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Eigenvalues of Heckman–Polychronakos
operators

Charles Dunkl & Vadim Gorin

Abstract Heckman–Polychronakos operators form a prominent family of commuting
differential-difference operators defined in terms of the Dunkl operators Di as Pm =∑N

i=1(xiDi)m. They have been known since 1990s in connection with trigonometric Calogero–
Moser–Sutherland Hamiltonian and Jack symmetric polynomials. We explicitly compute the
eigenvalues of these operators for symmetric and skew-symmetric eigenfunctions, as well as
partial sums of eigenvalues for general polynomial eigenfunctions.

1. Introduction
Our paper is motivated by two directions. On one hand, the theory of quantum
integrable systems, or more generally spectral theory, seeks to construct families of
commuting operators and to understand the structure of their eigenvalues and eigen-
functions. On the other hand, integrable probability often exploits such operators to
extract information about stochastic systems and their asymptotic behavior.

We investigate a family of differential-difference operators acting on polynomials
in N variables x1, . . . , xN , known as the Heckman–Polychronakos operators, which
were first introduced in [26, 40] in connection with the study of the (trigonometric)
Calogero–Moser–Sutherland Hamiltonian. The key properties of interest for these
operators were that they commute with each other and with the Calogero–Moser–
Sutherland Hamiltonian, and that Jack symmetric polynomials (whose extensive the-
ory was developed just a couple of years before that, see [43], [33, Chapter VI]) are
their eigenfunctions.

Shortly after their introduction, two important developments occurred. First, [7, 8]
introduced an alternative family of Cherednik operators satisfying the same three
properties. Second, the theory was lifted to the level of Macdonald polynomials, of
which Jack polynomials are a degeneration (cf. [33, Chapter 6]). In the following years
Cherednik operators and their Macdonald generalizations played central roles in many
developments, while the Heckman–Polychronakos operators received significantly less
attention (cf. [6] for a recent historical overview). As a result, even the most basic
properties of the latter operators, such as explicit formulas for their eigenvalues, re-
main poorly understood. The goal of this paper is to help fill this gap in the literature
and to reinitiate the study of the Heckman–Polychronakos operators.
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Some relationships between Cherednik and Heckman–Polychronakos operators are
discussed in [41, Section 5]. Both families of operators can be constructed via Newton
power sums of certain “basic” operators. However, these basic operators exhibit differ-
ent properties in the two theories: in Cherednik theory, the basic operators commute
with each other, but their definition is not compatible with the natural action of the
symmetric group SN on (x1, . . . , xN ); in Heckman–Polychronakos theory, the basic
operators are defined in an SN -equivariant way, but at the cost of losing commuta-
tivity.(1) The two parallel choices of basic operators in Macdonald (q, t) theory are
further discussed in [37], especially in Section 2.4.

In the semiclassical limit,(2) Jack polynomials degenerate into multivariate Bessel
functions (see, e.g., [38, Section 4]), and the operators we study degenerate in par-
allel to objects related to the rational (rather than trigonometric) Calogero–Moser–
Sutherland Hamiltonian. Interestingly, in this limit the Cherednik and Heckman–
Polychronakos operators merge into a single family: their basic operators converge to
the Dunkl operators of [15], which both commute and are SN -equivariant.

Switching to the integrable probability side, recent works [2, 45, 24, 30] have made
intensive use of power sums of Dunkl operators in the study of β-ensembles in random
matrix theory. These studies address problems such as the addition of matrices, corner
cutting, and the analysis of classical random matrix ensembles. Typical questions in
this area concern the asymptotic behavior of individual eigenvalues, as well as more
intricate functions of eigenvalues that capture their joint distribution as the matrix
size tends to infinity. For the operators to be useful in such asymptotic analyses,
two features are particularly important. First, the operators should have reasonably
simple combinatorial expressions, allowing their action on explicit functions to be
tractable in asymptotic regimes. Second, the eigenvalues of the operators correspond
to observables of the stochastic system of interest, and thus should also be reasonably
explicit. The power sums of Dunkl operators satisfy both of these criteria.

The random matrix distributions discussed above have natural discrete analogues,
extensively studied in [31, 4, 23, 12, 3, 13, 25, 27, 10, 9, 35, 11, 22], and closely
connected to Jack polynomials. Many questions posed for matrix β-ensembles have
discrete counterparts, and similar techniques may be applied to analyze them. This,
however, requires lifting the power sums of Dunkl operators to the discrete setting —
leading naturally to either Cherednik or Heckman–Polychronakos operators. It is not
yet clear which of the two classes is better suited for asymptotic analysis, and ideally,
one would like to explore both.

The desire to study asymptotic properties of these stochastic systems was the
original motivation behind our investigation of Heckman–Polychronakos operators.
However, their theory turned out to be far richer than expected, revealing many
additional structural features and open questions that remain to be explored.

The rest of the paper is organized as follows. In Section 2 we formally define
the Heckman–Polychronakos operators. In Section 3 we present a formula for their
eigenvalues on symmetric eigenfunctions. In Section 4 we propose a classification of
general polynomial eigenfunctions according to the degrees in their leading monomials
and the type of representation of the symmetric group SN to which these monomials
belong. In Section 5 we relate partial sums of eigenvalues to values of the characters
of the symmetric group and explain how this can be used for explicit computations of
some of the eigenvalues. In Section 6 we compute a three variable example highlighting

(1)We emphasize that although the basic operators xiDi do not commute, the Heckman–
Polychronakos operators themselves do commute; see Definition 2.2, Lemma A.1, and (38).

(2)This limit is related to the degeneration of a Lie group into a Lie algebra and to the elementary
transition lim

ε→0
(1 + εx)ε−1y = exp(xy).
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that in some cases the eigenvalues are much more complicated. Finally, Appendix A
is an appendix, where we recall various useful properties of the Dunkl operators.

2. Heckman–Polychronakos operators
Throughout the paper we fix N = 1, 2, . . . and use the ring CN = C[x1, x2 . . . , xN ]
of polynomials in N variables. We let θ be an auxiliary parameter which will either
play the role of a formal variable or a positive number throughout the paper.

Definition 2.1. For 1 ⩽ i ⩽ N the Dunkl operator Di is a linear operator in CN

acting by

(1) Di = ∂

∂xi
+ θ

∑
j ̸=i

1 − (i, j)
xi − xj

,

where (i, j) stands for the operator permuting the variables xi and xj.

Definition 2.2. For m ⩾ 1 the Heckman–Polychronakos operator Pm is a linear
operator in CN acting by

(2) Pm =
N∑

i=1
(xiDi)m,

where xi stands for the operator of multiplication by xi.

The operators Pm were first introduced and discussed in [26, 40]. The interest in
them is based on three properties, whose proofs we recall in the Appendix:

• Pm commute with each other as operators in CN : PmPk = PkPm.
• When restricted onto the subring ΛN ⊂ CN of symmetric polynomials, the

operator P2 is the (conjugated) Calogero–Moser–Sutherland Hamiltonian.
• Symmetric Jack polynomials Jλ(x1, . . . , xN ; θ), λ1 ⩾ λ2 ⩾ · · · ⩾ λN ⩾ 0, are

eigenfunctions of all Pm; see [43], [33, Chapter VI] for general introduction to
Jack polynomials and note that it uses the parameter α = 1/θ.

