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Whitney twins, Whitney duals, and
operadic partition posets

Rafael S. González D’León, Joshua Hallam
& Yeison A. Quiceno D.

Abstract In this article we address the question of uniqueness posed by the results on edge
labelings and Whitney duality, recently developed by the first two authors. We do this by
giving examples of families of posets with multiple Whitney duals. More precisely, we study
edge labelings for the families of posets of pointed partitions Π•

n and weighted partitions Πw
n

which are associated to the operads Perm and Com2 respectively. The first author and Wachs
proved that these two families of posets share the same pair of sequences of Whitney numbers.
We find EW-labelings for Π•

n and Πw
n and use them to show that they also share multiple

non-isomorphic Whitney dual posets.
Along the way, we find two new EL-labelings for Π•

n answering a question of Chapoton and
Vallette about the existence of such a labeling. Using these EL-labelings of Π•

n, and an EL-
labeling of Πw

n introduced by the first author and Wachs, we give combinatorial descriptions
of bases for the operads PreLie, Perm, and Com2. We also show that the bases for Perm and
Com2 are PBW bases.

1. Introduction
To a finite graded poset (partially ordered set) P with a minimal element (de-
noted 0̂ throughout) we can associate a pair of sequences of integers {wk(P )}k⩾0 and
{Wk(P )}k⩾0 known as the Whitney numbers of the first and second kind respectively.
These two sequences are poset invariants and encode relevant information in areas
where partially ordered structures arise naturally. For example, Whitney showed
in [28] that the coefficients of the chromatic polynomial of a graph are the Whitney
numbers of the first kind of a poset one can associate to a graph (its bond lattice).
The Whitney numbers of the first kind keep track of the Möbius function at each
rank level and the Whitney numbers of the second kind keep track of the number of
elements at each rank level.
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1.1. Whitney-realizable and dualizable sequences. In [14], the first and sec-
ond authors introduced the concept of a Whitney dual of a graded poset P with a 0̂.
We say that two graded posets P and Q are Whitney duals if, after taking absolute
values, the sequences of Whitney numbers of the first and second kind of P are equal
to the sequences of Whitney numbers of the second and first kind of Q. That is, the
Whitney numbers of P and Q are swapped with respect to one another. In [14], the
authors also defined a new type of poset edge labeling, which is called an EW-labeling
(or Whitney labeling). The authors show that these labelings provide a sufficient con-
dition for the existence of a Whitney dual for any graded poset P admitting such
a labeling. Moreover, they describe an explicit construction of the Whitney dual as-
sociated to a given EW-labeling. One can readily observe from the definition, that
nothing prevents the existence of multiple Whitney duals to a graded poset P . Hence,
the concept of Whitney duality is more precisely a duality between the sequences of
numbers involved rather than a duality between posets.

Recently, there has been a great interest in the Whitney numbers of geometric
lattices in relation to the properties of unimodality and the stronger property of
log-concavity of positive integer sequences. In particular, it was shown in [1] that
the absolute values of the Whitney numbers of the first kind of geometric lattices
form a log-concave sequence, which was a well-known conjecture by Heron, Rota, and
Welsh. It has been conjectured that this is also the case for the Whitney numbers of
the second kind (see [27, page 289]). Another geometric property of the latter set of
numbers was recently established in [9]. These results answer long-standing questions
about the structure of Whitney numbers for geometric lattices and open a pathway
for a technique to prove these properties for an arbitrary integer sequence, giving
relevance to the question of realizability.

We say that a pair of nonnegative integer sequences ({ak}k⩾0, {bk}k⩾0) is
Whitney-realizable if there exists a poset P such that ({|wk(P )|}k⩾0, {Wk(P )}k⩾0) =
({ak}k⩾0, {bk}k⩾0). We will call two posets P and Q Whitney twins if they realize
the same pair of sequences. We say that a Whitney-realizable pair is Whitney-
dualizable if ({bk}k⩾0, {ak}k⩾0) is also Whitney-realizable. Determining which pairs
of nonnegative integer sequences ({ak}k⩾0, {bk}k⩾0) are Whitney-realizable or
Whitney-dualizable both seem to be challenging questions.

