H ′.
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Since we have
(hF

∆,v)−1(C1 + ℓ0 + ℓ1) + ℓ2

= (hF
∆,v)−1C1 +

(
(hF

∆,v)−1 − 1
)
(ℓ0 + ℓ1) + dΓ(x0, y)

⩽ (hF
∆,v)−1C1 +

(
(hF

∆,v)−1 − 1
)(

t + W (#(VΓ/L) − 1)
)

+ dΓ(x0, y),
we have

Φ(y) ∈
(

(hF
∆,v)−1C1 +

(
(hF

∆,v)−1 − 1
)(

t + W (#(VΓ/L) − 1)
)

+ dΓ(x0, y)
)

H ′.

Therefore, we have∑
v′∈V (∆)

proj∆,v′(Φ(y))
aF

∆,v(v′)
⩽

C1

hF
∆,v

+
1 − hF

∆,v

hF
∆,v

(
t + W (#(VΓ/L) − 1)

)
+ dΓ(x0, y).

On the other hand, by the definition of C2, we have

dΓ(x0, y) ⩽ C ′
2 + dP,Φ(x0, y) = C ′

2 +
∑

v′∈V (∆)

proj∆,v′(Φ(y)).

Since aF
∆,v(v′) ⩽ 1 holds for any v′ ∈ V (∆), we have

1 − aF
∆,v(v)

aF
∆,v(v)

proj∆,v(Φ(y))

⩽

 ∑
v′∈V (∆)

proj∆,v′(Φ(y))
aF

∆,v(v′)

−

 ∑
v′∈V (∆)

proj∆,v′(Φ(y))


⩽

C1

hF
∆,v

+ C ′
2 +

1 − hF
∆,v

hF
∆,v

(
t + W (#(VΓ/L) − 1)

)
.

Therefore, we have

proj∆,v(Φ(y)) ⩽
aF

∆,v(v)
1 − aF

∆,v(v)

(
C1

hF
∆,v

+ C ′
2 +

1 − hF
∆,v

hF
∆,v

(
t + W (#(VΓ/L) − 1)

))
= fF (t),

which completes the proof of (1).
(2) follows from (1) and the definitions of α∆,v and α′

∆,v. □

Theorem 4.16. Let σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Then for any y ∈ VΓ ∩
Φ−1(R⩾0∆) with proj∆,v(Φ(y)) > α∆,v, we have

dΓ
(
x0, y + cpxσ(v)v

)
⩽ dΓ(x0, y) + cpxσ(v).

Proof. Suppose that y ∈ VΓ ∩ Φ−1(R⩾0∆) satisfies proj∆,v(Φ(y)) > α∆,v. Let p be a
shortest walk in Γ from x0 to y. By applying Lemma 3.7(1) to p, we can take a path
q0 in Γ/L and a function a : CycΓ/L → Z⩾0 such that ⟨p⟩ = ⟨q0⟩+

∑
q∈CycΓ/L

a(q)⟨q⟩.
Then, by Lemma 4.15, we have ∑

q∈CycΓ/L(F )

a(q) · w(q) > rF
σ,v

for each F ∈ H′′
σ,v. Then, by the condition (R) in Subsection 4.1.3, there exists a

function b : CycΓ/L(σ) → Z⩾0 such that b−1(Z>0) ⊂ a−1(Z>0) and that∑
q∈CycΓ/L(σ)

b(q) · µ(⟨q⟩) = cpxσ(v)v.
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Since any q ∈ CycΓ/L(σ) satisfies µ(⟨q⟩)
w(q) ∈ σ, we also have∑

q∈CycΓ/L(σ)

b(q) · w(q) = cpxσ(v).

We define a function a′ : CycΓ/L → Z⩾0 by

a′(q) :=
{

a(q) + b(q) if q ∈ CycΓ/L(σ),
a(q) if q ∈ CycΓ/L ∖CycΓ/L(σ).

Then, we have a′−1(Z>0) = a−1(Z>0) since b−1(Z>0) ⊂ a−1(Z>0). Therefore, (q0, a′)
is also a walkable pair by Lemma 3.7(2). Hence, there exists a walk p′ in Γ with
s(p′) = x0 such that

⟨p′⟩ = ⟨q0⟩ +
∑

q∈CycΓ/L

a′(q) · ⟨q⟩ = ⟨p⟩ +
∑

q∈CycΓ/L(σ)

b(q) · ⟨q⟩.

Hence, we have

w(p′) = w(p) +
∑

q∈CycΓ/L(σ)

b(q) · w(q) = dΓ(x0, y) + cpxσ(v),

t(p′) = t(p) +
∑

q∈CycΓ/L(σ)

b(q) · µ(⟨q⟩) = y + cpxσ(v)v.

Therefore, p′ is a walk from x0 to y +cpxσ(v)v of weight equal to dΓ(x0, y)+ cpxσ(v),
which shows the desired inequality. □

Theorem 4.17. Let σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Then for any y ∈ VΓ ∩
Φ−1(R⩾0∆) with proj∆,v(Φ(y)) > α′

∆,v, we have

dΓ
(
x0, y − cpxσ(v)v

)
⩽ dΓ(x0, y) − cpxσ(v).

