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Eigenvalues of Heckman—Polychronakos

operators

Charles Dunkl & Vadim Gorin

ABSTRACT Heckman—Polychronakos operators form a prominent family of commuting
differential-difference operators defined in terms of the Dunkl operators D; as P, =

Zivzl(:ciDi)m. They have been known since 1990s in connection with trigonometric Calogero—
Moser—Sutherland Hamiltonian and Jack symmetric polynomials. We explicitly compute the
eigenvalues of these operators for symmetric and skew-symmetric eigenfunctions, as well as
partial sums of eigenvalues for general polynomial eigenfunctions.

1. INTRODUCTION

Our paper is motivated by two directions. On one hand, the theory of quantum
integrable systems, or more generally spectral theory, seeks to construct families of
commuting operators and to understand the structure of their eigenvalues and eigen-
functions. On the other hand, integrable probability often exploits such operators to
extract information about stochastic systems and their asymptotic behavior.

We investigate a family of differential-difference operators acting on polynomials
in N variables x1,...,xn, known as the Heckman—Polychronakos operators, which
were first introduced in [26, 40] in connection with the study of the (trigonometric)
Calogero—Moser—Sutherland Hamiltonian. The key properties of interest for these
operators were that they commute with each other and with the Calogero—-Moser—
Sutherland Hamiltonian, and that Jack symmetric polynomials (whose extensive the-
ory was developed just a couple of years before that, see [43], [33, Chapter VI]) are
their eigenfunctions.

Shortly after their introduction, two important developments occurred. First, [7, 8]
introduced an alternative family of Cherednik operators satisfying the same three
properties. Second, the theory was lifted to the level of Macdonald polynomials, of
which Jack polynomials are a degeneration (cf. [33, Chapter 6]). In the following years
Cherednik operators and their Macdonald generalizations played central roles in many
developments, while the Heckman—Polychronakos operators received significantly less
attention (cf. [6] for a recent historical overview). As a result, even the most basic
properties of the latter operators, such as explicit formulas for their eigenvalues, re-
main poorly understood. The goal of this paper is to help fill this gap in the literature
and to reinitiate the study of the Heckman—Polychronakos operators.
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Some relationships between Cherednik and Heckman—Polychronakos operators are
discussed in [41, Section 5]. Both families of operators can be constructed via Newton
power sums of certain “basic” operators. However, these basic operators exhibit differ-
ent properties in the two theories: in Cherednik theory, the basic operators commute
with each other, but their definition is not compatible with the natural action of the
symmetric group Sy on (z1,...,zy); in Heckman—Polychronakos theory, the basic
operators are defined in an Sy-equivariant way, but at the cost of losing commuta-
tivity.() The two parallel choices of basic operators in Macdonald (g,t) theory are
further discussed in [37], especially in Section 2.4.

In the semiclassical limit,® Jack polynomials degenerate into multivariate Bessel
functions (see, e.g., [38, Section 4]), and the operators we study degenerate in par-
allel to objects related to the rational (rather than trigonometric) Calogero—-Moser—
Sutherland Hamiltonian. Interestingly, in this limit the Cherednik and Heckman—
Polychronakos operators merge into a single family: their basic operators converge to
the Dunkl operators of [15], which both commute and are Sy-equivariant.

Switching to the integrable probability side, recent works [2, 45, 24, 30] have made
intensive use of power sums of Dunkl operators in the study of S-ensembles in random
matrix theory. These studies address problems such as the addition of matrices, corner
cutting, and the analysis of classical random matrix ensembles. Typical questions in
this area concern the asymptotic behavior of individual eigenvalues, as well as more
intricate functions of eigenvalues that capture their joint distribution as the matrix
size tends to infinity. For the operators to be useful in such asymptotic analyses,
two features are particularly important. First, the operators should have reasonably
simple combinatorial expressions, allowing their action on explicit functions to be
tractable in asymptotic regimes. Second, the eigenvalues of the operators correspond
to observables of the stochastic system of interest, and thus should also be reasonably
explicit. The power sums of Dunkl operators satisfy both of these criteria.

The random matrix distributions discussed above have natural discrete analogues,
extensively studied in [31, 4, 23, 12, 3, 13, 25, 27, 10, 9, 35, 11, 22], and closely
connected to Jack polynomials. Many questions posed for matrix S-ensembles have
discrete counterparts, and similar techniques may be applied to analyze them. This,
however, requires lifting the power sums of Dunkl operators to the discrete setting —
leading naturally to either Cherednik or Heckman—Polychronakos operators. It is not
yet clear which of the two classes is better suited for asymptotic analysis, and ideally,
one would like to explore both.

The desire to study asymptotic properties of these stochastic systems was the
original motivation behind our investigation of Heckman—-Polychronakos operators.
However, their theory turned out to be far richer than expected, revealing many
additional structural features and open questions that remain to be explored.

The rest of the paper is organized as follows. In Section 2 we formally define
the Heckman—Polychronakos operators. In Section 3 we present a formula for their
eigenvalues on symmetric eigenfunctions. In Section 4 we propose a classification of
general polynomial eigenfunctions according to the degrees in their leading monomials
and the type of representation of the symmetric group Sx to which these monomials
belong. In Section 5 we relate partial sums of eigenvalues to values of the characters
of the symmetric group and explain how this can be used for explicit computations of
some of the eigenvalues. In Section 6 we compute a three variable example highlighting

Mwe emphasize that although the basic operators z;D; do not commute, the Heckman—
Polychronakos operators themselves do commute; see Definition 2.2, Lemma A.1, and (38).
(D This limit is related to the degeneration of a Lie group into a Lie algebra and to the elementary
transition lim (1 + em)eily = exp(zy).
e—0
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that in some cases the eigenvalues are much more complicated. Finally, Appendix A
is an appendix, where we recall various useful properties of the Dunkl operators.

2. HECKMAN—POLYCHRONAKOS OPERATORS

Throughout the paper we fix N = 1,2,... and use the ring Cy = Clzy,22...,2N]
of polynomials in N variables. We let 6 be an auxiliary parameter which will either
play the role of a formal variable or a positive number throughout the paper.