In this article, we present results related to the non-uniqueness of Whitney real-
izations and dualizations of a pair ({ak}k⩾0, {bk}k⩾0) by finding and exploring the
algebraic and combinatorial consequences of EW-labelings on two families of posets
which come from the theory of symmetric operads. These two particular families of
posets are associated to the permutative operad Perm and to the double commutative
operad Com2.

1.2. Operadic posets and EL/CL-labelings. In [25], Vallete defined a family of
partition posets ΠP

n associated to a basic-set quadratic operad P. These posets are an
operadic generalization of the poset of set partitions Πn ordered by refinement. There,
the author shows that the top cohomology Sn-modules Htop(ΠP

n ) are, up to tensoring
with the sign representation, equal to the Koszul dual cooperad P

!

to P. He also shows
that the Cohen-Macaulay property of the maximal intervals of ΠP

n is equivalent to
the Koszul property of P and P

!

. Hence, the application of combinatorial techniques
on the family ΠP

n is relevant in determining the algebraic properties of P and P

!

.
One such technique is the theory of lexicographic shellability for posets introduced
by Björner [4] and further developed by Björner and Wachs in [5, 6] (see also [7, 8]).
The main idea behind the theory of lexicographic shellability is that the maximal
intervals of a poset P which admit a type of edge labeling, known as an EL-labeling
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(or a CL-labeling in more generality), are Cohen-Macaulay. Finding an EL or CL-
labeling for a poset ΠP

n then implies under Vallette’s relation that P and P

!

are Koszul
operads. As an application of EL and CL-labelings for partition posets, Bellier-Millès,
Delcroix-Oger, and Hoffbeck [2] showed that if an EL or CL-labeling of ΠP

n satisfies a
certain condition that they call being isomorphism-compatible, then the operad P has
a Poincaré–Birkhoff–Witt (PBW) basis determined by the labeling. PBW bases are
useful because they imply that the operads are Koszul as was shown by Hoffbeck [16]
for totally ordered PBW bases and in more generality for partially ordered PBW
bases in [2].

We note that the posets ΠP
n have appeared before in a different but related con-

text. They are relevant in finding compositional (or substitutional) inverses to species
within Joyal’s theory of combinatorial species (see [17, 3]) as was shown by Méndez
and Yang in [19].

1.3. Pointed and weighted partition posets. Vallette [25] showed that the
pointed partition poset Π•

n is isomorphic to the operadic poset ΠPerm
n associated to

the operad Perm. In Section 2.4, we give an EW-labeling of Π•
n and give an explicit

description of its Whitney dual in terms of pointed Lyndon forests in Section 3.3.
In [10], Chapoton and Vallette show that the maximal intervals of Π•

n are totally
semimodular. By the results in [6], this implies that they are also CL-shellable and
hence Cohen-Macaulay. By the result in [25] this in turn implies that Perm, and its
Koszul-dual operad PreLie, are Koszul. The authors in [10] leave open the question
of whether or not Π•

n admits the more restrictive property of being EL-shellable.
EL-shellability and CL-shellability have been shown recently by Li [18] to not be
equivalent in general for posets. The authors in [2] propose a possible EL-labeling
of Π•

n and claim that this labeling has the additional property of being isomorphism-
compatible. We show in Section 2.5 that the proposed labeling does not satisfy the
requirements for being an EL-labeling. We then provide a new EL-labeling which
answers the open question in [10]. This labeling has the same set of labels as our
EW-labeling for Π•

n, but differ in how these labels are partially ordered. We show this
EL-labeling is isomorphism-compatible which in turn gives a PBW basis for the Perm
operad using the results in [2]. Although our EW-labeling for Π•

n is not directly an
EL-labeling, we show that reversing the order on the labels gives an EL-labeling for
its order dual (Π•

n)∗, which is the poset obtained from Π•
n by reversing all order

relations (unrelated with the Whitney dual despite the fact that both use the word
“dual”). This provides a second answer to the open question in [10]. We also show
that the former EL-labeling for Π•

n is isomorphism-compatible, giving us a PBW bases
for Perm.