Proof. Suppose that y ∈ VΓ ∩ Φ−1(R⩾0∆) satisfies proj∆,v(Φ(y)) > α′
∆,v. Let p be a

shortest walk in Γ from x0 to y. By applying Lemma 3.7(1) to p, we can take a path
q0 in Γ/L and a function a : CycΓ/L → Z⩾0 such that ⟨p⟩ = ⟨q0⟩+

∑
q∈CycΓ/L

a(q)⟨q⟩.
Then, by Lemma 4.15, we have∑

q∈CycΓ/L(F )

a(q) · w(q) > sF
σ,v

for each F ∈ H′′
σ,v. Then, by the condition (S) in Subsection 4.1.3, there exists a

function b : CycΓ/L(σ) → Z⩾0 such that
• b(q) ⩽ a(q) holds for any q ∈ CycΓ/L(σ),
•
∑

q∈CycΓ/L(σ) b(q) · µ(⟨q⟩) = cpxσ(v)v, and
• for any q ∈ b−1(Z>0), there exists q′ ∈ CycΓ/L(σ) such that b(q′) < a(q′) and

supp(q) ⊂ supp(q′).
Since any q ∈ CycΓ/L(σ) satisfies µ(⟨q⟩)

w(q) ∈ σ, we also have∑
q∈CycΓ/L(σ)

b(q) · w(q) = cpxσ(v).

We define a function a′ : CycΓ/L → Z⩾0 by

a′(q) :=
{

a(q) − b(q) (if q ∈ CycΓ/L(σ))
a(q) (if q ∈ CycΓ/L ∖CycΓ/L(σ)).
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Then, by the third condition on b above, (q0, a′) is also a walkable pair by
Lemma 3.7(2). Hence, there exists a walk p′ in Γ with s(p′) = x0 such that

⟨p′⟩ = ⟨q0⟩ +
∑

q∈CycΓ/L

a′(q) · ⟨q⟩ = ⟨p⟩ −
∑

q∈CycΓ/L(σ)

b(q) · ⟨q⟩.

Therefore, we have

w(p′) = w(p) −
∑

q∈CycΓ/L(σ)

b(q) · w(q) = dΓ(x0, y) − cpxσ(v),

t(p′) = t(p) −
∑

q∈CycΓ/L(σ)

b(q) · µ(⟨q⟩) = y − cpxσ(v)v.

Therefore, p′ is a walk from x0 to y − cpxσ(v)v of weight equal to dΓ(x0, y) − cpxσ(v),
which shows the desired inequality. □

Theorem 4.18. Let σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆). Then for any y ∈ VΓ ∩
Φ−1(R⩾0∆) with proj∆,v(Φ(y)) > β∆,v, we have

dΓ
(
x0, y + cpxσ(v)v

)
= dΓ(x0, y) + cpxσ(v).

Proof. Since β∆,v = max
{

α∆,v, α′
∆,v − cpxσ(v)

}
, we have

proj∆,v(Φ(y)) > β∆,v ⩾ α∆,v,

proj∆,v

(
Φ(y + cpxσ(v)v)

)
> β∆,v + cpxσ(v) ⩾ α′

∆,v.

Therefore, the assertion follows from Theorems 4.16 and 4.17. □

Definition 4.19.
(1) We define

B := {(d, y) ∈ Z⩾0 × VΓ | dΓ(x0, y) ⩽ d} ⊂ Z⩾0 × VΓ.

(2) For any subset F ⊂ LR, we define

B(F ) := B ∩
(
Z⩾0 × Φ−1(F )

)
.

We also define S(F ) by

S(F ) :=
{(

dΓ(x0, y), y
) ∣∣ y ∈ VΓ ∩ Φ−1(F )

}
.

Note that we have B(F ) = Z⩾0(1, 0) + S(F ).
(3) Let σ ∈ Facet(P ), ∆ ∈ Tσ and ∆′ ∈ Face(∆). We define

L∆′ := R⩾0∆′ ⊂ LR.

For v ∈ V (∆), we also define

L>β
∆,v := {z ∈ L∆ | proj∆,v(z) > β∆,v},

L⩽β
∆,v := {z ∈ L∆ | proj∆,v(z) ⩽ β∆,v},

L
(β,β′]
∆,v := {z ∈ L∆ | β′

∆,v ⩾ proj∆,v(z) > β∆,v} ⊂ L>β
∆,v.

For ∆′′ ∈ Face(∆′), we define

L∆,∆′,∆′′ := L∆′ ∩

( ⋂
v∈V (∆′)∖V (∆′′)

L⩽β
∆,v

)
∩

( ⋂
v∈V (∆′′)

L>β
∆,v

)
⊂ L∆′ ,

L∆,∆′,∆′′ := L∆′ ∩

( ⋂
v∈V (∆′)∖V (∆′′)

L⩽β
∆,v

)
∩

( ⋂
v∈V (∆′′)

L
(β,β′]
∆,v

)
⊂ L∆,∆′,∆′′ .

Algebraic Combinatorics, Vol. 8 #5 (2025) 1216



Ehrhart theory on periodic graphs II

Then we have
L∆′ =

⊔
∆′′∈Face(∆′)

L∆,∆′,∆′′ .

(4) For σ ∈ Facet(P ), ∆ ∈ Tσ and ∆′ ∈ Face(∆), we define a monoid Mσ,∆′ by

Mσ,∆′ := Z⩾0(1, 0) +
∑

v∈V (∆′)

Z⩾0
(
cpxσ(v), cpxσ(v)v

)
⊂ Z⩾0 × L.

This is a free submonoid of Z⩾0×L generated by (1, 0) and
(
cpxσ(v), cpxσ(v)v

)
for v ∈ V (∆′).

Figure 8. L∆′ , L∆,∆′,∆′′ , and L∆,∆′,∆′′ .

Theorem 4.20. Let σ ∈ Facet(P ), ∆ ∈ Tσ, ∆′ ∈ Face(∆) and ∆′′ ∈ Face(∆′). Then,
the following assertions hold.

(1) B (L∆,∆′,∆′′) is a free Mσ,∆′′-module with basis S
(
L∆,∆′,∆′′

)
.