DEFINITION 2.1. For 1 < i < N the Dunkl operator D; is a linear operator in Cy
acting by

M b= O +0; T 7

—
where (i, j) stands for the operator permuting the variables x; and x;.

DEFINITION 2.2. For m > 1 the Heckman—Polychronakos operator P, is a linear
operator in Cn acting by

(2) P = Z(fvﬂ?i)m,

where x; stands for the operator of multiplication by x;.

The operators P, were first introduced and discussed in [26, 40]. The interest in
them is based on three properties, whose proofs we recall in the Appendix:

e P,, commute with each other as operators in Cn: P, Pr = PrPm-

e When restricted onto the subring Ay C Cy of symmetric polynomials, the
operator Py is the (conjugated) Calogero-Moser—Sutherland Hamiltonian.

e Symmetric Jack polynomials Jy(z1,...,2n;0), A1 = X2 = -+ = Ay =0, are
eigenfunctions of all Py,; see [43], [33, Chapter VI] for general introduction to
Jack polynomials and note that it uses the parameter o = 1/6.

In contrast to another famous family of operators satisfying these three properties
— power sums of the (Jack versions of) Cherednik operators [7, 8] — the individual
terms (z;D;)™ do not commute.®® On the other hand, the advantage of Heckman—
Polychronakos operators is that their definition is simpler than the Cherednik ones
and they are equivariant with respect to the symmetric group action.

The aim of this paper is to study the spectrum of the operators P,,: we would like
to understand the eigenvalues corresponding to Jack polynomials Jy, as well as those
corresponding to other non-symmetric eigenfunctions.

The m = 1 operator is simpler than others:

N N 9 v —
i=1 i=1 !

— Zg J
1<i<j<N
N
o ON(N-1) -
e A D (X))
AN * 2 — (0,9)
=1 1<i<j<N

The appearance of ), _ j (i,7) operator hints on the relevance of the representation
theory of symmetric group Sy for the computations of eigenvalues and we will see
that this is indeed the case.

®)For a fruitful study of commutators of D; and x; operators see [20].
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3. SYMMETRIC EIGENFUNCTIONS

In this section we compute the eigenvalues corresponding to the (symmetric) Jack
polynomials.

A partition of n is a sequence of non-negative integers A = (A > A2 > ...), such
that >, A; = n. One can write A k= n or |A\| = n in this situation. The length of A,
denoted ¢()\) is the number of non-zero parts in A. In particular, if /(A) < N, then
An+1 = 0 and we can represent A as N-tuple (A; > A2 = -+ > Ay > 0). Sometimes
exponents are used to indicate multiplicity, e.g. (3,12) = (3,1,1).

We also recall the notation h,,(x1,...,2x) for complete homogeneous symmetric
polynomials and introduce their relatives, see [33, Example 19, Section 1.2] for similar
(but slightly different) polynomials:

3)  hD(xy,...,2N) = > B (i s - - i)

r—element subsets {i1,...,3, }C{1,2,...,N}

For m < 0 we set h%) = 0. Clearly,

A (xy,. . xn) =2l + 2P + -+ 27,

m m
m—l(xla“-axN)— —_—,
1<J
and
o = . 3 D da N
hgn)(xlv"';x]\f)7hm($1,...,IN)— Ty Ty

Jitjz+-+in=m

THEOREM 3.1. Denote £; = A\ + O(N — i), 1 < i < N. For each \y 2 --- 2 Ay 20
we have

(4) Pmdr(x1,...,xn; 0) = eig,, (AN)Ia(z1,...,zN; 6),

where
(5)
cigy,(\) = b (61, .. bn) =002, (61, tn) -+ (VTR (. ).

Theorem 3.1 is a combination of Theorem 5.4 and Lemma 5.5 below. An equivalent
compact expression for the eigenvalue is:

6 —0—-0...-0\" /1

0 by —0...—6 1

00 0 ...¢0y 1
The eigenvalues eig,, (A) also have a simple generating function:

PROPOSITION 3.2. Denoting £; = \; + 0(N — i), for each A1 = -+ 2 An = 0 we have:

. 0z \ rl-—(4+0)z
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Proof. For each 1 < r < N, using the generating function for the complete homoge-
neous polynomials h,, (see [33, Chapter 1, Section 2]) we have

o0

SR (. )

m=0
r—1 k
=z E E hk G1g e T)
r—element subsets {i1,...,i, }C{1,2,...,N} k=0

r

r— 1
_ ) I

r—element subsets {i1,...,i,}C{1,2,...,N} j=1
0z
— ZZZ '

O

Hence, plugging into (5) we get

00 N
S RUE I SRR ALY S {(
m=0

Ac{1,...,N} acA i=1

REMARK 3.3. The fact that symmetric Jack polynomials are eigenfunctions of P,, is
not new: there is no doubt that the authors of [26, 40, 32] were aware of it. However,
the formulas for the eigenvalues are more elusive and we could not locate (5), (6),
or (7) in the literature.

G. Olshanski pointed out to us that in the special case® § = 1, (6) matches the
formula for the eigenvalue of the classical Casimir operator C,,, as given in [46, (*)
and Theorem 2 in Section 60].

Formula (7) is similar to the expression for eigenvalues of Nazarov-Sklyanin oper-
ators in the space of polynomials in infinitely many variables, see [36, Section 6], and
also [34] for further references and discussions related to these operators.

4. CLASSIFICATION OF EIGENFUNCTIONS

Outside Jack polynomials, other eigenfunctions of P,, are much less understood. In
this section, we propose a classification for them based on the degrees of their leading
monomials and the isotype (equivalence class) of the representation of the symmetric
group Sy to which these monomials belong.

We need the dominance order on partitions:

DEFINITION 4.1. Let A\ = (A\; > ... Ax = 0) and A = (A\; > --- > Ay > 0) be two
distinct partitions of length at most N. We write A = X, if Zf\;1 A = Zf\i i a
for all1 <k < N, we have Zle A > Zle i

Let v = (71,...,7n) be a degree sequence of a monomial in z1,...,2y and write

z7 for x]'a3? -2 }. We let vT denote the partition A\; > ... Ay > 0 obtained by

rearranging 7y; in nonincreasing order.

DEFINITION 4.2. For A = (A1 2 ... An = 0), we let V) denote the linear space spanned
by all monomials 7 with vT = \.