In [11], Dotsenko and Khoroshkin introduced the weighted partition poset Πw
n .

They showed that Πw
n is isomorphic to the poset ΠCom2

n associated to the operad
Com2 of algebras with two totally commutative products. The combinatorial and
homological properties of Πw

n were extensively studied by González D’León and Wachs
in [15]. In their study, the authors introduced an EL-labeling for Πw

n . In Section 2.3
we prove that this labeling is an EW-labeling and hence Πw

n has a Whitney dual. In
Section 3.4, we give an explicit description of this Whitney dual in terms of bicolored
Lyndon forests. We also show in Section 4 that this labeling is isomorphism-compatible
which gives a PBW basis for Com2.

1.4. Non-uniqueness of Whitney realizations. In [15, Section 2.4] the authors
show that Πw

n and Π•
n are Whitney twins (though they do not use this terminology).

Indeed as a consequence of their Theorem 2.8, Proposition 2.1, and the follow up
discussion in Section 2.4 in [15], the Whitney numbers of the first and second kind
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are given for all k ⩾ 0 by the sequences

wk(Π•
n) = wk(Πw

n ) = (−1)k

(
n− 1

k

)
nk

Wk(Π•
n) = Wk(Πw

n ) =
(

n

k

)
(n− k)k.

This already implies the non-uniqueness of realizations for a Whitney-realizable
sequence. We show that the Whitney duals constructed with the EW-labelings for Π•

n

and Πw
n are not isomorphic for n ⩾ 4. Since they have the same Whitney numbers

of both kinds, we get multiple non-isomorphic Whitney duals for both Π•
n and Πw

n ,
implying further the non-uniqueness of dual realizations of Whitney-dualizable se-
quences. We also show that there is a third family SFn of Whitney duals to Π•

n

and Πw
n which for n ⩾ 3 is not isomorphic to any of the Whitney duals discussed

before. The family SFn is also shown in future work by the first two authors to be
associated with a more general type of Whitney labeling. The three non-isomorphic
families of Whitney dual posets to Π•

n and Πw
n also constitute a new example of the

non-uniqueness of Whitney realizations.

1.5. Organization of this article. The rest of the article is structured as follows.
In Section 2 we review EW-labelings and EL-labelings, and we describe the labelings
of Πw

n and Π•
n. In Section 3, we give explicit descriptions of the Whitney duals of Πw

n

and Π•
n. In Section 4 we consider the algebraic consequences of these labelings. Specif-

ically we use these labelings to describe bases for PreLie, Perm, and Com2, the latter
two in particular being PBW bases. In Section 5, we discuss the non-uniqueness of
Whitney realizations using our results for Πw

n and Π•
n and their associated Whitney

duals.
Some results in this work have been announced as part of the third author’s mas-

ter’s thesis in [20].

2. EW-labelings
In this section we describe three edge labelings: one for the weighted partition poset,
which was introduced already in [15], and two new edge labelings for the pointed
partition poset. The edge labeling for the weighted partition poset, was shown in [15]
to be an EL-labeling and here we show that it is also an EW-labeling. Of the two
labelings for the pointed partition poset, one is an EW, which we also show is a
dual EL-labeling, and the second is an EL-labeling (but not an EW-labeling). We
show that the two labelings have the same sets of words of labels, however the labels
come from two different partial orders. Our main use of these labelings is three-fold:
constructing Whitney duals for the two posets, understanding their homotopy type
and cohomology of the respective order complexes, and finding PBW bases of the
corresponding operads and bases for their dual (co)operads. We start with a brief
review of Whitney numbers, Whitney duals, and edge labelings.