(2) For any (d, y) ∈ S
(
L∆,∆′,∆′′

)
, we have d ⩽ C ′

2 + β∆,∆′ +
∑

v∈V (∆′′) cpxσ(v).

Proof. We prove (1). First, we prove that B (L∆,∆′,∆′′) is an Mσ,∆′′ -module. By def-
inition, it is easy to see that B (L∆,∆′,∆′′) + (1, 0) ⊂ B (L∆,∆′,∆′′). We fix (d, y) ∈
B (L∆,∆′,∆′′) and v ∈ V (∆′′). By the definition of L∆,∆′,∆′′ , we have proj∆,v(Φ(y)) >
β∆,v. Therefore, By Theorem 4.18, we have

dΓ(x0, y + cpxσ(v)v) = dΓ(x0, y) + cpxσ(v) ⩽ d + cpxσ(v).
Furthermore, we have Φ(y + cpxσ(v)v) ∈ L∆,∆′,∆′′ . Hence, we conclude that

(d, y) +
(
cpxσ(v), cpxσ(v)v

)
∈ B (L∆,∆′,∆′′) .

We fix (d, y) ∈ B (L∆,∆′,∆′′). By the definitions of L∆,∆′,∆′′ and L∆,∆′,∆′′ , there
exist y′ ∈ VΓ ∩ Φ−1 (L∆,∆′,∆′′

)
and bv ∈ Z⩾0 for v ∈ V (∆′′) such that

y = y′ +
∑

v∈V (∆′′)

bv · cpxσ(v) · v.

By Theorem 4.18, we have

dΓ(x0, y) = dΓ(x0, y′) +
∑

v∈V (∆′′)

bv · cpxσ(v).
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Therefore, for d′ := dΓ(x0, y′), we have (d′, y′) ∈ S
(
L∆,∆′,∆′′

)
and

(d, y) = (d′, y′) + (d − dΓ(x0, y)) · (1, 0) +
∑

v∈V (∆′′)

bv ·
(
cpxσ(v), cpxσ(v)v

)
∈ (d′, y′) + Mσ,∆′′ .

We have proved that B (L∆,∆′,∆′′) is an Mσ,∆′′ -module generated by S
(
L∆,∆′,∆′′

)
.

Suppose that (d, y), (d′, y′) ∈ S
(
L∆,∆′,∆′′

)
satisfies

(d, y) + a · (1, 0) +
∑

v∈V (∆′′)

bv · cpxσ(v)

= (d′, y′) + a′ · (1, 0) +
∑

v∈V (∆′′)

b′
v · cpxσ(v)

with some a, a′ ∈ Z⩾0 and bv, b′
v ∈ Z⩾0 for v ∈ V (∆′′). Then, for each v ∈ V (∆′′), we

have
proj∆,v(Φ(y)) + bv · cpxσ(v) = proj∆,v(Φ(y′)) + b′

v · cpxσ(v).
Here, by the definition of L∆,∆′,∆′′ , we have

proj∆,v(Φ(y)), proj∆,v(Φ(y′)) ∈
(
β∆,v, β′

∆,v

]
.

Since β′
∆,v −β∆,v = cpxσ(v), we have y = y′ and bv = b′

v for any v ∈ V (∆′′). Since y =
y′, we have d = dΓ(x0, y) = dΓ(x0, y′) = d′ by the definition of S

(
L∆,∆′,∆′′

)
. Thus,

we also have a = a′. Therefore, we conclude that B (L∆,∆′,∆′′) is freely generated
by S

(
L∆,∆′,∆′′

)
. We complete the proof of (1).

Next, we prove (2). For y ∈ VΓ ∩ Φ−1 (L∆,∆′,∆′′
)
, we have

dΓ(x0, y) ⩽ C ′
2 + dP,Φ(x0, y)

= C ′
2 +

∑
v∈V (∆′)

proj∆,v(Φ(y))

⩽ C ′
2 +

∑
v∈V (∆′′)

β′
∆,v +

∑
v∈V (∆′)∖V (∆′′)

β∆,v

⩽ C ′
2 + β∆,∆′ +

∑
v∈V (∆′′)

cpxσ(v),

which completes the proof. □

Definition 4.21. For d ∈ Z⩾0 and a subset S ⊂ Z⩾0 × VΓ, we define
Sd := {x ∈ VΓ | (d, x) ∈ S}.

Furthermore, we define a function fS : Z⩾0 → Z⩾0 by fS(d) := #Sd.

Theorem 4.22. Let σ ∈ Facet(P ), ∆ ∈ Tσ, ∆′ ∈ Face(∆) and ∆′′ ∈ Face(∆′). Then
the following assertions hold.

(1) The generating function of fB(L∆,∆′,∆′′ ) is given by∑
i⩾0

fB(L∆,∆′,∆′′ )(i)ti = Q(t)
(1 − t)

∏
v∈V (∆′′)

(
1 − tcpxσ(v)

) ,

where Q(t) is a polynomial with deg Q ⩽ C ′
2 + β∆,∆′ +

∑
v∈V (∆′′) cpxσ(v).

(2) The generating function of fB(L∆′ ) is given by∑
i⩾0

fB(L∆′ )(i)ti = Q(t)
(1 − t)

∏
v∈V (∆′)

(
1 − tcpxσ(v)

) ,
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where Q(t) is a polynomial with deg Q ⩽ C ′
2 + β∆,∆′ +

∑
v∈V (∆′) cpxσ(v).

(3) The generating function of fB is given by∑
i⩾0

fB(i)ti = Q(t)
(1 − t)R(t) ,

where

R(t) := LCM

 ∏
v∈V (∆)

(
1 − tcpxσ(v)) ∣∣∣∣∣∣ σ ∈ Facet(P ), ∆ ∈ Tσ

 ,

and Q(t) is a polynomial with deg Q ⩽ β + deg R.