In contrast to another famous family of operators satisfying these three properties
— power sums of the (Jack versions of) Cherednik operators [7, 8] — the individual
terms (xiDi)m do not commute.(3) On the other hand, the advantage of Heckman–
Polychronakos operators is that their definition is simpler than the Cherednik ones
and they are equivariant with respect to the symmetric group action.

The aim of this paper is to study the spectrum of the operators Pm: we would like
to understand the eigenvalues corresponding to Jack polynomials Jλ, as well as those
corresponding to other non-symmetric eigenfunctions.

The m = 1 operator is simpler than others:

N∑
i=1

xiDi =
N∑

i=1
xi

∂

∂xi
+ θ

∑
1⩽i<j⩽N

xi − xj

xi − xj
[1 − (i, j)]

=
N∑

i=1
xi

∂

∂xi
+ θN(N − 1)

2 − θ
∑

1⩽i<j⩽N

(i, j).

The appearance of
∑

i<j(i, j) operator hints on the relevance of the representation
theory of symmetric group SN for the computations of eigenvalues and we will see
that this is indeed the case.

(3)For a fruitful study of commutators of Di and xj operators see [20].
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3. Symmetric eigenfunctions
In this section we compute the eigenvalues corresponding to the (symmetric) Jack
polynomials.

A partition of n is a sequence of non-negative integers λ = (λ1 ⩾ λ2 ⩾ . . . ), such
that

∑
i λi = n. One can write λ ⊢ n or |λ| = n in this situation. The length of λ,

denoted ℓ(λ) is the number of non-zero parts in λ. In particular, if ℓ(λ) ⩽ N , then
λN+1 = 0 and we can represent λ as N -tuple (λ1 ⩾ λ2 ⩾ · · · ⩾ λN ⩾ 0). Sometimes
exponents are used to indicate multiplicity, e.g. (3, 12) = (3, 1, 1).

We also recall the notation hm(x1, . . . , xN ) for complete homogeneous symmetric
polynomials and introduce their relatives, see [33, Example 19, Section I.2] for similar
(but slightly different) polynomials:

(3) h(r)
m (x1, . . . , xN ) =

∑
r−element subsets {i1,...,ir}⊂{1,2,...,N}

hm(xi1 , . . . , xir
).

For m < 0 we set h
(r)
m = 0. Clearly,

h(1)
m (x1, . . . xN ) = xm

1 + xm
2 + · · · + xm

N ,

h
(2)
m−1(x1, . . . , xN ) =

∑
i<j

xm
i − xm

j

xi − xj
,

and

h(N)
m (x1, . . . , xN ) = hm(x1, . . . , xN ) =

∑
j1+j2+···+jN =m

xj1
1 xj2

2 · · · xjN

N .

Theorem 3.1. Denote ℓi = λi + θ(N − i), 1 ⩽ i ⩽ N . For each λ1 ⩾ · · · ⩾ λN ⩾ 0
we have

(4) PmJλ(x1, . . . , xN ; θ) = eigm(λ)Jλ(x1, . . . , xN ; θ),

where
(5)
eigm(λ) = h(1)

m

(
ℓ1, . . . , ℓN

)
− θh

(2)
m−1

(
ℓ1, . . . , ℓN

)
+ · · · + (−θ)N−1h

(N)
m+1−N

(
ℓ1, . . . , ℓN

)
.

Theorem 3.1 is a combination of Theorem 5.4 and Lemma 5.5 below. An equivalent
compact expression for the eigenvalue is:

(6) eigm(λ) =
(
1 1 1 . . . 1

)


ℓ1 −θ −θ . . . −θ
0 ℓ2 −θ . . . −θ
0 0 ℓ3 . . . −θ
...

...
...

. . .
...

0 0 0 . . . ℓN


m

1
1
1
...
1

 .

The eigenvalues eigm(λ) also have a simple generating function:

Proposition 3.2. Denoting ℓi = λi + θ(N − i), for each λ1 ⩾ · · · ⩾ λN ⩾ 0 we have:

(7) 1 − θz

∞∑
m=0

eigm(λ)zm =
N∏

i=1

(
1 − θz

1 − ℓiz

)
=

N∏
i=1

1 − (ℓi + θ)z
1 − ℓiz

.
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Proof. For each 1 ⩽ r ⩽ N , using the generating function for the complete homoge-
neous polynomials hm (see [33, Chapter 1, Section 2]) we have

∞∑
m=0

h
(r)
m+1−r(ℓ1, . . . , ℓN )zm

= zr−1
∑

r−element subsets {i1,...,ir}⊂{1,2,...,N}

∞∑
k=0

hk(ℓi1 , . . . , ℓir
)zk

= zr−1
∑

r−element subsets {i1,...,ir}⊂{1,2,...,N}

r∏
j=1

1
1 − ℓij

z
.

Hence, plugging into (5) we get

1 − θz

∞∑
m=0

eigm(λ)zm =
∑

A⊂{1,...,N}

(−θz)|A|
∏
a∈A

1
1 − ℓaz

=
N∏

i=1

(
1 − θz

1 − ℓiz

)
.

□

Remark 3.3. The fact that symmetric Jack polynomials are eigenfunctions of Pm is
not new: there is no doubt that the authors of [26, 40, 32] were aware of it. However,
the formulas for the eigenvalues are more elusive and we could not locate (5), (6),
or (7) in the literature.

G. Olshanski pointed out to us that in the special case(4) θ = 1, (6) matches the
formula for the eigenvalue of the classical Casimir operator Cm, as given in [46, (*)
and Theorem 2 in Section 60].

Formula (7) is similar to the expression for eigenvalues of Nazarov-Sklyanin oper-
ators in the space of polynomials in infinitely many variables, see [36, Section 6], and
also [34] for further references and discussions related to these operators.

4. Classification of eigenfunctions
Outside Jack polynomials, other eigenfunctions of Pm are much less understood. In
this section, we propose a classification for them based on the degrees of their leading
monomials and the isotype (equivalence class) of the representation of the symmetric
group SN to which these monomials belong.

We need the dominance order on partitions:

Definition 4.1. Let λ = (λ1 ⩾ . . . λN ⩾ 0) and λ̃ = (λ̃1 ⩾ · · · ⩾ λ̃N ⩾ 0) be two
distinct partitions of length at most N . We write λ ≻ λ̃, if

∑N
i=1 λi =

∑N
i=1 λ̃i and

for all 1 ⩽ k ⩽ N , we have
∑k

i=1 λi ⩾
∑k

i=1 λ̃i.

Let γ = (γ1, . . . , γN ) be a degree sequence of a monomial in x1, . . . , xN and write
xγ for xγ1

1 xγ2
2 · · · xγN

N . We let γ+ denote the partition λ1 ⩾ . . . λN ⩾ 0 obtained by
rearranging γi in nonincreasing order.

Definition 4.2. For λ = (λ1 ⩾ . . . λN ⩾ 0), we let Vλ denote the linear space spanned
by all monomials xγ with γ+ = λ.

Note that Vλ has a structure of a representation of symmetric group SN permut-
ing the variables xi. We write (i, j) for the transpositions in the symmetric group
and (i, j, k . . . ) for one-cycle permutations. When we write σ2σ1f for a polynomial

(4)At θ = 1 Jack polynomials turn into Schur polynomials, which are characters of the irreducible
representations of the unitary group U(N).
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f(x1, . . . , xN ) and permutations σ1, σ2 ∈ SN , we mean that we first permute the
variables according to σ1 and then permute according to σ2. For instance:

(1, 2) x2
1x2 = x1x2

2, (1, 3)(1, 2) x2
1x2 = (1, 2, 3) x2

1x2 = x2
2x3.