2.1. Whitney numbers and Whitney duals. We will assume some familiarity
with posets. For a more in-depth review of posets as well as any undefined terms,
see [24, Chapter 3]. For a review of poset topology see [26]. All the posets we consider
in this article will be finite, graded, and contain a minimum element which we denote
by 0̂. We will use ρ(x) for the rank of an element x.

The (one-variable) Möbius function of a poset P , denoted by µ, is defined recur-
sively by

µ(0̂) = 1
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0̂

a b c

1̂

P

a

b

b
a

c

a

+1

−1 −1 −1

+2

(0̂,∅)

(a, a) (b, b) (c, c)

(1̂, ba) (1̂, ca)

Q

a

b

b

a
c

a

+1

−1 −1 −1

+1 0

Figure 1. Two posets which are Whitney duals. Values (in red)
besides elements correspond to the Möbius function and those beside
edges (in blue) correspond to edge labels. The edge labels are ordered
alphabetically.

and for x ̸= 0̂,
µ(x) = −

∑
y<x

µ(y).

Note that the one-variable Möbius function coincides with the classical two-variable
Möbius function µ(0̂, x) on the interval [0̂, x]. See Figure 1 for examples of the Möbius
function. The kth Whitney number of the first kind, denoted by wk(P ), is defined by

wk(P ) =
∑
x∈P

ρ(x)=k

µ(x).

For the poset P in Figure 1, the Whitney numbers of the first kind are given by the
sequence (1,−3, 2) and for the poset Q these are given by the sequence (1,−3, 1).

The kth Whitney number of the second kind, denoted by Wk, is defined by

Wk(P ) = #{x ∈ P | ρ(x) = k}.

In Figure 1, the Whitney numbers of the second kind of P are given by (1, 3, 1) and
of Q are given by (1, 3, 2).

By comparing the Whitney numbers of the first and second kind of P and Q in
Figure 1, the reader may notice a peculiar phenomenon. The Whitney numbers of P
and Q switch (up to a sign). It turns out that this phenomenon, which was first
described in [13] and further studied in [14], occurs for many other pairs of posets
and motivates the next definition.

Definition 2.1. Let P and Q be ranked posets. We say P and Q are Whitney duals
if for all k,

|wk(P )| = Wk(Q) and |wk(Q)| = Wk(P ).

Using this definition, we can see that P and Q in Figure 1 are Whitney duals.

2.2. Consequences of ER, EL, and EW-labelings. To approach Whitney du-
ality, the first two authors in [14] used the poset topology technique of edge labelings.
Here, we review a few concepts related to edge labelings, but for further details the
reader can visit [26, 24] or some of the classical articles [23, 4, 6, 7, 8].
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Let P be a poset. We use E(P ) to denote the set of edges in the Hasse diagram
of P (which is in bijection with the set of cover relations in P ). An edge labeling of P
is a map λ : E(P ) → Λ where Λ is a set of partially ordered labels. See Figure 1
for examples of an edge labeling where the set of labels is {a, b, c} which is ordered
alphabetically. Recall that a chain x0 ⋖ x1 ⋖ · · · ⋖ xn is said to be saturated if it is
maximal in the interval [x0, xn]. Given an edge labeling λ, we say that a saturated
chain, x0⋖x1⋖· · ·⋖xn, is increasing if λ(xi−1⋖xi) < λ(xi⋖xi+1) for all 1 ⩽ i ⩽ n−1.
Similarly, x0 ⋖ x1 ⋖ · · · ⋖ xn, is ascent-free if λ(xi−1 ⋖ xi) ̸< λ(xi ⋖ xi+1) for all
1 ⩽ i ⩽ n − 1. Returning to our example in Figure 1, we see that among maximal
chains of P , the chain 0̂ ⋖ a ⋖ 1̂ is increasing (since ab is an increasing sequence).
On the other hand, the maximal chains 0̂ ⋖ b ⋖ 1̂ and 0̂ ⋖ c ⋖ 1̂ are ascent-free. We
want to remark that the example in Figure 1 is rather small and in general there are
saturated chains that are neither increasing nor ascent-free, but these two particular
types of chains are the ones of interest in the following discussion.