Note that V) has a structure of a representation of symmetric group Sy permut-
ing the variables x;. We write (i,7) for the transpositions in the symmetric group
and (i,7,k...) for one-cycle permutations. When we write o901 f for a polynomial

DAt 0 =1 Jack polynomials turn into Schur polynomials, which are characters of the irreducible
representations of the unitary group U(N).
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f(x1,...,2y) and permutations 01,02 € Sy, we mean that we first permute the
variables according to o1 and then permute according to os. For instance:
(1,2) 23zy = z123, (1,3)(1,2) 2329 = (1,2,3) x3xy = w33

Let V,r denote the isotypical component of the irreducible representation 7 in Vj,
so that

(8) V=@ Var

We recall that irreducible representations of symmetric group Sy are parameterized
by partitions 7 - N, see [33, Section 1.7], [39], or [29] for the reviews of the representa-
tion theory of Sy. If we denote Mult(A) the partition of N representing multiplicities
of coordinates in A (for each a > 0 we count how many times a appears in A, and then
reorder decreasingly the resulting numbers), then the summation in (8) goes over 7
such that Mult(\) < 7, see, e.g. [33, Remark on page 115].

Outside several special cases, for generic A and 7 the numbers dim V)., do not
admit a closed formula, although they are of interest in algebraic combinatorics (being
equivalent to Kostka numbers, cf. [33, Section 1.6]). It is straightforward to show that
the dependence of dim V)., on A is only through Mult(\).

THEOREM 4.3. For each triplet (\,7,1) with A\ = (A = - =2 Ay =2 0), 7+ N, and
1 < i < dimV)y,,, the operators Pp,, m = 1, have a joint eigenfunction F ;;, such
that:
(1) Fx - is a homogeneous polynomial of degree |\|.
(2) All monomials 7 with non-zero coefficients in Fx ;; are such that v < \.
(3) The part of Fx -, spanned by monomials in Vy belongs to Vi.-.
The polynomials F ;; span Cn and there are no other polynomial eigenfunctions.

REMARK 4.4. We do not propose any explicit form for the dependence of F ,;
on i. One reason is that the combination of operators P,, and the structure of Sy-
representation is not sufficient to distinguish them. Indeed, for any coefficients o and 8
and any g € Sy, the polynomial o - F) - ; + 8- g o F)\ ; is an eigenfunction of Py,
satisfying the same three properties and with the same eigenvalue.

EXAMPLES 4.5. For each A, one can choose T to be a one-part partition, T = (N),
corresponding to the trivial representation of Sy. Then Vi.r is a one dimensional
space spanned by the sum of all monomials in V. The corresponding eigenfunction is
the symmetric Jack polynomial.

For each \ with distinct parts, one can choose T to be a unique N -parts partition
7 = 1V, corresponding to the sign representation of Sn. Then Vy., is a one dimen-

sional space spanned by the signed sum of all monomials in Vy, i.e. 3 g (=1)7 0
A1 Ao

o(1)To(2) " 332]("1\,). The corresponding eigenfunction is a skew-symmetric polynomial,
which can be expressed as alternating sum of all non-symmetric Jack polynomials la-
beled by N! compositions obtained by permuting the coordinates of A or, alternatively,
as the symmetric Jack polynomial with shifted 6 and multiplied by the [],_;(z; — x;),
see [1, (2.40)].

For A = (a,a,...,a), the space V is one-dimensional and only 7 = (N) is possible.

For \ with distinct parts, the space V) is isomorphic to the regular representa-
tion of Sy of dimension N!, because there is a bijection between elements of Sy and
monomials 7 with v = X. For each partition 7 b N, dim V), is the square of the
dimension'® of the irreducible representation T, and this is the number of eigenfunc-
tions F\ 1.

X

(5)The dimension can be computed, e.g., by the hook length formula of [21].
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In the rest of this section we prove Theorem 4.3. Two ingredients of the proof are
triangularity of Lemma 4.6 and self-adjointness of Lemma 4.7.
Let us introduce a linear operator T}, which acts in Cy and leaves each V), invariant:

(9) T = (vi+ 0#{j | v <v})a’ =0 Y (i,5)27, 1<i<N.

Jlvi>i
LEMMA 4.6. For any partition \ and any degree sequence v with v© = X, we have
Pulz?] = (T + T3" + --- + T3 [2"] + (linear combination of monomials =7 with 5+ < \).

Proof. Note that

.. Yi Vi Vi Vi
L (i.J) 'z} — ']
. 71 INT| Ya .t T L
(10) =« [z', ... 2] = Hma“ x;
T; — Ty Zij Ti— Ty
aF1,])
a7 .1 ’Y'-'rl 'Y"+1 .1
gl'ey +al e T e T,y <y
— Ya . d Vi i il oy dl vl vl _ _
= H T, ;@5 x; Z; Z; Z, s Y5> Yo
i 0, Y% =

Hence,
2;D;[z7] = T;z" + (linear combination of monomials x7 with 4+ < ™).

Iterating the last identity for P, = Zil(xﬂ)i)m, we arrive at the statement of the

lemma. O

LEMMA 4.7. Consider a scalar product on Cy, where g stands for complex conjugation
and 0 > 0:

(1)
o= [ [ ey ]

1<i<GEN

¥ — &) dgy ... don.

Then the operators x;D;, 1 < i < N, are self-adjoint with respect to it: for any
fv g,€ (CN
(ziDif,9) = (f,ziDig).

Proof. Versions of this statement can be found in [16] and [26]. Changing the variables
x; = exp(—ig¢;), the operator z;D; is transformed into

.0 1—(i,])
i5g, T Z 1 cié—a0)
J#i
and we need to check that it is self-adjoint with respect to the scalar product

(mumm:/”m/ﬁﬂmmwwmmmﬁm 11
0 0

1<i<j<N

e'?i — ¢l ’29 doy ...donw.