Proof. We prove (1). By Theorem 4.20(1), B (L∆,∆′,∆′′) is freely generated by the
finite set S

(
L∆,∆′,∆′′

)
as an Mσ,∆′′ -module. Note that Mσ,∆′′ is a free monoid with

basis (1, 0) and
(
cpxσ(v), cpxσ(v)v

)
for v ∈ V (∆′′). Therefore, we have∑

i⩾0
fB(L∆,∆′,∆′′ )(i)ti = Q(t)

(1 − t)
∏

v∈V (∆′′)
(
1 − tcpxσ(v)

) ,

where
Q(t) =

∑
i⩾0

fS(L∆,∆′,∆′′ )(i)t
i.

Here, by Theorem 4.20(2), we have

deg Q(t) = max
{

d
∣∣ (d, y) ∈ S

(
L∆,∆′,∆′′

)}
⩽ C ′

2 + β∆,∆′ +
∑

v∈V (∆′′)

cpxσ(v),

which completes the proof of (1).
Since we have L∆′ =

⊔
∆′′∈Face(∆′) L∆,∆′,∆′′ , (2) follows from (1).

(3) follows from (2) by the inclusion-exclusion principle as detailed below. We fix
a face τ of σ. We set

Ξτ := {∆′ | ∆ ∈ Tσ, ∆′ ∈ Face(∆), ∆′ ⊂ τ}.

Then we have τ =
⋃

∆′∈Ξτ
∆′, and furthermore, the set Ξτ is closed under taking

intersection. Therefore, by (2), the generating function of fB(R⩾0τ) is given by the
form

Q(t)
(1 − t)R(t) ,

where Q(t) is a polynomial with deg Q ⩽ β + deg R. Since the set {τ | τ ∈ Face(P )}
is closed under taking intersection, we can conclude that the generating function of
fB is also given by the same form. We complete the proof of (3). □

Here, we will summarize our main theorem.

Corollary 4.23. Let (Γ, L) be a strongly connected n-dimensional periodic graph,
and let x0 ∈ VΓ. Let (b(d))d and (s(d))d be the cumulative growth sequence and the
growth sequence of Γ with the start point x0 (see Subsection 3.3). Let β ∈ R⩾0 and
cpxΓ ∈ Z>0 be as in Subsection 4.1. Then, the following assertions hold.

(1) The generating function of b : Z⩾0 → Z⩾0; d 7→ b(d) is given by∑
i⩾0

b(i)ti = Q(t)
(1 − t)(1 − tcpxΓ)n

,
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where Q(t) is a polynomial with deg Q ⩽ β + n · cpxΓ. In particular, the
function b : Z⩾0 → Z⩾0; d 7→ b(d) is a quasi-polynomial on d > β − 1, and
cpxΓ is its quasi-period.

(2) The generating function of s : Z⩾0 → Z⩾0; d 7→ s(d) is given by∑
i⩾0

s(i)ti = Q(t)
(1 − tcpxΓ)n

,

where Q(t) is a polynomial with deg Q ⩽ β + n · cpxΓ. In particular, the
function s : Z⩾0 → Z⩾0; d 7→ s(d) is a quasi-polynomial on d > β, and cpxΓ
is its quasi-period.

Proof. Note that the polynomial R(t) in Theorem 4.22(3) divides (1− tcpxΓ)n. There-
fore, (1) follows from Theorem 4.22(3) since b = fB . (2) follows from (1). □

Remark 4.24. The proof of Corollary 4.23 does not rely on the result in [20]. There-
fore, the proof of Corollary 4.23 also gives a different proof of Theorem 3.8.
Example 4.25. We saw in Example 4.13 that C ′

2 = 3, β = 25 and cpxΓ = 2 for the
Wakatsuki graph Γ with the start point x0 = v′

2. Therefore, Corollary 4.23 shows that
the growth sequence (sΓ,x0,i)i is a quasi-polynomial on i > β = 25, and cpxΓ = 2 is
its quasi-period. Actually, it is known that (sΓ,x0,i)i is a quasi-polynomial on i ⩾ 3,
and 2 is its period (see [15, Example 2.18]).

As a corollary of Theorem 4.18, we give an algorithm to compute the precise value
of C2(Γ, Φ, x0).
Theorem 4.26. For σ ∈ Facet(P ) and ∆ ∈ Tσ, we define

L⩽β′

∆ :=
{

z ∈ L∆
∣∣ proj∆,v(z) ⩽ β′

∆,v holds for any v ∈ V (∆)
}

.

We also define
L⩽β′

:=
⋃

σ∈Facet(P ),
∆∈Tσ

L⩽β′

∆ .

Then, we have

C2(Γ, Φ, x0) = max
{

dΓ(x0, y) − dP,Φ(x0, y)
∣∣∣ y ∈ VΓ ∩ Φ−1

(
L⩽β′

)}
.

In particular, we have
C2(Γ, Φ, x0) = max

{
dΓ(x0, y) − dP,Φ(x0, y)

∣∣ y ∈ B⌊β′⌋
}

,

where we define

β′ := C ′
2 + max

{ ∑
v∈V (∆)

β′
∆,v

∣∣∣∣∣ σ ∈ Facet(P ), ∆ ∈ Tσ

}
.

Proof. Let y ∈ VΓ. Take σ ∈ Facet(P ) and ∆ ∈ Tσ such that Φ(y) ∈ L∆. For each
v ∈ V (∆), we define

bv := max
{

0,

⌈proj∆,v(Φ(y)) − β′
∆,v

cpxσ(v)

⌉}
.