2.2.1. ER and EL-labelings. We say an edge labeling is an ER-labeling if every interval
has a unique increasing maximal chain. Moreover, we say an ER-labeling is an EL-
labeling if in each interval, the unique increasing maximal chain also precedes every
other chain in lexicographic order. One can check that the labeling of P in Figure 1 is
both an ER and an EL-labeling. Indeed, the lexicographic requirement holds trivially
on rank 0 and 1 intervals, so the only interval to check the lexicographic condition
is on the full poset (which is also an interval in this case). The increasing chain is
labeled ab and this precedes both ba and ca in lexicographic order. One of the main
reasons we are interested in ER and EL-labelings is because of the topological and
combinatorial consequences given by the following two theorems.

Theorem 2.2 (Stanley [23]). Let P be a graded poset with an ER-labeling λ : E(P )→
Λ. Then for every x < y in P we have that

µ(x, y) = (−1)ρ([x,y])|{c | c an ascent-free maximal chain in [x, y]}|.

Theorem 2.3 (Björner and Wachs [6]). Let P be a graded poset with an EL-labeling
λ : E(P )→ Λ. Then for every x < y in P we have that:

(1) The order complex ∆((x, y)) is shellable. Moreover, it has the homotopy type
of a wedge of |{c | c an ascent-free maximal chain in [x, y]}| many spheres
each of dimension ρ([x, y])− 2. As a consequence, [x, y] is Cohen-Macaulay.

(2) The set

{c ∖ {x, y} | c an ascent-free maximal chain in [x, y]}

forms a basis for the top reduced cohomology H̃ρ([x,y])−2((x, y)) of ∆((x, y)).

Remark 2.4. In this work we will be particularly interested on the consequences of
Theorems 2.2 and 2.3 for intervals of the form [0̂, x] for all x in a poset P .

2.2.2. EW-labelings. In order to construct a Whitney dual, we need to impose two
additional conditions on an ER-labeling. Note that in the following definition, we do
not require the labeling to be an EL-labeling.

Definition 2.5. Let λ be an edge labeling of P . We say λ is an EW-labeling if the
following hold.

(1) λ is an ER-labeling.
(2) (The rank two switching property) For every interval [x, y] with ρ(y)−

ρ(x) = 2, if the increasing chain is labeled ab, there exists a unique chain
in [x, y] labeled ba.
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(3) (Injectivity of ascent-free chains) For every x < y ∈ P , every ascent-free
maximal chain in [x, y] has a unique sequence of labels.

We already noted that the labeling of P in Figure 1 is an ER-labeling. In fact, it
is an EW-labeling too. Clearly we have injectivity of ascent-free chains. Moreover, in
the only rank two interval, the increasing chain is labeled by ab and there is exactly
one other chain in that interval labeled by ba. As we saw, the poset P has a Whitney
dual (namely Q in Figure 1). This is no coincidence, rather it is a a consequence of
the following theorem.

Theorem 2.6 ([14, Theorem 1.6]). Let P be a poset with an EW-labeling λ. Then P
has a Whitney dual. Moreover, we can construct a Whitney dual Q to P that depends
on λ.

In Section 3.1, we describe a specific construction of such a Whitney dual Q using λ.

2.3. An EW-labeling of the weighted partition poset. In this subsection,
we describe an EW-labeling of the weighted partition poset. First, we briefly discuss
the weighted partition poset.