We first check that the operator % is self-adjoint, which is the identity
j 7

/Ozwm/ozw (G ) F (61, on)]g(é1,-. on) I1

6 o, (20
el —61¢]’2 des ...don

1 — ei(dj—di)
1<i<j<N

7 2 2 f(¢177¢N)|:(7’7.])g(¢177¢1\7):|
S A 1 — e—i(6;—%5) H

1IN

i, 120
61¢7, 761¢'7|2 d¢1...d¢N7

that is tautologically true by renaming ¢; <+ ¢; in the integral. It remains to check that
ia%i +O0> 4 m is self-adjoint. For that we note that if F'(¢) is periodic

and differentiable on the torus 0 < ¢ < 2, then fo% %F (¢)de = F (2m)—F (0) = 0.
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Hence, recording the fact that the 8%5- derivative of the integrand in the right-hand
side of (12) integrates to zero we obtain:

2 2m —ig;
—ie
Of/ / a(bzngrf g+0fgz +9fgz %
J#i
x H (61¢i _ eubj) (64@- _ 67i¢j)0d¢1 ...don
1<i<j<N
Multiplying by i we get the desired self-adjointness statement. O

REMARK 4.8. Following [16, Section 3] and [17, Section 3], there is another scalar
product, which also makes x;D; self-adjoint. This other scalar product is defined
through (f,g9) = f(D1,...,Dn)g(z1, ... »xN)|x1:...: , and it makes z; the adjoint
operator to D;.

IN=

Proof of Theorem 4.3. The operators P,, are self-adjoint by Lemma 4.7, commuta-
tive by Lemma A.1 in the appendix, and essentially finite-dimensional because P,,
preserves the space of degree k polynomials for each k. Hence, they have a joint eigen-
basis and we only need to show that the eigenfunctions satisfy the claimed properties.
Consider the space @ V. By Lemma 4.6, this is an invariant space for P,,. Be-
Hlp=2X
cause it is finite-dimensional and P,, is self-adjoint by Lemma 4.7, this space has a
complete system of eigenfunctions of P,,. Inductively counting eigenfunctions, which
belong to such spaces with smaller A, we conclude that in €D V), there are precisely

plp=Xx
dim V) eigenfunctions, which have at least one non-zero coeflficient among monomials

from Vy: these are various F) r; with fixed A\ and varying 7 and ¢. By triangular-
ity of Lemma 4.6, for each such polynomial, its part spanned by the monomials
from V) is necessarily an eigenfunction of (I7" 4+ 13" + - - -+ Tx"). The latter operator
has a symmetric expression in terms of z1,...,zy, and therefore it commutes with
the action of Sy. Hence, by the Schur’s lemma, each V)., is an invariant subspace
for (I7™ + T5™ + --- + TR}). Therefore, there are precisely dim V), eigenfunctions
of (T7" + T3 + --- + Tx) inside Vy,,. By triangularity, each of them has a unique
extension to an eigenfunction of P,, and these are F) ;;, 1 <i < dim V)., O

5. SUMS OF EIGENVALUES

In general, the eigenvalue of the operator P, on the polynomial F) ;; can be expressed
as a root of a polynomial equation (of degree at most dim(7)) with coefficients being
polynomials in A; and #; therefore, this eigenvalue can be quite complicated, see,
e.g. (32) in Section 6. We found that the sums of all eigenvalues corresponding to the
same A and 7, are much more manageable.

5.1. DISTINCT DEGREES OF VARIABLES. For an irreducible representation of Sy la-
beled by 7 F N, we let dim7 be its dimension and let x"(g) be its character. In
particular, dim(7) = x7(Id). We recall the notation W) from (3). We also recall
that (1,2,...,k) is a permutation having a single k-cycle and N — k fixed points
{k+1,...,N}

THEOREM b5.1. Let eig,, (), 7,1) denote the eigenvalue of P, on the eigenfunc-
tion Fy r; of Theorem 4.3. Suppose that X\ has all distinct parts. Then, setting
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Ai + (N — i), we have

Va,r min(m+1,N)

S oeig,(Ami)=dimr > (=0 (6 e)xT (1,2, R)).

i=1 k=1

When 7 = (N), dim V) » = 1 and the expression (13) turns into (5); this eigenvalue
corresponds to the symmetric eigenfunction. When 7 = (1%), also dim Vj, , = 1 and
the expression (13) turns into a formula similar to (5) but with (—6)*~! replaced with
6%—1; this eigenvalue corresponds to a skew-symmetric eigenfunction.

In general, the numbers XT((LQ, ..., k)) admit a somewhat explicit formula in
terms of 7 = (1 = -+ = 78 = 0), see, e.g., [33, Example 1.7.7] for the following
expression and [28, Section 3] for some others

N

. (N—k‘)' (Ti-i-N—i)! Ti—i—Tj-f—j—k
14) X7 ((1,2,...,k) =d .
(14) X7((12, b)) = dim 7= ;(n+N—z‘—k)!g -1+

If parts of X are allowed to coincide, (13) is replaced by a significantly more com-
plicated formula, which we present in Theorem 5.4 below.

For the proof of Theorem 5.1 we use T; of (9). We also need an additional object
from the representation theory of Sx. For each irreducible representation 7 of Sy,
denote

dim 7 .
(15) = 2 X (9
geSN

[42, Theorem 8] says that in each representation of Sy, 7, acts as an orthogonal pro-
jector (with respect to an Sy-invariant scalar product) onto the isotypical component
of .

LEMMA 5.2. The left-hand side of (13) can be evaluated as
dim V) ,
(16) > eig,, (A 7,i) = Tracey, [m-(T{" + -+ + T§')] = N Tracey, [r-17"].
i=1

Proof. The second equality in (16) follows from the invariance of both the Trace and
7, under conjugations with g € Sy, and we only prove the first one.