We define
y′ := y −

∑
v∈V (∆)

bv cpxσ(v)v.

Then, we have Φ(y′) ∈ L⩽β′

∆ . By Theorem 4.18, we have

dΓ(x0, y′) = dΓ(x0, y) −
∑

v∈V (∆)

bv cpxσ(v).
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On the other hand, we have

dP,Φ(x0, y′) = dP,Φ(x0, y) −
∑

v∈V (∆)

bv cpxσ(v).

Therefore, we have

dΓ(x0, y′) − dP,Φ(x0, y′) = dΓ(x0, y) − dP,Φ(x0, y).

Hence, we have

C2(Γ, Φ, x0) = sup
{

dΓ(x0, y) − dP,Φ(x0, y)
∣∣ y ∈ VΓ

}
= max

{
dΓ(x0, y) − dP,Φ(x0, y)

∣∣∣ y ∈ VΓ ∩ Φ−1
(

L⩽β′
)}

,

which proves the first assertion.
For y ∈ VΓ with Φ(y) ∈ L⩽β′

∆ , we have

dΓ(x0, y) ⩽ C ′
2 + dP,Φ(x0, y) ⩽ C ′

2 +
∑

v∈V (∆)

β′
∆,v.

Therefore, we have VΓ ∩ Φ−1
(

L⩽β′
)

⊂ B⌊β′⌋, which proves the second assertion. □

5. Examples
In this section, using Corollary 4.23, we calculate the growth series for some specific
periodic graphs. In Subsection 5.1, we examine a 6-uniform tiling. In Subsections 5.2
and 5.3, we treat two 3-dimensional periodic graphs obtained by carbon allotropes.
As far as we know, this is the first time the growth series in these three examples have
been determined with proofs.

5.1. 2-dimensional periodic graphs. We begin this subsection with the following
remark on the computability of invariants of 2-dimensional periodic graphs.

Remark 5.1. When n = 2, it is not difficult to implement our algorithm to compute
the invariants β and cpxΓ as follows (cf. Subsection 4.2):

(1) When n = 2, each facet σ of P := PΓ is one dimensional. Therefore, the
points in Im(ν) ∩ σ give a triangulation Tσ of σ with the required conditions
(♢)1 and (♢)2, and no further subdivision is necessary.

(2) For σ ∈ Facet(P ), ∆ ∈ Tσ and v ∈ V (∆), the set H′′
σ,v can be concretely given

(see Subsection 4.2).
(3) For σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′

σ,v, the invariants
cpxσ(v), rF

∆,v and sF
∆,v can be computed by the construction in the proof of

Lemma 4.15.
(4) For σ ∈ Facet(P ), ∆ ∈ Tσ, v ∈ V (∆) and F ∈ H′′

σ,v, the invariants aF
∆,v(v)

and hF
∆,v can be computed by the construction in Subsection 4.2.

Furthermore, the first few terms of the growth sequence can be computed by the
breadth-first search algorithm. Therefore, it is not difficult to implement an algorithm
to compute the growth series of two dimensional periodic graphs.

Remark 5.2. In [10], Goodman-Strauss and Sloane determine the growth sequences
for seven specific periodic tilings. With the help of a computer program (Remark 5.1
and Appendix A), we can automatically compute the invariants and their growth
series.
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We examine a 6-uniform tiling illustrated in Figure 9, which is the tiling #673 in
the Galebach list of 673 6-uniform tilings [9] (see also A313961 in the OEIS [14]). The
invariants and the growth series are computed as in Table 2. From the form of these
growth series, it can be determined that the actual (minimum) period is 36 for all
cases. To the best of our knowledge, this is the first time the growth series for this
example has been determined with a proof.

Figure 9. The 6-uniform tiling (#673).

5.2. The carbon allotrope K6. In this subsection, we consider the 3-dimensional
periodic graph Γ shown in Figure 10. This graph corresponds to a carbon allotrope
called the K6 carbon (#12 in SACADA database). In SACADA database [12], the
fundamental region of the K6 carbon is taken as shown in Figure 10. In what follows,
we will proceed with this fundamental region, although it is possible to replace it with
a smaller fundamental region. Then, we have #(VΓ/L) = 12. Note that all vertices
of Γ are symmetric, and hence, the growth sequence does not depend on the choice
of its start point x0.

With the help of a computer program, Im(ν) can be computed as in Figure 11.
The growth polytope P := PΓ has 14 vertices (marked in red) and 24 facets, and each
facet is a triangle as in Figure 12. Note that Im(ν) has a symmetry such that the 24
facets of P are symmetric.

With the help of a computer program, C1 and C ′
2 can be computed according to

Proposition 3.14 as follows:

C1 = 0.5, C ′
2 = 13.

We define v0, v1, v2, v3 ∈ Im(ν) as in Figure 11. Let σ ∈ Facet(P ) denote the face
of P satisfying V (σ) = {v0, v1, v2}. Then, we have Im(ν) ∩ σ = {v0, v1, v2, v3}. We
take a triangulation Tσ = {∆1, ∆2} such that V (∆1) = {v1, v2, v3} and V (∆2) =
{v0, v1, v3}. Then, Tσ satisfies the required conditions (♢)1 and (♢)2. Note that v3 is
the midpoint of v2 and v0. Furthermore, Im(ν) has a symmetry such that the three
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Table 2. Growth series of the 6-uniform tiling #673 (Fig. 9).
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Figure 10. The K6 carbon.

Figure 11. Im(ν).

Figure 12. P .
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points v1, v2 and v3 are translated to v1, v0 and v3. In what follows, we shall compute
the invariants for ∆1.