A weighted set is a pair (A, v) where v ∈ {0, . . . , |A| − 1}. We will also denote
weighted sets with the simpler notation Av. A weighted partition of [n] is a collection
of weighted sets πππ = Bv1

1 /Bv2
2 / · · · /Bvt

t such that B1/B2/ · · · /Bt is a partition of [n].
The poset of weighted partitions, Πw

n , is the set of weighted partitions of [n] with cover
order relation given by

πππ = Aw1
1 /Aw2

2 / . . . /Aws
s ⋖ Bv1

1 /Bv2
2 / . . . /B

vs−1
s−1 = πππ′

if the following conditions hold:
• A1/A2/ · · · /As ⋖ B1/B2/ · · · /Bs−1 in Πn

• if Bk = Ai ∪Aj , where i ̸= j, then vk − (wi + wj) ∈ {0, 1}
• if Bk = Ai then vk = wi

See Figure 2 for a depiction of Πw
3 . As was noted in the introduction, Πw

n is (isomorphic
to) the poset of partitions for the operad Com2.

In [15], González D’León and Wachs gave an EL-labeling for Πw
n . Here we show

that this labeling is in fact an EW-labeling. We now review the definition of their
labeling.

Let us start by defining the set of edge labels, Λw
n . For each a ∈ [n], let Γa :=

{(a, b)u | a < b ⩽ n, u ∈ {0, 1}}. We partially order Γa by letting (a, b)u ⩽ (a, c)v

if b ⩽ c and u ⩽ v. Note that Γa is isomorphic to the direct product of the chain
a + 1 < a + 2 < · · · < n and the chain 0 < 1. Now define Λw

n to be the ordinal sum
Λw

n := Γ1⊕Γ2⊕ · · · ⊕Γn−1. See Figure 2 for a depiction of the Hasse diagram of Λw
4 .

We are now ready to describe the edge labeling. The map λw : E(Πw
n ) → Λw

n is
defined as follows: let πππ ⋖ πππ′ in Πw

n so that πππ′ is obtained from πππ by merging two
blocks AwA and BwB of πππ into a new block (A ∪B)wA+wB+u of πππ′, where u ∈ {0, 1}
and where we assume without loss of generality that min A < min B. We define then

λw(πππ ⋖ πππ′) = (min A, min B)u.

See Figure 2 for an example of this labeling on Πw
3 .

The following theorem was proved in [15].

Theorem 2.7 ([15, Theorem 3.2]). The labeling λw is an EL-labeling (and hence also
an ER-labeling).

According to Definition 2.5, to show that λw is an EW-labeling, we need to check
the rank two switching property and the injectivity condition on ascent-free chains.
To see that the latter is satisfied, note that the information contained in the collection
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Πw
3 Λw

4

1232

130/20

10/20/30

1231

120/30 131/20

1230

10/230 121/30 231/10

(1
, 2

)1

(1, 3) 0

(1,2) 1(1,
2)

1

(2, 3) 0

(1, 2) 0
(1, 2) 0

(1, 2) 0

(1, 3) 0

(1,
3)
1

(1,
3)

1

(1, 2) 0

(1
,2

)0

(1,
3)
0

(1
, 2

)1

(1, 2) 1

(2, 3)1

(1, 3)1

(1, 2)0

(1, 3)0

(1, 4)0

(1, 2)1

(1, 3)1

(1, 4)1

(2, 3)0

(2, 4)0 (2, 3)1

(2, 4)1

(3, 4)0

(3, 4)1

Figure 2. Edge labeling of Πw
3 and the poset Λw

4

of labels of the form (min A, min B)u is enough to trace which blocks of a weighted
partition are merged at each step which is enough to recover any saturated chain
starting at any particular weighted partition πππ. Hence the sequence of labels in each
interval uniquely determines a chain.