Recall from the proof of Theorem 4.3 that eig,, (A, 7,4) are eigenvalues of (77" +
.-+ 1™, corresponding to eigenfunctions in Vj,.. Hence, eig,, (X, 7,1) are eigenvalues
of the restriction of (T{" 4 --- + T}") onto Vj.r, which is the same as eigenvalues of
(T + - -+ T2, The sum of the eigenvalues coincides with the trace of the op-
erator, and we get Tracey, 1. (17" + --- + T*)7.]. Since Trace[AB] = Trace[BA], we
can move one 7, inside the trace from right to the left, and then using the projecting
property 7,7, = ., we arrive at (16). O

Proof of Theorem 5.1. We use Lemma 5.2 and compute Tracey, [7,17"] combin-
ing (9) with (15). The computation is based on the observation that V) is isomorphic
to the regular representation of Sy, because for distinct permutations o € Sy, their
actions on xj\l x?VN give distinct monomials. Therefore, in the trace computation
all products of g and (1, ) not equal to the identity permutation do not give any
contribution.
Let us compute (77)™z? for v = (y1,72,---,Yn). We have
(17)
m—+1
(T2 =" > Prglv: Vs Vi) - (O (1 k1) (1, k—2) -+ (1, 41)a”,

k=1 j1,.--sjk—1
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where ji,...,jrx_1 are distinct indices, such that each of them corresponds to distinct
Vie_1 > Vjns > -+ > > 7. The transpositions (1, j,) correspond to the second
term in (9) and the ordering appears because the operator T can only increase the
degree of 1, but never decrease. On the other hand, the prefactor py., collects all the
factors coming from the first term; it is a polynomial in various -shifted ~; of degree
(m+ 1 — k), which depends on the collection v1,vj,,...,7;,_, and on #. Note also
that the product of £ — 1 transpositions becomes a k-cycle

(1, 3k—1) (1, Jk—2) - (1, 51) = (1,41, J2s - -+, Je—1)-
We further represent g in (15) as

g= g : (17,71) e (17jk—2)(17jk>—1)7
and note that when we plug into Tracey, [r,77"], and multiply the sums, only the
terms with ¢ = Id give non-zero contributions. We also note that the trace is a central
function and its values on all k-cycles are the same. Therefore,
(18) NTracey, [7.17"]
m4+1

T O (2 )Y Y prmbnee
Tk

=1 Y J1sedk—1

It remains to compute the last double sum and we claim that

(19) ﬁz Z pk;m[71,7j17"'a7jk—1]

Y JiseesJk—1
0 —0 ... -\ "
0 0, —0 —0 1
1
= Coefficient of (—0)"~! in: (11...1)-[0 0 ¢35 —0
R 0 1

00 ... 04N

Indeed, there are N! terms in the sum over -y, however, only the rank of 4; among
all coordinates of v matters for the computation of the following >, . . Hence,
ﬁ Z,y can be interpreted as a sum with N terms corresponding to N possible
ranks of 7.

Next, we notice that the first term in (9) is always equal to ¢, and therefore
matches the diagonal element of the matrix in (19). Similarly, the —6(i,j) terms
in (9) match the off-diagonal (—) elements in the matrix in (19). Hence, we see that
the combinatorics of rising the matrix to the m-th power in (19) and raising 7; to the
m-th power is exactly the same. Hence, the identity (19).

It remains to identify the right-hand side of (19) with hg:lq—k(gla e ,EN), which
is immediate from the definition (3): the k-element subset {i1,...,i;} encodes those
diagonal elements of the matrix in (19), which enter into the computation of the m-th
power.

Finally, the summation Z;cnjll in (18) can be restricted to Zinl(mﬂ’N) in (13),
because for £ > N finding k distinct coordinates v1,%;,,...,7;,_, becomes impossible
and the corresponding sum in (18) is empty. O

5.2. GENERAL DEGREES. We now proceed to the most general result, in which parts
of A are allowed to have multiplicities.
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Given an integer 1 < p < N, a multiplicity composition (i.e. a sequence of p
positive integers) n = (nq1,ng,...,n, > 0) with Y %_ n; = N, and a degree sequence
d=(dy >ds >--->d, >0), we introduce a partition
(20) A=dy,...,di,do, ... doy .. dpy . dy

ni n2 np

For any k-element subset A C {1,...,p} of the form {a; < as < -+ < ag}, we
introduce averaged characters also called “spherical functions”:

(21) VT Asn] = —> V(G 0),

o)l
(na)l(n2)t---(np)! g 5 ey

where ¢ is a k-cycle, joining together the S, , 1 < i <k, subgroups, in the order of
increasing ¢. More explicitly:

c=(mi+-Fng -1, ni+Fng—1,...,n1 4+ +ng_, — 1, ni+--+ng, —1).

REMARK 5.3. Due to centrality of the characters, one can also choose other numbers
representing Sy, subgroups when defining ¢ and arrive at exactly the same function
X" [A;n]. For instance, ny 4+ --- + ng, — 1 can be replaced by any j, such that n; +
et Mg o1 <J<np4+ng — 1

We also introduce the shifted degrees:
U= di +0(ni1 +niga + -+ nyp), Isisp

Note that {£;}?_, is a subset of {£; = \; + O(N —i)}¥,. Finally, we define complete
homogeneous polynomials in subsets of these numbers:

(22) A2 = hy (g, Loy, - - la,), A={a1,as,...,a;}.

Note that for p = N, the polynomial hgf)7 as in (3), is the sum of h* over all k-element

subsets.

THEOREM b5.4. Let eig,, (A, 7,1) denote the eigenvalue of P, on the eigenfunction
Fy ri of Theorem 4.3. Suppose that X has the general form (20). Then, using the
notations (21) and (22), we have

(23)
dim Vy - min(m+1,p)
Z eig,, (A, 7,1) = dim 7 Z (—0)+1 Z héﬂ_k X [A;n] - H Ng.
i=1 k=1 Ac{1,2...,p} acA
|Al=k
If A has distinct parts, i.e. ny = ng = -+ = ny = 1, then there is no averaging

in (21) and x7[4;n] = x"((12...k)), where k = |A|. Hence, Theorem 5.4 matches
Theorem 5.1.

If 7 = () is the trivial representation, then the eigenfunction is the Jack poly-
nomial (see Lemma A.4 for some details) and simultaneously x"[A;n] = 1. Yet, the
expression we get in (23) is slightly different from the one of Theorem 3.1, and we
prove their equivalence in Lemma 5.5 below.

If 7 = (1%) is the sign representation, then x"[A;n] = 0, unless A has all dis-
tinct parts. In fact, there is no (1V)-type component in Vy for A with non-trivial
multiplicities of parts.