First, we shall calculate the invariants sF
σ,vi

’s according to the construction in the
proof of Lemma 4.7. We have

H′′
σ,v1

= {{v1}}, H′′
σ,v2

= {{v2}}, H′′
σ,v3

= {{v0, v3}, {v2, v3}}.

With the help of a computer program, we have
Len({v1}) = {4}, Len({v0}) = Len({v2}) = Len({v3}) = {6},

num(v0, 6) = num(v2, 6) = 1, num(v1, 4) = num(v3, 6) = 2.

Since v3 is the midpoint of v2 and v0, we have
cpxσ(v1) = mσ,v1(v1) = 4, cpxσ(v2) = mσ,v2(v2) = 6,

cpxσ(v3) = mσ,v3(v3) = 12, mσ,v3(v0) = mσ,v3(v2) = 6.

Therefore, we have

s{v1}
σ,v1

= 8, s{v2}
σ,v2

= 6, s{v0,v3}
σ,v3

= s{v2,v3}
σ,v3

= 6 + 18 = 24.

Next, we have

Im(ν) ∖ {v1} ⊂ H

(
4
5v1, v2, v3

)
,

Im(ν) ∖ {v2} ⊂ H

(
v1,

6
7v2, v3

)
,

Im(ν) ∖ {v0, v3} ⊂ H

(
v1, v2,

6
7v0

)
= H

(
v1, v2,

12
13v3

)
,

Im(ν) ∖ {v2, v3} ⊂ H

(
v0, v1,

6
7v2

)
= H

(
v1,

6
7v2,

12
13v3

)
.

Therefore, we can take the invariants aF
∆1,v(v)’s and hF

∆1,v’s as in Table 3. According
to these aF

∆1,v(v)’s and hF
∆1,v’s, the invariants α′F

∆1,v’s and α′
∆1,v’s are computed as in

Table 3.

v v1 v2 v3

u v1 v2 v0 v2 v3

cpxσ(v) 4 6 12
mσ,v(u) 4 6 6 6 12

v v1 v2 v3

F {v1} {v2} {v0, v3} {v2, v3}

sF
σ,v(v) 8 6 24 24

aF
∆1,v(v) 4

5
6
7

12
13

12
13

hF
∆1,v

4
5

6
7

6
7

6
7

α′F
∆1,v 5C1 + 4C ′

2 + 19 7C1 + 6C ′
2 + 17 14C1 + 12C ′

2 + 70 14C1 + 12C ′
2 + 70

α′
∆1,v 5C1 + 4C ′

2 + 19 7C1 + 6C ′
2 + 17 14C1 + 12C ′

2 + 70
β∆1,∆1 26C1 + 22C ′

2 + 84
β 26C1 + 23C ′

2 + 84 = 396

Table 3. Invariants for Γ.
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Hence, we have

β∆1,∆1 =
∑

i=1,2,3

(
α′

∆1,vi
− cpxσ(vi)

)
= 26C1 + 22C ′

2 + 84.

By symmetry, we have

β = C ′
2 + β∆1,∆1 = 26C1 + 23C ′

2 + 84 = 396.

Therefore, by Corollary 4.23 (and Theorem 4.22(3)), it follows that the growth
series GΓ,x0 is of the form

GΓ,x0(t) = Q(t)
(1 − t4)(1 − t6)(1 − t12) ,

where Q(t) is a polynomial of degree deg Q ⩽ β + 22.
With the help of a computer program (breadth-first search algorithm), the first

β + 22 + 1 (= 419) terms of the growth sequence (sΓ,x0,i)i⩾0 can be computed. Using
them, we can calculate GΓ,x0(t) as follows:

GΓ,x0 (t) =
(
The terms of (1 − t4)(1 − t6)(1 − t12)

∑418
i=0 sΓ,x0,it

i of degree 418 or less.
)

(1 − t4)(1 − t6)(1 − t12)

= 1 + 4t + 8t2 + 14t3 + 23t4 + 34t5 + 31t6 + 28t7 + 4t8 − 4t9 + t10 − 8t11 + 8t12

(1 − t3)2(1 − t4) .

By the form of GΓ,x0(t), we can conclude that the growth sequence (sΓ,x0,i)i⩾0 is a
quasi-polynomial on i ⩾ 3, and 12 is its period.

Remark 5.3. By Theorem 4.26, we can obtain C2 = 1.25.

5.3. The carbon allotrope CFS. In this subsection, we consider the 3-dimensional
periodic graph Γ shown in Figure 13. This graph corresponds to a carbon allotrope
called CFS (#29 in SACADA database). In SACADA database, the fundamental region
of CFS is taken as shown in Figure 13. In what follows, we will proceed with this
fundamental region. Then, we have #(VΓ/L) = 6. Note that all vertices of Γ are
symmetric, and hence, the growth sequence does not depend on the choice of its start
point x0.

Figure 13. The carbon allotrope CFS.
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With the help of a computer program, Im(ν) can be computed as in Figure 14. The
growth polytope P := PΓ has 32 vertices (marked in red) and 54 facets (48 triangles
and 6 quadrilaterals) as in Figure 15.

Figure 14. Im(ν).

Figure 15. P .

With the help of a computer program, C1 and C ′
2 can be computed according to

Proposition 3.14 as follows:

C1 = 0.6, C ′
2 = 7.
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We define v1, v2, . . . , v7 ∈ Im(ν) as in Figure 14. Let σ1, . . . , σ4 ∈ Facet(P ) denote
the face of P satisfying

V (σ1) = {v1, v2, v3}, V (σ2) = {v2, v3, v4},

V (σ3) = {v2, v4, v5}, V (σ4) = {v4, v5, v6, v7}.