To show that λw is an EW-labeling, we are left to show that it satisfies the rank two
switching property. As explained in [15], there are three types of rank two intervals
in Πw

n . These intervals are depicted in Figure 3 together with their edge labels. For
each type, the reader can check that the rank two switching property holds. This
proves the following theorem.

Theorem 2.8. The labeling λw is an EW-labeling of Πw
n . Consequently, Πw

n has a
Whitney dual.

We will give a combinatorial description of the corresponding Whitney dual in
Section 3.4.

2.4. An EW-labeling of the pointed partition poset. A pointed set is a pair
(A, p) where A is a nonempty set and p ∈ A. In the following we will use the notation
Ap for (A, p). A pointed partition of [n] is a collection πππ = {Bp1

1 , Bp2
2 , . . . , Bpm

m }
where π = {B1, B2, . . . , Bm} is a partition of [n], called its underlying partition,
and Bpi

i are pointed sets for all i. We will also use the notation Bp1
1 /Bp2

2 / · · · /Bpm
m

for {Bp1
1 , Bp2

2 , . . . , Bpm
m }. The poset of pointed partitions Π•

n is the partial or-
der on the set of all pointed partitions of [n] with cover order relation given by
πππ = {Aq1

1 , Aq2
2 , ..., Aql

l }⋖ πππ′ = {Bp1
1 , Bp2

2 , ..., Bpm
m } whenever

• π ⋖ π′ in Πn.
• if Bh = Ai ∪Aj then ph ∈ {qi, qj}.
• if Bh = Ai then ph = qi.

Thus to move up in a cover, exactly two blocks are merged and the pointed element of
this new block is one of the pointed elements of the merged blocks. We will represent
the pointed element for each block by placing a tilde above the pointed element. For
example, {1478}4 will be denoted by 14̃78. The Hasse diagram of Π•

3 is illustrated in
Figure 4. As noted in the introduction, Π•

n is (isomorphic to) the poset of partitions
for the operad Perm.

Suppose we are merging two blocks A and B with min A < min B. We say that
this merge is a 0-merge if the pointed element of A ∪B is the pointed element of B.
Similarly, we say the merge is a 1-merge if the pointed element of A∪B is the pointed
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Type I Type II

Type III

Aa/Bb/Cc/Dd

ABa+b+u1/CDc+d+u2

ABa+b+u1/Cc/Dd Aa/Bb/CDc+d+u2

(a, b) u
1 (c,

d)
u2

(c,
d)

u2 (a, b) u
1

Aa/Bb/Cc

ABCa+b+c+2u

ABa+b+u/Cc Aa/BCb+c+uACa+c+u/Bb

(a, b) u

(a
,c

)u

(b, c
)u

(a, c)
u

(a
,b)

u

(a, b) u

Aa/Bb/Cc

ABCa+b+c+1

ABa+b/Cc ACa+c/Bb Aa/BCb+c ABa+b+1/Cc ACa+c+1/Bb Aa/BCb+c+1

(a, b)0 (a, c) 0
(b, c) 0 (a,

b)
1

(a, c)
1

(b, c)1

(a, c)1
(a

, b
)1 (a, c) 0(a, b)

1 (a, b) 0 (a, b)0

Figure 3. Rank two intervals in Πw
n . Here A, B, C, D are the blocks

that get merged in the interval and a = min(A) < b = min(B) <
c = min(C) < d = min(d). The blocks that are not changed in the
interval are not depicted. Edges given in red correspond to the rank
two switching property.

element of A. For example, if we merge the blocks 12̃4 with 35̃ to get 12345̃ we have
done a 0-merge. On other hand, if we had obtained 12̃345, we would have done a
1-merge. From time to time, we will need to discuss merges where we do not know
whether it is a 0 or 1-merge. In these cases, we will refer to it as an u-merge, always
bearing in mind that u ∈ {0, 1}.