Let Vλ;τ denote the isotypical component of the irreducible representation τ in Vλ,
so that
(8) Vλ =

⊕
τ

Vλ;τ .

We recall that irreducible representations of symmetric group SN are parameterized
by partitions τ ⊢ N , see [33, Section I.7], [39], or [29] for the reviews of the representa-
tion theory of SN . If we denote Mult(λ) the partition of N representing multiplicities
of coordinates in λ (for each a ⩾ 0 we count how many times a appears in λ, and then
reorder decreasingly the resulting numbers), then the summation in (8) goes over τ
such that Mult(λ) ⪯ τ , see, e.g. [33, Remark on page 115].

Outside several special cases, for generic λ and τ the numbers dim Vλ;τ do not
admit a closed formula, although they are of interest in algebraic combinatorics (being
equivalent to Kostka numbers, cf. [33, Section I.6]). It is straightforward to show that
the dependence of dim Vλ;τ on λ is only through Mult(λ).
Theorem 4.3. For each triplet (λ, τ, i) with λ = (λ1 ⩾ · · · ⩾ λN ⩾ 0), τ ⊢ N , and
1 ⩽ i ⩽ dim Vλ;τ , the operators Pm, m ⩾ 1, have a joint eigenfunction Fλ,τ,i, such
that:

(1) Fλ,τ,i is a homogeneous polynomial of degree |λ|.
(2) All monomials xγ with non-zero coefficients in Fλ,τ,i are such that γ+ ⪯ λ.
(3) The part of Fλ,τ,i spanned by monomials in Vλ belongs to Vλ;τ .

The polynomials Fλ,τ,i span CN and there are no other polynomial eigenfunctions.
Remark 4.4. We do not propose any explicit form for the dependence of Fλ,τ,i

on i. One reason is that the combination of operators Pm and the structure of SN -
representation is not sufficient to distinguish them. Indeed, for any coefficients α and β
and any g ∈ SN , the polynomial α · Fλ,τ,i + β · g ◦ Fλ,τ,i is an eigenfunction of Pm

satisfying the same three properties and with the same eigenvalue.
Examples 4.5. For each λ, one can choose τ to be a one-part partition, τ = (N),
corresponding to the trivial representation of SN . Then Vλ;τ is a one dimensional
space spanned by the sum of all monomials in Vλ. The corresponding eigenfunction is
the symmetric Jack polynomial.

For each λ with distinct parts, one can choose τ to be a unique N -parts partition
τ = 1N , corresponding to the sign representation of SN . Then Vλ;τ is a one dimen-
sional space spanned by the signed sum of all monomials in Vλ, i.e.

∑
σ∈SN

(−1)σ ◦
xλ1

σ(1)x
λ2
σ(2) · · · xλN

σ(N). The corresponding eigenfunction is a skew-symmetric polynomial,
which can be expressed as alternating sum of all non-symmetric Jack polynomials la-
beled by N ! compositions obtained by permuting the coordinates of λ or, alternatively,
as the symmetric Jack polynomial with shifted θ and multiplied by the

∏
i<j(xi − xj),

see [1, (2.40)].
For λ = (a, a, . . . , a), the space Vλ is one-dimensional and only τ = (N) is possible.
For λ with distinct parts, the space Vλ is isomorphic to the regular representa-

tion of SN of dimension N !, because there is a bijection between elements of SN and
monomials xγ with γ+ = λ. For each partition τ ⊢ N , dim Vλ;τ is the square of the
dimension(5) of the irreducible representation τ , and this is the number of eigenfunc-
tions Fλ,τ,i.

(5)The dimension can be computed, e.g., by the hook length formula of [21].
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In the rest of this section we prove Theorem 4.3. Two ingredients of the proof are
triangularity of Lemma 4.6 and self-adjointness of Lemma 4.7.

Let us introduce a linear operator Ti, which acts in CN and leaves each Vλ invariant:

(9) Tix
γ = (γi + θ#{j | γj < γi}) xγ − θ

∑
j|γj>γi

(i, j)xγ , 1 ⩽ i ⩽ N.

Lemma 4.6. For any partition λ and any degree sequence γ with γ+ = λ, we have
Pm[xγ ] = (T m

1 + T m
2 + · · · + T m

N )[xγ ] + (linear combination of monomials xγ̃ with γ̃+ ≺ λ).

Proof. Note that

(10) xi
1 − (i, j)
xi − xj

[
xγ1

1 , . . . , xγN

N

]
=
∏

a̸=i,j

xγa
a · xi

xγi

i x
γj

j − x
γj

i xγi

j

xi − xj

=
∏

a ̸=i,j

xγa
a ·


xγi

i x
γj

j + xγi−1
i x

γj+1
j + · · · + x

γj+1
i xγi−1

j , γj < γi,

−x
γj

i xγi

j − x
γj−1
i xγi+1

j − · · · − xγi+1
i x

γj−1
j , γj > γi,

0, γj = γi.

Hence,
xiDi[xγ ] = Tix

γ + (linear combination of monomials xγ̃ with γ̃+ ≺ γ+).

Iterating the last identity for Pm =
∑N

i=1(xiDi)m, we arrive at the statement of the
lemma. □

Lemma 4.7. Consider a scalar product on CN , where g stands for complex conjugation
and θ ⩾ 0:
(11)

⟨f, g⟩ =
∫ 2π

0
· · ·
∫ 2π

0
f
(
eiϕ1 , . . . , eiϕN

)
g
(
eiϕ1 , . . . , eiϕN

) ∏
1⩽i<j⩽N

∣∣eiϕi − eiϕj
∣∣2θ dϕ1 . . . dϕN .

Then the operators xiDi, 1 ⩽ i ⩽ N , are self-adjoint with respect to it: for any
f, g, ∈ CN

⟨xiDif, g⟩ = ⟨f, xiDig⟩.

Proof. Versions of this statement can be found in [16] and [26]. Changing the variables
xi = exp(−iϕi), the operator xiDi is transformed into

i ∂

∂ϕi
+ θ

∑
j ̸=i

1 − (i, j)
1 − ei(ϕj−ϕi) ,

and we need to check that it is self-adjoint with respect to the scalar product

(12) ⟨f, g⟩ϕ =
∫ 2π

0
· · ·
∫ 2π

0
f
(
ϕ1, . . . , ϕN

)
g
(
ϕ1, . . . , ϕN

) ∏
1⩽i<j⩽N

∣∣eiϕi − eiϕj
∣∣2θ dϕ1 . . . dϕN .