Then, for each i, we have Im(ν) ∩ σi = V (σi). For each i = 1, 2, 3, σi is a simplex, and
hence σi has the trivial triangulation Tσi = {σi}. The facet σ4 is a rhombus. Let v′

be the intersection point of the diagonals v4v7 and v5v6. We take a triangulation
Tσ4 = {∆1, ∆2, ∆3, ∆4} such that

V (∆1) = {v′, v4, v5}, V (∆2) = {v′, v7, v5},

V (∆3) = {v′, v4, v6}, V (∆4) = {v′, v7, v6}.

Note that Im(ν) has a symmetry such that any facet of P can be translated to either
σ1, σ2, σ3 or σ4. Furthermore, Im(ν) also has a symmetry such that ∆1 can be
translated to ∆2, ∆3 or ∆4. In what follows, we shall calculate the invariants for the
simplices σ1, σ2, σ3 and ∆1.

First, we shall compute the invariants sF
σ,v’s according to the construction in the

proof of Lemma 4.7. For each i = 1, . . . , 4, if v ∈ V (σi), we have H′′
σi,v = {{v}}. We

also have
H′′

σ4,v′ = {{v4, v5}, {v5, v7}, {v7, v6}, {v6, v4}}.

With the help of a computer program, we have

Len({v1}) = Len({v5}) = Len({v6}) = {3},

Len({v2}) = Len({v3}) = {4}, Len({v4}) = Len({v7}) = {6},

num(v1, 3) = num(v5, 3) = num(v6, 3) = 2
num(v2, 4) = num(v3, 4) = num(v4, 6) = num(v7, 6) = 1.

For each i = 1, . . . , 4, if v ∈ V (σi), we have mσi,v(v) = cpxσi
(v). Here, cpxσi

(v) is
determined as follows:

cpxσ1(v1) = cpxσ3(v5) = cpxσ4(v5) = cpxσ4(v6) = 3,

cpxσ1(v2) = cpxσ2(v2) = cpxσ3(v2) = cpxσ1(v3) = cpxσ2(v3) = 4,

cpxσ2(v4) = cpxσ3(v4) = cpxσ4(v4) = cpxσ4(v7) = 6.

Since v′ is the center of the rhombus σ4, we have

cpxσ4(v′) = 12, mσ4,v′(v4) = mσ4,v′(v5) = mσ4,v′(v6) = mσ4,v′(v7) = 6.

Therefore, the invariants sF
σ,v’s are computed as in Table 4.

Next, we have

Im(ν) ∖ {v1} ⊂ H

(
3
4v1, v2, v3

)
,

Im(ν) ∖ {v2} ⊂ H

(
v1,

4
5v2, v3

)
= H

(
4
5v2, v3, v4

)
⊂ H

(
8
9v2, v4, v5

)
,

Im(ν) ∖ {v3} ⊂ H

(
v1, v2,

4
5v3

)
= H

(
v2,

4
5v3, v4

)
,

Im(ν) ∖ {v4} ⊂ H

(
v2, v3,

6
7v4

)
= H

(
v2,

6
7v4, v5

)
= H

(
6
7v4, v5, v′

)
,

Im(ν) ∖ {v5} ⊂ H

(
v2, v4,

3
4v5

)
= H

(
v4,

3
4v5, v′

)
.
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v v1 v2 v3

cpxσ1(v) = mσ1,v(v) 3 4 4
s

{v}
σ1 (v) 6 4 4

a
{v}
σ1,v(v) = h

{v}
σ1,v

3
4

4
5

4
5

α
′{v}
σ1,v = α′

σ1,v 4C1 + 3C ′
2 + 11 5C1 + 4C ′

2 + 9 5C1 + 4C ′
2 + 9

βσ1,σ1 14C1 + 11C ′
2 + 18

v v2 v3 v4

cpxσ2(v) = mσ2,v(v) 4 4 6
s

{v}
σ2 (v) 4 4 6

a
{v}
σ2,v(v) = h

{v}
σ2,v

4
5

4
5

6
7

α
′{v}
σ2,v = α′

σ2,v 5C1 + 4C ′
2 + 9 5C1 + 4C ′

2 + 9 7C1 + 6C ′
2 + 11

βσ2,σ2 17C1 + 14C ′
2 + 15

v v2 v4 v5

cpxσ3(v) = mσ3,v(v) 4 6 3
s

{v}
σ3 (v) 4 6 6

a
{v}
σ3,v(v) = h

{v}
σ3,v

8
9

6
7

3
4

α
′{v}
σ3,v = α′

σ3,v 9C1 + 8C ′
2 + 9 7C1 + 6C ′

2 + 11 4C1 + 3C ′
2 + 11

βσ3,σ3 20C1 + 17C ′
2 + 18

v v4 v5 v6 v7 v′

u v4 v5 v6 v7 v4 v5 v6 v7

cpxσ4(v) 6 3 3 6 12
mσ4,v(u) 6 3 3 6 6 6 6 6

v v4 v5 v′

F {v4} {v5} {v4, v5} {v5, v7} {v7, v6} {v6, v4}

sF
σ4,v(v) 6 6 15 15 15 15

aF
∆1,v(v) 6

7
3
4

12
13

12
13

12
13

12
13

hF
∆1,v

6
7

3
4

6
7

6
7

6
7

6
7

α′
∆1,v 7C1 + 6C ′

2 + 11 4C1 + 3C ′
2 + 11 14C1 + 12C ′

2 + 40
β∆1,∆1 25C1 + 21C ′

2 + 41

Table 4. Invariants for Γ.