Explicit evaluation of x"[A;n] for 7 = (N —1,1) is later given in Theorem 5.6 and
the p = 2 case is explained in Corollary 5.7.
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Proof of Theorem 5.4. The proof is an extended version of the argument in Theo-
rem 5.1. Let us compute (77)™z? for v+ = A, just as in (17), but now allowing the
coordinates of 7y; to coincide. The answer has the same form:
(24)
m—+1
(Tl)mx’y = Z Z pk:;m[,ylv’yjlv'-'?’yjkfl]'<_9)k_1(1ajk—l)(17jk—2)"'(le)x’y,
k=1 j1,-,Jjk—1
where j1,...,jx—1 are distinct indices, such that each of them corresponds to distinct
Vinr > Vie_o > -0 > Vi > 71- We again represent g as

g=9-(L,j1) (1, jk—2)(1, jr-1),

and arrive at a generalization of (18):

dim Vi, .
dim 7

m—+1
(25) D eigy(A7.i) = Nracey, (WT(Tl)M) = -1 (—g)F1
=1 k=1
X Z Z Z XT(g'(le)"'(1vjk72)(17jkfl))pk;m[lylv'yjlv'”7ij_1}
Y JiseJk—1 GESN|GY="
What remains is to carefully match the last formula with the claimed (23). First, the
summation index k runs from 1 to m + 1 in (25), however, for k > p, it is impossible
to choose k distinct ~;, _, > v5,_, > --- > 7;, > 71 and the sum is empty; hence, we
can restrict the upper bound to be min(k + 1, p).
Next, the summation over all v involves
N!
(n1)!(n2)!- - (np)!

terms. Absorbing the factorials from the denominator into the character summation
(they are present in (21)) and cancelling N! with (N —1)! in denominator in (25), we

are left with a sum involving a single fixed v and 7, Zf\rzl(Tz)m

We claim that the summation over g in (25) gives the character averages of (21).
Indeed, note that

(17j1) T (17]']672)(1’].]{:71) = (jk*l»jk*27 s 7j17 ]-)
and the corresponding degrees «y;, _,,7Vj,_,,-..,71 are arranged in the decreasing
order, which correspond to increasing indices of d; — matching the cycle ¢ used
n (21). The stabilizer of v, i.e. the subgroup {§ € Sy | gy = 7} is not necessarily
Sny X Spy X ...8y,, but it is isomorphic to this group, with isomorphism obtained

by renaming {1,2,..., N}. Since the characters are central, this leads to the same
function as (21).
It remains to identify the sums of pr;m[v1,7j,,---,7j._.)- Note that when we act

with (7;)™ using its definition (9), the factors (v; + 6#{j | 7; < vi}) correspond to
various £,. On the other hand, each application of a term from 6 ij - (i,7)x7, leads
to addition of an additional index j,. In this index, only the value of v;, matters. The
set A in (23) is identified with {v1,;,,...,7j._, } in (25), leading to the combinatorial
factor [],c 4 Ma, counting the number of ways to choose indices v;, corresponding
to A (the n, corresponding to v; should be also accounted, as it arises from the first
application of one of the operators T; in Zf\;(Tl)m) Once the set A is fixed, the
sums of products of £, coming from (v; + 64{j | 7; < v:}) in T; combine precisely
into A7, of (23). O

LEMMA 5.5. For the trivial character, T = (N), the formulas of Theorems 5.4 and 3.1
are the same.
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Proof. The formula (5) can be rewritten in terms of the m-th power of N x N matrix

as
m

by —0 -0 ... -0 1

0 ¢ —0...—0 1
(26) (111...1) 0 0 {43 ...—0 1 7

00 0 ...4x 1

where ¢; = \; + (N —4). On the other hand, the formula (23) can rewritten in terms
of m-th power of p X p matrix as

m

b —n2f —nzf ... —npl 1

0 flp —ngb...—ny0 1
(27) (n1 ng N3 ... np) 0 0 ls ... —nyb 1 :

0 0 0 ... 4 1

where /; are a subset of ¢; given by l; =d; + 0(nit1 + niye + - - +nyp) in the nota-
tion (20). Our task is to prove (26)=(27). One can do this directly, but our approach
is to proceed through generating functions. On the (26) side, the generating func-
tion was computed in Proposition 3.2. Let eig,,(\) denote the eigenvalues computed
by (27). Repeating the argument of Proposition 3.2, we have

1- 6z Zﬁémmzm = Y )M ]] 1”7 - H (1 - 1”_95Z>

The last expression matches the right-hand side of (7), once we notice the telescoping
cancellations in (7). O

5.3. (N—1,1) 1soTYPE. While the formula of Theorem 5.4 is very general, it produces
an answer in terms of the functions x”[A; n]. Evaluation of these functions is a separate
task. As we have already mentioned right after Theorem 5.4, for 7 = (N) and 7 = 1%V
the evaluation is particularly simple. Another case where it is fully explicit is 7 =
(N-1,1).

THEOREM 5.6. Let 7 = (N — 1,1) and n = (n1,na,...,n, > 0). Then we have
1

28 T N = —1— _

(29) Claml=p-1-3

Proof. The irreducible representation of Sy of type 7 = (N — 1,1) is the standard

(reflection) (N — 1)-dimensional representation in the space of vectors (x1,...,zN)

with Zf\il r; = 0 and action oo (z1,...,7N) = (To-1(1),- -+, To-1())- Evaluating the

character as trace, we get an expression in terms of the number of the fixed points:
X (o) =#{1<i< N |o@i) =i} -1, T=(N-1,1).

Recalling the definition (21), we need to compute

p

(29) Z X" (g-¢) = Z Z 15.cy)=i — H(%’)L

GESny XSny XX Sn, Jj=1
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where ¢ is a | A|-cycle permuting the groups corresponding to the elements a € A.
Changing the order of summation in (29), we get

nyttng

> 3 D (O

q=1 i=ni+--+ng_1+1 gesnl ><Sn2 XX S

np

In the internal sum over g, for the symmetric groups S,; which permute the elements
other than ¢(7) there are no restrictions and all (n;)! permutations are possible. How-
ever, if ¢(i) belongs to the indices permuted by S,,, then there are two options:
if ¢(¢) = 4, then (n; — 1)! permutations satisfy the restriction g - ¢(i) = 4, otherwise no
permutations satisfy the restriction. Hence, summing over g and then i, we get

Z gea(ng —1) + 1ggang] (ng — 1)! H(”j)! _H(”J)

q=1 J#q

The last expression can be transformed into

H nj '_ZlqEA H(”j)!