We first check that the operator (i,j)
1−exp(i(ϕj−ϕi)) is self-adjoint, which is the identity∫ 2π

0
· · ·
∫ 2π

0

[
(i, j)f

(
ϕ1, . . . , ϕN

)]
g
(
ϕ1, . . . , ϕN

)
1 − ei(ϕj −ϕi)

∏
1⩽i<j⩽N

∣∣eiϕi − eiϕj
∣∣2θ dϕ1 . . . dϕN

?=
∫ 2π

0
· · ·
∫ 2π

0

f
(
ϕ1, . . . , ϕN

)[
(i, j)g

(
ϕ1, . . . , ϕN

)]
1 − e−i(ϕj −ϕi)

∏
1⩽i<j⩽N

∣∣eiϕi − eiϕj
∣∣2θ dϕ1 . . . dϕN ,

that is tautologically true by renaming ϕi ↔ ϕj in the integral. It remains to check that
i ∂

∂ϕi
+ θ

∑
j ̸=i

1
1−exp(i(ϕj−ϕi)) is self-adjoint. For that we note that if F (ϕ) is periodic

and differentiable on the torus 0 ⩽ ϕ < 2π, then
∫ 2π

0
∂

∂ϕ F (ϕ) dϕ = F (2π)−F (0) = 0.
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Hence, recording the fact that the ∂
∂ϕi

derivative of the integrand in the right-hand
side of (12) integrates to zero we obtain:

0 =
∫ 2π

0
· · ·
∫ 2π

0

 ∂

∂ϕi
fg + f

∂

∂ϕi
g + θfg

∑
j ̸=i

ieiϕi

eiϕi − eiϕj
+ θfg

∑
j ̸=i

−ie−iϕi

e−iϕi − e−iϕj


×

∏
1⩽i<j⩽N

(
eiϕi − eiϕj

)θ(
e−iϕi − e−iϕj

)θ dϕ1 . . . dϕN .

Multiplying by i we get the desired self-adjointness statement. □

Remark 4.8. Following [16, Section 3] and [17, Section 3], there is another scalar
product, which also makes xiDi self-adjoint. This other scalar product is defined
through ⟨f, g⟩ = f(D1, . . . , DN )g(x1, . . . , xN )

∣∣
x1=···=xN =0 and it makes xi the adjoint

operator to Di.

Proof of Theorem 4.3. The operators Pm are self-adjoint by Lemma 4.7, commuta-
tive by Lemma A.1 in the appendix, and essentially finite-dimensional because Pm

preserves the space of degree k polynomials for each k. Hence, they have a joint eigen-
basis and we only need to show that the eigenfunctions satisfy the claimed properties.
Consider the space

⊕
µ|µ⪯λ

Vµ. By Lemma 4.6, this is an invariant space for Pm. Be-

cause it is finite-dimensional and Pm is self-adjoint by Lemma 4.7, this space has a
complete system of eigenfunctions of Pm. Inductively counting eigenfunctions, which
belong to such spaces with smaller λ, we conclude that in

⊕
µ|µ⪯λ

Vµ there are precisely

dim Vλ eigenfunctions, which have at least one non-zero coefficient among monomials
from Vλ: these are various Fλ,τ,i with fixed λ and varying τ and i. By triangular-
ity of Lemma 4.6, for each such polynomial, its part spanned by the monomials
from Vλ is necessarily an eigenfunction of (T m

1 + T m
2 + · · · + T m

N ). The latter operator
has a symmetric expression in terms of x1, . . . , xN , and therefore it commutes with
the action of SN . Hence, by the Schur’s lemma, each Vλ;τ is an invariant subspace
for (T m

1 + T m
2 + · · · + T m

N ). Therefore, there are precisely dim Vλ;τ eigenfunctions
of (T m

1 + T m
2 + · · · + T m

N ) inside Vλ;τ . By triangularity, each of them has a unique
extension to an eigenfunction of Pm and these are Fλ,τ,i, 1 ⩽ i ⩽ dim Vλ;τ . □

5. Sums of eigenvalues
In general, the eigenvalue of the operator Pm on the polynomial Fλ,τ,i can be expressed
as a root of a polynomial equation (of degree at most dim(τ)) with coefficients being
polynomials in λi and θ; therefore, this eigenvalue can be quite complicated, see,
e.g. (32) in Section 6. We found that the sums of all eigenvalues corresponding to the
same λ and τ , are much more manageable.

5.1. Distinct degrees of variables. For an irreducible representation of SN la-
beled by τ ⊢ N , we let dim τ be its dimension and let χτ (g) be its character. In
particular, dim(τ) = χτ (Id). We recall the notation h

(r)
m from (3). We also recall

that (1, 2, . . . , k) is a permutation having a single k-cycle and N − k fixed points
{k + 1, . . . , N}.

Theorem 5.1. Let eigm(λ, τ, i) denote the eigenvalue of Pm on the eigenfunc-
tion Fλ,τ,i of Theorem 4.3. Suppose that λ has all distinct parts. Then, setting
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ℓi = λi + θ(N − i), we have
(13)

dim Vλ,τ∑
i=1

eigm(λ, τ, i) = dim τ

min(m+1,N)∑
k=1

(−θ)k−1h
(k)
m+1−k

(
ℓ1, . . . , ℓN

)
χτ
(
(1, 2, . . . , k)).

When τ = (N), dim Vλ,τ = 1 and the expression (13) turns into (5); this eigenvalue
corresponds to the symmetric eigenfunction. When τ = (1N ), also dim Vλ,τ = 1 and
the expression (13) turns into a formula similar to (5) but with (−θ)k−1 replaced with
θk−1; this eigenvalue corresponds to a skew-symmetric eigenfunction.

In general, the numbers χτ
(
(1, 2, . . . , k)) admit a somewhat explicit formula in

terms of τ = (τ1 ⩾ · · · ⩾ τN ⩾ 0), see, e.g., [33, Example I.7.7] for the following
expression and [28, Section 3] for some others

(14) χτ
(
(1, 2, . . . , k)) = dim τ

(N − k)!
N !

N∑
i=1

(τi + N − i)!
(τi + N − i − k)!

∏
j ̸=i

τi − i − τj + j − k

τi − i − τj + j
.

If parts of λ are allowed to coincide, (13) is replaced by a significantly more com-
plicated formula, which we present in Theorem 5.4 below.

For the proof of Theorem 5.1 we use Ti of (9). We also need an additional object
from the representation theory of SN . For each irreducible representation τ of SN ,
denote

(15) πτ = dim τ

N !
∑

g∈SN

χτ (g)g.

[42, Theorem 8] says that in each representation of SN , πτ acts as an orthogonal pro-
jector (with respect to an SN -invariant scalar product) onto the isotypical component
of τ .

Lemma 5.2. The left-hand side of (13) can be evaluated as

(16)
dim Vλ,τ∑

i=1
eigm(λ, τ, i) = TraceVλ

[πτ (T m
1 + · · · + T m

N )] = N TraceVλ
[πτ T m

1 ] .

Proof. The second equality in (16) follows from the invariance of both the Trace and
πτ under conjugations with g ∈ SN , and we only prove the first one.

Recall from the proof of Theorem 4.3 that eigm(λ, τ, i) are eigenvalues of (T m
1 +

· · ·+T m
n ), corresponding to eigenfunctions in Vλ;τ . Hence, eigm(λ, τ, i) are eigenvalues

of the restriction of (T m
1 + · · · + T m

n ) onto Vλ;τ , which is the same as eigenvalues of
πτ (T m

1 + · · · + T m
n )πτ . The sum of the eigenvalues coincides with the trace of the op-

erator, and we get TraceVλ
[πτ (T m

1 + · · · + T m
n )πτ ]. Since Trace[AB] = Trace[BA], we

can move one πτ inside the trace from right to the left, and then using the projecting
property πτ πτ = πτ , we arrive at (16). □

Proof of Theorem 5.1. We use Lemma 5.2 and compute TraceVλ
[πτ T m

1 ] combin-
ing (9) with (15). The computation is based on the observation that Vλ is isomorphic
to the regular representation of SN , because for distinct permutations σ ∈ SN , their
actions on xλ1

1 · · · xλN

N give distinct monomials. Therefore, in the trace computation
all products of g and (1, j) not equal to the identity permutation do not give any
contribution.