Therefore, the invariants a
{v}
σi,v(v)’s and h

{v}
σi,v’s for i = 1, 2, 3 and a

{v}
∆1,v(v)’s and h

{v}
∆1,v’s

for v = v4, v5 can be given as in Table 4. Furthermore, we have

Im(ν) ∖ {v4, v5} ⊂ H(v2, v6, v7).
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Note that the six points

v2, v6, v7,
6
7v4,

6
7v5,

12
13v′

are on a same hyperplane. Therefore, we have

Im(ν) ∖ {v4, v5} ⊂H

(
6
7v4,

6
7v5,

12
13v′

)
= H

(
v7,

6
7v5,

12
13v′

)
= H

(
6
7v4, v6,

12
13v′

)
= H

(
v6, v7,

12
13v′

)
.

Therefore, we can take

a
{v4,v5}
∆1,v′ (v′) = a

{v4,v5}
∆2,v′ (v′) = a

{v4,v5}
∆3,v′ (v′) = a

{v4,v5}
∆4,v′ (v′) = 12

13 ,

h
{v4,v5}
∆1,v′ = h

{v4,v5}
∆2,v′ = h

{v4,v5}
∆3,v′ = h

{v4,v5}
∆4,v′ = 6

7 .

By symmetry, we can also take

a
{v5,v7}
∆1,v′ (v′) = a

{v7,v6}
∆1,v′ (v′) = a

{v6,v4}
∆1,v′ (v′) = 12

13 , h
{v5,v7}
∆1,v′ = h

{v7,v6}
∆1,v′ = h

{v6,v4}
∆1,v′ = 6

7 .

Hence, the invariants α′
∆,v’s and β∆,∆’s are computed as in Table 4. By symmetry,

we have

β = C ′
2 + β∆1,∆1 = 25C1 + 22C ′

2 + 41 = 210.

Therefore, by Corollary 4.23 (and Theorem 4.22(3)), it follows that the growth
series GΓ,x0 is of the form

GΓ,x0(t) = Q(t)
(1 − t6)(1 − t12)2 ,

where Q(t) is a polynomial of degree deg Q ⩽ β + 30.
With the help of a computer program (breadth-first search algorithm), the first

β + 30 + 1 (= 241) terms of the growth sequence (sΓ,x0,i)i⩾0 can be computed. Using
them, we can calculate GΓ,x0(t) as follows:

GΓ,x0 (t) =
(
The terms of (1 − t6)(1 − t12)2∑240

i=0 sΓ,x0,it
i of degree 240 or less.

)
(1 − t6)(1 − t12)2

= 1 + 4t + 12t2 + 25t3 + 38t4 + 52t5 + 54t6 + 44t7 + 27t8 + 8t9 − t11 + 2t12 + 2t13

(1 − t3)(1 − t4)2 .

By the form of GΓ,x0(t), we can conclude that the growth sequence (sΓ,x0,i)i⩾0 is a
quasi-polynomial on i ⩾ 3, and 12 is its period.

Remark 5.4. By Theorem 4.26, we can obtain C2 = 1.2414... .

Appendix A. Implementation of the algorithm
We prepare an implementation of the algorithm in Python to compute the growth
series of unweighted 2-dimensional periodic graphs according to Remark 5.1. For
details, see the source code:

https://github.com/yokozuna57/Ehrhart_on_PG
Here, we will only explain the input format. Let (Γ, L) be an n-dimensional periodic
graph. Let c := #VΓ/L. When we choose representatives of VΓ/L and label them as
0, 1, . . . , c − 1, we can identify VΓ = {0, 1, . . . , c − 1} × Zdim, where we set dim := n.

Thanks to the definition of the periodic graph, we can recover all the combina-
torial data EΓ, sΓ and tΓ from only the neighborhoods of vertices (0, 0), (1, 0), . . . ,
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(c − 1, 0). In the case of the Wakatsuki graph (introduced in Example 4.13 and [15,
Example 2.6]), the input is as follows:
dim =2
c=3
edges =[

[(1 ,(0 ,0)) ,(1 ,( -1 ,0)) ,(1,(-1,-1)) ,(2 ,(0 ,0))],
[(0 ,(0 ,0)) ,(0 ,(1 ,0)) ,(0 ,(1 ,1)) ,(2 ,(0 ,0))],
[(0 ,(0 ,0)) ,(1 ,(0 ,0))]

]
pos =[(0 ,0) ,(0.5 ,0.5) ,(0.5 ,0)]

Here, we choose v′
0, v′

1 and v′
2 in Figure 5 as representatives. The variable edge

represents the edges of the quotient graph Γ/L. More precisely, edges[i] is the list
of vertices that have an edge from v′

i = (i, (0, 0)) to them. For example,

edges[0] = [(1,(0,0)),(1,(-1,0)),(1,(-1,-1)),(2,(0,0))]

represents the list of edges e with s(e) = v′
0, namely, e′

0, e′
1, e′

2 and e′
3 in Figure 6.

The right hand side is the list of the target vertices of e′
0, e′

1, e′
2 and e′

3.
In addition, the variable pos is used to give information on the periodic realization

Φ : VΓ → LR := L ⊗Z R. More precisely, the variable pos presents the coordinates of
Φ ((0, 0)), Φ ((1, 0)), . . . , Φ ((c − 1, 0)) ∈ LR. In this example,

edges[0] = [(0,0),(0.5,0.5),(0.5,0)]

represents
Φ(v′

0) = (0, 0), Φ(v′
1) = (1/2, 1/2), Φ(v′

2) = (1/2, 0)
as in Figure 5. Note that the choice of pos does not affect the graph structure of Γ,
and hence, it does not affect the growth series of the periodic graph, but it is used
in the program when calculating the values of C1 and C ′

2. For the program to work
correctly, each element of pos should be chosen in [0, 1). If no specific realization is
in mind, you can always choose pos=[(0,0,...,0)]*dim.
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