J#q

p
Dividing by [] (n;)!, we get (28). O
j=1

54. a...ab...b CASE WITH p = 2. Another situation where the general formula of
Theorem 5.4 is fully explicit is p = 2. In fact, in this special case we are able to compute
all eigenvalues eig,, (A, 7,1) rather than only their sums over 7. We fix N = 1,2,...
and 1 <7 < N — 1 and set the multiplicities to be (ny,n2) = (N —n,n). We further
choose a > b > 0 and set

(30) A=a,a,...,a,bb,....b.
T\T/
-7

COROLLARY 5.7. For A in (30) and 7 = (N — k, k) with 0 < k < min(n, N —n), we
have

a+6n)™ —bm

eigm(&m)=(a+9n)m(N—n)+bmn—9( p— (n(N —n) = k(N —k+1)),

forall 1 <i < dim V) ;. For other T, the space Vy , is empty.

Proof. We need some facts from the representation theory of symmetric groups, which
can be found e.g. in [14], or [44, Section 3], or [5, Sections 6.1, 6.2]. In particular, V)
expands into a direct multiplicity one sum of irreducible representations 7 = (N —k, k),
0 < k < min(n, N — 7). The operator (T" + - -- + TH') commutes with the action of
the symmetric group. Therefore, by Schur’s lemma, it necessarily acts as a multiple of
the identity in each V)., (which would not have been true if 7 had multiplicity larger
than 1 in A). Hence, the eigenvalues eig,,, (A, 7,4) do not depend on 7 and we can get
them by dividing (23) by dim 7.

Let us evaluate the ingredients of (23). (Sny, Sn—y X Sy) is a Gelfand pair, which
means that each irreducible representation of Sy has at most one Sy_,, x S, -invariant
vector. Interpreting summations over § € Sy_, x Sy in (21) as projections on invari-
ants, we identify x7[A;n] with spherical functions corresponding to this invariant
vector. The latter spherical function is evaluated in [14, Corollary 2.2], [44, (3.15)], [5,
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Theorems 6.1.10, 6.2.3] in terms of the hypergeometric function 3F5, which can also
be identified with the Hahn polynomial. The value at length 2 cycle is given as

(31)  3F (—k,k—N—l,—l ‘1) g (—k)(k— N —1)(-1) M

(=) (n—N)1L n(N —n)

n—N,—n =

Hence, (23) specializes to:

k N—-—n+1

A A

RIS hml-(l—-N_ )Hn

AC{1,2} acA Ac{1,2}

Al=1 Al=2
+ 0n)™ — b™ k N—k+1

(0t 0n)"(N — ) + by — plaT O = 0" (1—-

N —n).
a+0n—>5 n N —n )77( ")

O

5.5. MORE COMPLICATED ISOTYPES. In the follow-up work, the spherical functions
X [A,n] have been computed for the hook isotypes [N — b,1°] for p > b in [18] and
for the isotypes [N — k, k] for p = 3 in [19].

6. EXAMPLE: EIGENVALUES FOR N = 3.

Here is the full list of the eigenvalues of the operator P,, for N = 3. We keep us-
ing the notation (3). When we speak about leading monomials in the description of
eigenfunctions, we use the point of view of Theorem 4.3 and describe the part of F} ;;
in V)\.

(i) A = (a,a,a): For each a > 0, P,, has an eigenvalue 3a?m on the eigenfunction
(i) A = (a,a,b): For each a > b > 0, P, has:
(a) Eigenvalue 2(a + 6)™ + b — 20% on the eigenfunction with
leading monomials x¢z$z4 + réabrd + xbzgxs.

(b) Two equal eigenvalues 2(a+6)"+b"™+ 9% on two eigenfunctions
b b

with leading monomials in the space spanned by z{z§z§ — 2{x524§ and
(iii) A = (a,b,b): For each a > b > 0, P,, has:
(a) Eigenvalue (a + 20)™ + 20™ — 29% on the eigenfunction with
leading monomials z¢z5x8 + 28282 + 2babxd.

(b) Two equal eigenvalues (a + 20)™ + 2b™ + 9% on two eigenfunc-
tions with leading monomials in the space spanned by z§x4z} — x8zgxb
and 2§xbxl — 2halxd.

(iv) A = (a,b,¢): For each a > b > ¢ > 0, P, has (we denote (£1,¥2,03) =

(a+20,b+0,c)):
(a) Eigenvalue by (1, €2, 03) — 0hE) | (01,09, 05) +62BS) 4 (£, 0, £3) on the
eigenfunction with leading monomials

b b b b b b
xlxoxs + xir5as + xirses + xirgrs + wixsrs + rixrgrs.
(b) Two pairs of equal eigenvalues

92

0
£ Shna (0,6, 05) \JA (G + B+ B) = 41l + 1ty + Laly) — 367
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on four eigenfunctions with leading monomials in the space spanned by

(33) x‘f;vgxg - xlfxgscg, xﬁbﬂchg — xfx%mg, xl{mgmg — xi‘x%x? J:I{xgajg — xfmgmg
(c) Eigenvalue h%) (él,fg, 63) + th)_l (El,ﬁg, €3) + 92h£2)_2 (ﬂl,ﬁz, 63) on the

eigenfunction with leading monomials

wabas — abasal — afasal — aSabas + alasad + xSadal.

(i.a), (ii.a), (ili.a), and (iv.a) are all instances of Theorem 3.1 or Theorem 5.4
with 7 = (3). (ii.ab) and (iii.ab) are instances of Corollary 5.7. (iv.a) and (iv.c) are
instances of Theorem 5.1 for 7 = (3) and 7 = (1,1,1), respectively. The sum of
all four eigenvalues in (iv.b) matches Theorem 5.1 for 7 = (2,1), where we have
dim7 = x"(Id) = 2, x"((1,2)) = 0, x"((1,2,3)) = —1. The individual eigenvalues
in (iv.b) are not computed by any of our theorems; the formula (32) can be obtained
by evaluating the matrices of the operators 17", 13", 13" by diagonalization and then
direct computation of the eigenvalues of T7" + T4"* + T4™ (we can either use 6 x 6

matrices in the space of all permutations of x¢z4x§ or 4 x 4 matrices in the subspace
spanned by (33)).