Let us compute (T1)mxγ for γ = (γ1, γ2, . . . , γN ). We have
(17)

(T1)mxγ =
m+1∑
k=1

∑
j1,...,jk−1

pk;q[γ1, γj1 , . . . , γjk−1 ] · (−θ)k−1(1, jk−1)(1, jk−2) · · · (1, j1)xγ ,
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where j1, . . . , jk−1 are distinct indices, such that each of them corresponds to distinct
γjk−1 > γjk−2 > · · · > γj1 > γ1. The transpositions (1, ja) correspond to the second
term in (9) and the ordering appears because the operator T1 can only increase the
degree of x1, but never decrease. On the other hand, the prefactor pk;q collects all the
factors coming from the first term; it is a polynomial in various θ-shifted γi of degree
(m + 1 − k), which depends on the collection γ1, γj1 , . . . , γjk−1 and on θ. Note also
that the product of k − 1 transpositions becomes a k-cycle

(1, jk−1)(1, jk−2) · · · (1, j1) = (1, j1, j2, . . . , jk−1).

We further represent g in (15) as

g = g̃ · (1, j1) · · · (1, jk−2)(1, jk−1),

and note that when we plug into TraceVλ
[πτ T m

1 ], and multiply the sums, only the
terms with g̃ = Id give non-zero contributions. We also note that the trace is a central
function and its values on all k-cycles are the same. Therefore,

(18) NTraceVλ
[πτ T m

1 ]

= dim τ

(N − 1)!

m+1∑
k=1

(−θ)k−1χτ
(
(1, 2, . . . , k)

)∑
γ

∑
j1,...,jk−1

pk;m[γ1, γj1 , . . . , γjk−1 ].

It remains to compute the last double sum and we claim that

(19) 1
(N − 1)!

∑
γ

∑
j1,...,jk−1

pk;m[γ1, γj1 , . . . , γjk−1 ]

= Coefficient of (−θ)k−1 in:
(
1 1 . . . 1

)
·



ℓ1 −θ . . . −θ
0 ℓ2 −θ −θ

0 0 ℓ3 −θ
...

...
...

... −θ
0 0 . . . 0 ℓN



m

·


1
1
...
1


Indeed, there are N ! terms in the sum over γ, however, only the rank of γ1 among
all coordinates of γ matters for the computation of the following

∑
j1,...,jk−1

. Hence,
1

(N−1)!
∑

γ can be interpreted as a sum with N terms corresponding to N possible
ranks of γ1.

Next, we notice that the first term in (9) is always equal to ℓa and therefore
matches the diagonal element of the matrix in (19). Similarly, the −θ(i, j) terms
in (9) match the off-diagonal (−θ) elements in the matrix in (19). Hence, we see that
the combinatorics of rising the matrix to the m-th power in (19) and raising Ti to the
m-th power is exactly the same. Hence, the identity (19).

It remains to identify the right-hand side of (19) with h
(k)
m+1−k

(
ℓ1, . . . , ℓN

)
, which

is immediate from the definition (3): the k-element subset {i1, . . . , ik} encodes those
diagonal elements of the matrix in (19), which enter into the computation of the m-th
power.

Finally, the summation
∑m+1

k=1 in (18) can be restricted to
∑min(m+1,N)

k=1 in (13),
because for k > N finding k distinct coordinates γ1, γj1 , . . . , γjk−1 becomes impossible
and the corresponding sum in (18) is empty. □

5.2. General degrees. We now proceed to the most general result, in which parts
of λ are allowed to have multiplicities.
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Given an integer 1 ⩽ p ⩽ N , a multiplicity composition (i.e. a sequence of p
positive integers) n = (n1, n2, . . . , np > 0) with

∑p
i=1 ni = N , and a degree sequence

d = (d1 > d2 > · · · > dp ⩾ 0), we introduce a partition

(20) λ = d1, . . . , d1︸ ︷︷ ︸
n1

, d2, . . . , d2︸ ︷︷ ︸
n2

, . . . , dp, . . . , dp︸ ︷︷ ︸
np

.

For any k-element subset A ⊂ {1, . . . , p} of the form {a1 < a2 < · · · < ak}, we
introduce averaged characters also called “spherical functions”:

(21) χτ [A; n] = 1
(n1)!(n2)! · · · (np)!

∑
g̃∈Sn1 ×Sn2 ×···×Snp

χτ (g̃ · c),

where c is a k-cycle, joining together the Snai
, 1 ⩽ i ⩽ k, subgroups, in the order of

increasing i. More explicitly:

c = (n1 + · · · + na1 − 1, n1 + · · · + na2 − 1, . . . , n1 + · · · + nak−1 − 1, n1 + · · · + nak
− 1).

Remark 5.3. Due to centrality of the characters, one can also choose other numbers
representing Snai

subgroups when defining c and arrive at exactly the same function
χτ [A; n]. For instance, n1 + · · · + na1 − 1 can be replaced by any j, such that n1 +
· · · + na1−1 < j ⩽ n1 + · · · + na1 − 1.

We also introduce the shifted degrees:

ℓ̃i = di + θ(ni+1 + ni+2 + · · · + np), 1 ⩽ i ⩽ p.

Note that {ℓ̃i}p
i=1 is a subset of {ℓi = λi + θ(N − i)}N

i=1. Finally, we define complete
homogeneous polynomials in subsets of these numbers:

(22) hA
m = hm(ℓ̃a1 , ℓ̃a2 , . . . , ℓ̃ak

), A = {a1, a2, . . . , ak}.

Note that for p = N , the polynomial h
(k)
m , as in (3), is the sum of hA over all k-element

subsets.

Theorem 5.4. Let eigm(λ, τ, i) denote the eigenvalue of Pm on the eigenfunction
Fλ,τ,i of Theorem 4.3. Suppose that λ has the general form (20). Then, using the
notations (21) and (22), we have
(23)
dim Vλ,τ∑

i=1
eigm(λ, τ, i) = dim τ

min(m+1,p)∑
k=1

(−θ)k−1
∑

A⊂{1,2...,p}
|A|=k

hA
m+1−k · χτ [A; n] ·

∏
a∈A

na.

If λ has distinct parts, i.e. n1 = n2 = · · · = nN = 1, then there is no averaging
in (21) and χτ [A; n] = χτ

(
(12 . . . k)

)
, where k = |A|. Hence, Theorem 5.4 matches

Theorem 5.1.
If τ = (N) is the trivial representation, then the eigenfunction is the Jack poly-

nomial (see Lemma A.4 for some details) and simultaneously χτ [A; n] = 1. Yet, the
expression we get in (23) is slightly different from the one of Theorem 3.1, and we
prove their equivalence in Lemma 5.5 below.

If τ = (1N ) is the sign representation, then χτ [A; n] = 0, unless λ has all dis-
tinct parts. In fact, there is no (1N )-type component in Vλ for λ with non-trivial
multiplicities of parts.

Explicit evaluation of χτ [A; n] for τ = (N − 1, 1) is later given in Theorem 5.6 and
the p = 2 case is explained in Corollary 5.7.
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Proof of Theorem 5.4. The proof is an extended version of the argument in Theo-
rem 5.1. Let us compute (T1)mxγ for γ+ = λ, just as in (17), but now allowing the
coordinates of γi to coincide. The answer has the same form:
(24)

(T1)mxγ =
m+1∑
k=1

∑
j1,...,jk−1

pk;m[γ1, γj1 , . . . , γjk−1 ]·(−θ)k−1(1, jk−1)(1, jk−2) · · · (1, j1)xγ ,

where j1, . . . , jk−1 are distinct indices, such that each of them corresponds to distinct
γjk−1 > γjk−2 > · · · > γj1 > γ1. We again represent g as

g = g̃ · (1, j1) · · · (1, jk−2)(1, jk−1),
and arrive at a generalization of (18):

(25)
dim Vλ,τ∑

i=1
eigm(λ, τ, i) = NTraceVλ

(
πτ (T1)m

)
= dim τ

(N − 1)!

m+1∑
k=1

(−θ)k−1

×
∑

γ

∑
j1,...,jk−1

∑
g̃∈SN |g̃γ=γ

χτ
(
g̃ · (1, j1) · · · (1, jk−2)(1, jk−1)

)
pk;m[γ1, γj1 , . . . , γjk−1 ]

What remains is to carefully match the last formula with the claimed (23). First, the
summation index k runs from 1 to m + 1 in (25), however, for k > p, it is impossible
to choose k distinct γjk−1 > γjk−2 > · · · > γj1 > γ1 and the sum is empty; hence, we
can restrict the upper bound to be min(k + 1, p).

Next, the summation over all γ involves
N !

(n1)!(n2)! · · · (np)!
terms. Absorbing the factorials from the denominator into the character summation
(they are present in (21)) and cancelling N ! with (N − 1)! in denominator in (25), we
are left with a sum involving a single fixed γ and πτ

∑N
i=1(Ti)m.

We claim that the summation over g̃ in (25) gives the character averages of (21).
Indeed, note that

(1, j1) · · · (1, jk−2)(1, jk−1) = (jk−1, jk−2, . . . , j1, 1)
and the corresponding degrees γjk−1 , γjk−2 , . . . , γ1 are arranged in the decreasing
order, which correspond to increasing indices of di — matching the cycle c used
in (21). The stabilizer of γ, i.e. the subgroup {g̃ ∈ SN | g̃γ = γ} is not necessarily
Sn1 × Sn2 × . . . Snp , but it is isomorphic to this group, with isomorphism obtained
by renaming {1, 2, . . . , N}. Since the characters are central, this leads to the same
function as (21).

It remains to identify the sums of pk;m[γ1, γj1 , . . . , γjk−1 ]. Note that when we act
with (Ti)m using its definition (9), the factors (γi + θ#{j | γj < γi}) correspond to
various ℓ̃a. On the other hand, each application of a term from θ

∑
j|γj>γi

(i, j)xγ , leads
to addition of an additional index ja. In this index, only the value of γja matters. The
set A in (23) is identified with {γ1, γj1 , . . . , γjk−1} in (25), leading to the combinatorial
factor

∏
a∈A na, counting the number of ways to choose indices γja

corresponding
to A (the na corresponding to γ1 should be also accounted, as it arises from the first
application of one of the operators Ti in

∑N
i=1(Ti)m). Once the set A is fixed, the

sums of products of ℓ̃a coming from (γi + θ#{j | γj < γi}) in Ti combine precisely
into hA

m+1−k of (23). □

Lemma 5.5. For the trivial character, τ = (N), the formulas of Theorems 5.4 and 3.1
are the same.
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Proof. The formula (5) can be rewritten in terms of the m-th power of N × N matrix
as

(26)
(
1 1 1 . . . 1

)


ℓ1 −θ −θ . . . −θ
0 ℓ2 −θ . . . −θ
0 0 ℓ3 . . . −θ
...

...
...

. . .
...

0 0 0 . . . ℓN


m

1
1
1
...
1

 ,

where ℓi = λi + θ(N − i). On the other hand, the formula (23) can rewritten in terms
of m-th power of p × p matrix as

(27)
(
n1 n2 n3 . . . np

)


ℓ̃1 −n2θ −n3θ . . . −npθ

0 ℓ̃2 −n3θ . . . −npθ

0 0 ℓ̃3 . . . −npθ
...

...
...

. . .
...

0 0 0 . . . ℓ̃p



m
1
1
1
...
1

 ,

where ℓ̃i are a subset of ℓi given by ℓ̃i = di + θ(ni+1 + ni+2 + · · · + np) in the nota-
tion (20). Our task is to prove (26)=(27). One can do this directly, but our approach
is to proceed through generating functions. On the (26) side, the generating func-
tion was computed in Proposition 3.2. Let ẽigm(λ) denote the eigenvalues computed
by (27). Repeating the argument of Proposition 3.2, we have

1 − θz

∞∑
m=0

ẽigm(λ)zm =
∑

A⊂{1,...,p}

(−θz)|A|
∏
a∈A

na

1 − ℓ̃az
=

p∏
i=1

(
1 − niθz

1 − ℓ̃iz

)

=
p∏

i=1

1 − (ℓ̃i + niθ)z
1 − ℓ̃iz

.

The last expression matches the right-hand side of (7), once we notice the telescoping
cancellations in (7). □

5.3. (N −1, 1) isotype. While the formula of Theorem 5.4 is very general, it produces
an answer in terms of the functions χτ [A; n]. Evaluation of these functions is a separate
task. As we have already mentioned right after Theorem 5.4, for τ = (N) and τ = 1N

the evaluation is particularly simple. Another case where it is fully explicit is τ =
(N − 1, 1).

Theorem 5.6. Let τ = (N − 1, 1) and n = (n1, n2, . . . , np > 0). Then we have

(28) χτ [A; n] = p − 1 −
∑
a∈A

1
na

.

Proof. The irreducible representation of SN of type τ = (N − 1, 1) is the standard
(reflection) (N − 1)-dimensional representation in the space of vectors (x1, . . . , xN )
with

∑N
i=1 xi = 0 and action σ◦(x1, . . . , xN ) = (xσ−1(1), . . . , xσ−1(N)). Evaluating the

character as trace, we get an expression in terms of the number of the fixed points:

χτ (σ) = #{1 ⩽ i ⩽ N | σ(i) = i} − 1, τ = (N − 1, 1).

Recalling the definition (21), we need to compute

(29)
∑

g̃∈Sn1 ×Sn2 ×···×Snp

χτ (g̃ · c) =
∑

g̃

∑
i

1g̃·c(i)=i −
p∏

j=1
(nj)!,
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where c is a |A|-cycle permuting the groups corresponding to the elements a ∈ A.
Changing the order of summation in (29), we get

p∑
q=1

n1+···+nq∑
i=n1+···+nq−1+1

∑
g̃∈Sn1 ×Sn2 ×···×Snp

1g̃·c(i)=i −
p∏

j=1
(nj)!.

In the internal sum over g̃, for the symmetric groups Snj which permute the elements
other than c(i) there are no restrictions and all (nj)! permutations are possible. How-
ever, if c(i) belongs to the indices permuted by Snj

, then there are two options:
if c(i) = i, then (nj − 1)! permutations satisfy the restriction g̃ · c(i) = i, otherwise no
permutations satisfy the restriction. Hence, summing over g̃ and then i, we get

p∑
q=1

[1q∈A(nq − 1) + 1q ̸∈Anq] (nq − 1)!

∏
j ̸=q

(nj)!

−
p∏

j=1
(nj)!.

The last expression can be transformed into

(p − 1)
p∏

j=1
(nj)! −

p∑
q=1

1q∈A(nq − 1)!

∏
j ̸=q

(nj)!

 .