APPENDIX A. BASIC PROPERTIES OF P,

In this section we discuss the basic properties of the operators P,,, mentioned in
Section 2. These properties are well-known, we provide proofs only for the sake of
being self-contained.

LEMMA A.1. The operators Pp,, m = 1,2, ..., mutually commute.
Proof. We develop a table of commutators. We start by splitting the Dunkl operator

of Definition 2.1 into two parts and write D; = % + 0A; with A; = Zj# 1;_(77;]").
i =

We claim
(34) AaAb == AbAa, 1 < a, b < N.
In order to prove (34) for a # b, we plug the definition of A, into A A, and get

1—(a,j5) 1—(b,j'
ZZ ( J)_ beij/).

Lg — T4
j#ag'#y T4

Note that the double sum splits into three types of summands: involving two, three,
and four distinct variables ;. The parts involving two and four variables are obviously
the same in Ay Ay and in ApA,. The part involving three variables, x4, 2, z; is more
tricky, it is:

1_(a7j) . 1_<baj) + 1_(a’b) . 1_(b’j) + 1_(aaj) . 1_(b7a)

Ty — T Ty — Tj Ty — Tp Ty — Tj Ty — T Ty — Tq

(35)

where in each fraction we first apply the operator in numerator and then divide by the
denominator. The desired relation (34) follows from the symmetry of (35) in a < b,
which is verified directly by moving all permutation operators to the right. The next
useful identity, which is verified directly, is that for a # b

(36) [Ta, Ap]) = oAy — Apz, = (a,b).

Another direct verification yields that for a # b we have

o [a]oien (2,

Oz, (g — )2 T —ap \Oxq Oy
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Oz
this implies commutativity of the Dunkl operators: D,D, = DyD,. Next, for each
a # b we have

(38) [aDa,xDp] = 0(x, Dy — 2Dy) - (a, b).

The last identity makes it clear that [%,Ab} = {i,Aa] Combining with (34),

Indeed, using (36) and commutativity of x, with 8 , we have
2o Daxp Dy — 2y Dpxa Dy = 024D Dy — x4(a, b)Db — xpxa Dy Dy + 0y (a, b)D

Cancelling the first and third terms and using (a,b) - Dy - (a,b) = D, we arrive at (38).
Using this identity we further compute

m—1

(39) [maDm (-TbDb)m] — Z (beb)k[waDa, meb](beb)m_k_l
k=0

Z (26Dp)* (24D — 2 Dy) - (a,b) (2 Dp)™F 1 =
k=0

m—1
0 Z x,Dy)* (oDy — 2Dp) - (JcaDa)m_k_l -(a,b) = 9((wa7)a)m — (beb)m) -(a,b).
k=0

Iterating the same argument again, we get

-1

[(xapa)lv (zpDp)™] = Z(xapa)k[xapav (beb)m}(ana)l_k_l
k=0

m+l—1 -1
-0 < Z (ana)m+k($bDb)m+l_k_l _ Z(xapa)k(xbpb)m+l_k_l> . (a,b).
k=0

k=m

Interchanging ! and m and using the skew-symmetry [f, g] = —l[g, f], we also have

[(25Ds)", (zaDa)™]

m—1 m-+l—1
=0 (Z(zaDG)k(beb)mHkl - Z (JcaDa)Hk(beb)mHkl) - (a,b).

k=0 k=l

Summing the last two identities over all a < b, we arrive at

N N
(40) [Z(xapa)l,z:(xbpb m]

a=1 b=1

m—1 I+m— -1 m-+l—1
— QZ ( —+ Z > beb)m+l 1= k(CL b) = 0.

O

LEMMA A.2. The restriction of the operator Py on the space of symmetric polynomials
coincides with

o\’ xi(x; +x;) 0
A1 L p S Fili T T5) 9
o ; (x 3%‘) - Z x;— x5 O0x;
REMARK A.3. Changing the variables z, = exp(iz,), conjugating with the product
[T.<,sin? (2252) and shifting by a constant, (41) turns into —H, where H is the

Algebraic Combinatorics, Vol. 8 #6 (2025) 1563



CHARLES DUNKL & VADIM GORIN

trigonometric version of the so-called Calogero-Moser—Sutherland Hamiltonian:

N 2
) (0 —1) 1

1<j

Proof of Lemma A.2. Since 1— (i,7) = 0 on symmetric polynomials, (z;D;)? restricts
as

.Z‘zaixi‘f'eszix.iwj <xla$1>

it
9\ x; d o,
J#i

The permutation (i, j) acts identically on symmetric polynomials and can be removed
from the right-hand side of the last formula. Summing over all i, we arrive at (41). O

LEMMA A.4. For the trivial representation T = (N) the joint eigenfunction Fy (N1
of operators Py, from Theorem 4.3 is (up to a constant factor) the symmetric Jack
polynomial Jy(x1,...,2N; 0).

Proof. As in the proof of Theorem 4.3, we note that the linear space €@ V), is in-
plp=A
variant both for P, and for the symmetric group Sy. Because Sy-action commutes

with P, action, P, preserves the subspace of symmetric polynomial inside & V.
Hlp=A
Hence, P,, must have some symmetric eigenfunctions in € V), and then by triangu-
Bl
larity consideration, the unique symmetric eigenfunction with leading monomial in V)

has to be F) (n),1- We conclude that F) (n) 1 is symmetric. Since P, is self-adjoint by
Lemma 4.7, its eigenfunctions are orthogonal with respect to scalar product of that
lemma. We conclude that as A’s vary, the polynomials F) y); form an orthogonal
basis of the space Ay of symmetric polynomials in N variables and this basis is re-
lated to monomial symmetric polynomials my by a triangular transformation. Being
such an orthogonal basis is a property which uniquely determines Jack polynomials
and can be taken as one of their equivalent definitions, see [43] or [33, Section 6.10]
and note that they use o = 1/6 as the parameter. O
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