Dividing by
p∏

j=1
(nj)!, we get (28). □

5.4. a . . . ab . . . b case with p = 2. Another situation where the general formula of
Theorem 5.4 is fully explicit is p = 2. In fact, in this special case we are able to compute
all eigenvalues eigm(λ, τ, i) rather than only their sums over i. We fix N = 1, 2, . . .
and 1 ⩽ η ⩽ N − 1 and set the multiplicities to be (n1, n2) = (N − η, η). We further
choose a > b ⩾ 0 and set

(30) λ = a, a, . . . , a︸ ︷︷ ︸
N−η

, b, b, . . . , b︸ ︷︷ ︸
η

.

Corollary 5.7. For λ in (30) and τ = (N − k, k) with 0 ⩽ k ⩽ min(η, N − η), we
have

eigm(λ, τ, i) = (a + θη)m(N − η) + bmη − θ
(a + θη)m − bm

a + θη − b

(
η(N − η) − k(N − k + 1)

)
,

for all 1 ⩽ i ⩽ dim Vλ,τ . For other τ , the space Vλ,τ is empty.

Proof. We need some facts from the representation theory of symmetric groups, which
can be found e.g. in [14], or [44, Section 3], or [5, Sections 6.1, 6.2]. In particular, Vλ

expands into a direct multiplicity one sum of irreducible representations τ = (N−k, k),
0 ⩽ k ⩽ min(η, N − η). The operator (T m

1 + · · · + T M
N ) commutes with the action of

the symmetric group. Therefore, by Schur’s lemma, it necessarily acts as a multiple of
the identity in each Vλ;τ (which would not have been true if τ had multiplicity larger
than 1 in λ). Hence, the eigenvalues eigm(λ, τ, i) do not depend on i and we can get
them by dividing (23) by dim τ .

Let us evaluate the ingredients of (23). (SN , SN−η × Sη) is a Gelfand pair, which
means that each irreducible representation of SN has at most one SN−η ×Sη-invariant
vector. Interpreting summations over g̃ ∈ SN−η × Sη in (21) as projections on invari-
ants, we identify χτ [A; n] with spherical functions corresponding to this invariant
vector. The latter spherical function is evaluated in [14, Corollary 2.2], [44, (3.15)], [5,
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Theorems 6.1.10, 6.2.3] in terms of the hypergeometric function 3F2, which can also
be identified with the Hahn polynomial. The value at length 2 cycle is given as

(31) 3F2

(
−k, k−N−1, −1

η−N,−η

∣∣∣1) = 1 + (−k)(k − N − 1)(−1)
(−η)(η − N)1! = 1 − k(N − k + 1)

η(N − η) .

Hence, (23) specializes to:∑
A⊂{1,2}

|A|=1

hA
m ·

∏
α∈A

nα − θ
∑

A⊂{1,2}
|A|=2

hA
m−1 ·

(
1 − k

η
· N − η + 1

N − η

)
·
∏

α∈A
nα.

= (a + θη)m(N − η) + bmη − θ
(a + θη)m − bm

a + θη − b

(
1 − k

η
· N − k + 1

N − η

)
η(N − η).

□

5.5. More complicated isotypes. In the follow-up work, the spherical functions
χ [A, n] have been computed for the hook isotypes

[
N − b, 1b

]
for p > b in [18] and

for the isotypes [N − k, k] for p = 3 in [19].

6. Example: Eigenvalues for N = 3.
Here is the full list of the eigenvalues of the operator Pm for N = 3. We keep us-
ing the notation (3). When we speak about leading monomials in the description of
eigenfunctions, we use the point of view of Theorem 4.3 and describe the part of Fλ,τ,i

in Vλ.
(i) λ = (a, a, a): For each a ⩾ 0, Pm has an eigenvalue 3a2m on the eigenfunction

xa
1xa

2xa
3 .

(ii) λ = (a, a, b): For each a > b ⩾ 0, Pm has:
(a) Eigenvalue 2(a + θ)m + bm − 2θ (a+θ)m−bm

a+θ−b on the eigenfunction with
leading monomials xa

1xa
2xb

3 + xa
1xb

2xa
3 + xb

1xa
2xa

3 .
(b) Two equal eigenvalues 2(a+θ)m+bm+θ (a+θ)m−bm

a+θ−b on two eigenfunctions
with leading monomials in the space spanned by xa

1xa
2xb

3 − xa
1xb

2xa
3 and

xa
1xa

2xb
3 − xb

1xa
2xa

3 .
(iii) λ = (a, b, b): For each a > b ⩾ 0, Pm has:

(a) Eigenvalue (a + 2θ)m + 2bm − 2θ (a+2θ)m−bm

a+2θ−b on the eigenfunction with
leading monomials xa

1xb
2xb

3 + xb
1xa

2xb
3 + xb

1xb
2xa

3 .
(b) Two equal eigenvalues (a + 2θ)m + 2bm + θ (a+2θ)m−bm

a+2θ−b on two eigenfunc-
tions with leading monomials in the space spanned by xa

1xb
2xb

3 − xb
1xa

2xb
3

and xa
1xb

2xb
3 − xb

1xb
2xa

3 .
(iv) λ = (a, b, c): For each a > b > c ⩾ 0, Pm has (we denote (ℓ1, ℓ2, ℓ3) =

(a + 2θ, b + θ, c)):
(a) Eigenvalue h

(1)
m

(
ℓ1, ℓ2, ℓ3

)
− θh

(2)
m−1

(
ℓ1, ℓ2, ℓ3

)
+ θ2h

(3)
m−2

(
ℓ1, ℓ2, ℓ3

)
on the

eigenfunction with leading monomials

xa
1xb

2xc
3 + xb

1xa
2xc

3 + xa
1xc

2xb
3 + xc

1xb
2xa

3 + xb
1xc

2xa
3 + xc

1xa
2xb

3.

(b) Two pairs of equal eigenvalues

(32) (ℓm
1 + ℓm

2 + ℓm
3 ) − θ2

2 hm−2 (ℓ1, ℓ2, ℓ3)

± θ

2hm−2 (ℓ1, ℓ2, ℓ3)
√

4 (ℓ2
1 + ℓ2

2 + ℓ2
3) − 4 (ℓ1ℓ2 + ℓ1ℓ3 + ℓ2ℓ3) − 3θ2
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on four eigenfunctions with leading monomials in the space spanned by

(33) xa
1xb

2xc
3 − xb

1xc
2xa

3 , xa
1xb

2xc
3 − xc

1xa
2xb

3, xb
1xa

2xc
3 − xa

1xc
2xb

3, xb
1xa

2xc
3 − xc

1xb
2xa

3 .

(c) Eigenvalue h
(1)
m

(
ℓ1, ℓ2, ℓ3

)
+ θh

(2)
m−1

(
ℓ1, ℓ2, ℓ3

)
+ θ2h

(3)
m−2

(
ℓ1, ℓ2, ℓ3

)
on the

eigenfunction with leading monomials

xa
1xb

2xc
3 − xb

1xa
2xc

3 − xa
1xc

2xb
3 − xc

1xb
2xa

3 + xb
1xc

2xa
3 + xc

1xa
2xb

3.

(i.a), (ii.a), (iii.a), and (iv.a) are all instances of Theorem 3.1 or Theorem 5.4
with τ = (3). (ii.ab) and (iii.ab) are instances of Corollary 5.7. (iv.a) and (iv.c) are
instances of Theorem 5.1 for τ = (3) and τ = (1, 1, 1), respectively. The sum of
all four eigenvalues in (iv.b) matches Theorem 5.1 for τ = (2, 1), where we have
dim τ = χτ (Id) = 2, χτ

(
(1, 2)

)
= 0, χτ

(
(1, 2, 3)

)
= −1. The individual eigenvalues

in (iv.b) are not computed by any of our theorems; the formula (32) can be obtained
by evaluating the matrices of the operators T m

1 , T m
2 , T m

3 by diagonalization and then
direct computation of the eigenvalues of T m

1 + T m
2 + T m

3 (we can either use 6 × 6
matrices in the space of all permutations of xa

1xb
2xc

3 or 4 × 4 matrices in the subspace
spanned by (33)).

Appendix A. Basic properties of Pm

In this section we discuss the basic properties of the operators Pm, mentioned in
Section 2. These properties are well-known, we provide proofs only for the sake of
being self-contained.

Lemma A.1. The operators Pm, m = 1, 2, . . . , mutually commute.

Proof. We develop a table of commutators. We start by splitting the Dunkl operator
of Definition 2.1 into two parts and write Di = ∂

∂xi
+ θ∆i with ∆i =

∑
j ̸=i

1−(i,j)
xi−xj

.
We claim

(34) ∆a∆b = ∆b∆a, 1 ⩽ a, b ⩽ N.

In order to prove (34) for a ̸= b, we plug the definition of ∆a into ∆a∆b and get∑
j ̸=a

∑
j′ ̸=b

1 − (a, j)
xa − xj

· 1 − (b, j′)
xb − xj′

.

Note that the double sum splits into three types of summands: involving two, three,
and four distinct variables xi. The parts involving two and four variables are obviously
the same in ∆a∆b and in ∆b∆a. The part involving three variables, xa, xb, xj is more
tricky, it is:

(35) 1 − (a, j)
xa − xj

· 1 − (b, j)
xb − xj

+ 1 − (a, b)
xa − xb

· 1 − (b, j)
xb − xj

+ 1 − (a, j)
xa − xj

· 1 − (b, a)
xb − xa

,

where in each fraction we first apply the operator in numerator and then divide by the
denominator. The desired relation (34) follows from the symmetry of (35) in a ↔ b,
which is verified directly by moving all permutation operators to the right. The next
useful identity, which is verified directly, is that for a ̸= b

(36) [xa, ∆b] = xa∆b − ∆bxa = (a, b).

Another direct verification yields that for a ̸= b we have

(37)
[

∂

∂xa
, ∆b

]
= 1 − (a, b)

(xa − xb)2 + 1
xa − xb

(
∂

∂xa
− ∂

∂xb

)
(a, b).
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The last identity makes it clear that
[

∂
∂xa

, ∆b

]
=
[

∂
∂xb

, ∆a

]
. Combining with (34),

this implies commutativity of the Dunkl operators: DaDb = DbDa. Next, for each
a ̸= b we have

(38) [xaDa, xbDb] = θ(xaDa − xbDb) · (a, b).

Indeed, using (36) and commutativity of xa with ∂
∂xb

, we have

xaDaxbDb − xbDbxaDa = xaxbDaDb − xa(a, b)Db − xbxaDbDa + θxb(a, b)Da.

Cancelling the first and third terms and using (a, b) ·Db · (a, b) = Da we arrive at (38).
Using this identity we further compute

(39) [xaDa, (xbDb)m] =
m−1∑
k=0

(xbDb)k[xaDa, xbDb](xbDb)m−k−1

= θ

m−1∑
k=0

(xbDb)k(xaDa − xbDb) · (a, b)(xbDb)m−k−1 =

θ

m−1∑
k=0

(xbDb)k(xaDa − xbDb) · (xaDa)m−k−1 · (a, b) = θ
(
(xaDa)m − (xbDb)m

)
· (a, b).

Iterating the same argument again, we get

[(xaDa)l, (xbDb)m] =
l−1∑
k=0

(xaDa)k[xaDa, (xbDb)m](xaDa)l−k−1

= θ

(
m+l−1∑

k=m

(xaDa)m+k(xbDb)m+l−k−1 −
l−1∑
k=0

(xaDa)k(xbDb)m+l−k−1

)
· (a, b).

Interchanging l and m and using the skew-symmetry [f, g] = −[g, f ], we also have

[(xbDb)l, (xaDa)m]

= θ

(
m−1∑
k=0

(xaDa)k(xbDb)m+l−k−1 −
m+l−1∑

k=l

(xaDa)l+k(xbDb)m+l−k−1

)
· (a, b).

Summing the last two identities over all a < b, we arrive at

(40)
[

N∑
a=1

(xaDa)l,

N∑
b=1

(xbDb)m

]

= θ
∑
a<b

(
m−1∑
k=0

+
l+m−1∑

k=m

−
l−1∑
k=0

−
m+l−1∑

k=l

)
(xaDa)k(xbDb)m+l−1−k(a, b) = 0.

□

Lemma A.2. The restriction of the operator P2 on the space of symmetric polynomials
coincides with

(41)
N∑

i=1

(
xi

∂

∂xi

)2
+ θ

∑
i ̸=j

xi(xi + xj)
xi − xj

∂

∂xi
.

Remark A.3. Changing the variables xa = exp(iza), conjugating with the product∏
a<b sinθ

(
za−zb

2
)

and shifting by a constant, (41) turns into −H, where H is the
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trigonometric version of the so-called Calogero–Moser–Sutherland Hamiltonian:

H =
N∑

i=1

(
∂

∂zi

)2
+ θ(θ − 1)

2
∑
i<j

1
sin2 ( za−zb

2
) .

Proof of Lemma A.2. Since 1−(i, j) = 0 on symmetric polynomials, (xiDi)2 restricts
as xi

∂

∂xi
+ θxi

∑
j ̸=i

1 − (i, j)
xi − xj

(xi
∂

∂xi

)

=
(

xi
∂

∂xi

)2
+ θ

∑
j ̸=i

xi

xi − xj

[
xi

∂

∂xi
− xj

∂

∂xj
(i, j)

]
.

The permutation (i, j) acts identically on symmetric polynomials and can be removed
from the right-hand side of the last formula. Summing over all i, we arrive at (41). □

Lemma A.4. For the trivial representation τ = (N) the joint eigenfunction Fλ,(N),1
of operators Pm from Theorem 4.3 is (up to a constant factor) the symmetric Jack
polynomial Jλ(x1, . . . , xN ; θ).

Proof. As in the proof of Theorem 4.3, we note that the linear space
⊕

µ|µ⪯λ

Vµ is in-

variant both for Pm and for the symmetric group SN . Because SN -action commutes
with Pm action, Pm preserves the subspace of symmetric polynomial inside

⊕
µ|µ⪯λ

Vµ.

Hence, Pm must have some symmetric eigenfunctions in
⊕

µ|µ⪯λ

Vµ and then by triangu-

larity consideration, the unique symmetric eigenfunction with leading monomial in Vλ

has to be Fλ,(N),1. We conclude that Fλ,(N),1 is symmetric. Since Pm is self-adjoint by
Lemma 4.7, its eigenfunctions are orthogonal with respect to scalar product of that
lemma. We conclude that as λ’s vary, the polynomials Fλ,(N),1 form an orthogonal
basis of the space ΛN of symmetric polynomials in N variables and this basis is re-
lated to monomial symmetric polynomials mλ by a triangular transformation. Being
such an orthogonal basis is a property which uniquely determines Jack polynomials
and can be taken as one of their equivalent definitions, see [43] or [33, Section 6.10]
and note that they use α = 1/θ as the parameter. □
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