We now give an edge labeling of Π•
n. We first define the poset of labels. Let Λ•

n be
the set {(a, b)u | 1 ⩽ a < b ⩽ n and u ∈ {0, 1}}. To define the order relation on Λ•

n,
let Aa be the poset on the set {(a, b)0 | a < b ⩽ n} with order relation determined by
every pair of elements in this set being incomparable, so Aa is an antichain. Let Ca

be the chain defined on the set {(a, b)1 | a < b ⩽ n} by (a, b)1 < (a, c)1 whenever
b < c. Then we define Λ•

n as the ordinal sum
Λ•

n := A1 ⊕ C1 ⊕A2 ⊕ C2 ⊕ · · · ⊕An−1 ⊕ Cn−1.

The Hasse diagram of Λ•
4 is given in Figure 5. Note that the underlying sets of Λw

n and
Λ•

n are the same, but their partial orders are different. Now suppose that in the cover
relation πππ′⋖πππ, we u-merge blocks A and B. Then we define the labeling λ• : Π•

n → Λ•
n

by
λ•(πππ ⋖ πππ′) = (min A, min B)u.(1)

In Figure 4 we illustrate the labeling λ• of Π•
3.

We now turn our attention to proving that λ• is an EW-labeling. First, let us note
that a label λ•(πππ ⋖ πππ′) completely determines which two blocks of πππ merge to form
a block of πππ′ and which element in the resulting block is pointed. Hence, for every
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1̃/2̃/3̃

1̃23 12̃3 123̃

1̃/2̃3 1̃/23̃ 1̃3/2̃ 13̃/2̃ 1̃2/3̃ 12̃/3̃

(2,3) 1
(2,3) 0

(1
,3) 1

(1
,3

)0

(1,2)1
(1,2)0

(1
,2) 1

(1,2) 1

(1,2) 1 (1,3)1

(1,2)0

(1
,2

)0
(1

,2) 0

(1,3) 1 (1,2)0

(1,2)1

(1
,3)

0 (1
,3) 0

Figure 4. Π•
3 with its edge labeling λ•.

(1, 3)0(1, 2)0 (1, 4)0

(1, 2)1

(1, 3)1

(1, 4)1

(2, 3)0 (2, 4)0

(2, 3)1

(2, 4)1

(3, 4)0

(3, 4)1

Figure 5. Poset of labels Λ•
4.

πππ ∈ Π•
n the cover relations over πππ have distinct labels. Thus starting at any element

πππ ∈ Π•
n, a sequence of valid labels completely determines a saturated chain starting

at πππ. Thus we obtain the following proposition.

Proposition 2.9. The labeling λ• of equation (1) is injective on maximal chains in
any interval of Π•

n.

Next we show that λ• is an ER-labeling. For a finite A ⊂ N we denote ΠA the
poset of partitions of A and Π•

A the poset of pointed partitions supported on A. We
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also use U(x) = {y ∈ P | y ⩾ x} to denote the (principal) upper filter generated by
an element x in a poset P . It turns out that the upper filter of any element of Π•

n

is isomorphic to another pointed partition poset and that this isomorphism preserves
the labeling λ•. We make this explicit next.

Lemma 2.10. Let ααα = {Bp1
1 , . . . , Bpl

l } ∈ Π•
n with min B1 < · · · < min Bl. Let

Φ : U(ααα)→ Π•
{min B1,...,min Bl}

be the map defined as follows:
(1) For a pointed set Aq with A = Bj1 ∪ · · · ∪Bjr

with j1 < · · · < jr and q = pjs

for some s ∈ [r] we define Φ(Aq) := {min Bj1 ∪ · · · ∪min Bjr
}min Bjs .

(2) For any πππ ∈ U(ααα) we define Φ(πππ) := {Φ(Aq) | Aq ∈ πππ}.
Then the map Φ is an isomorphism preserving the labeling λ• defined in equation (1),
i.e., for any πππ ⋖ πππ′ in U(ααα) we have that

λ•(Φ(πππ) ⋖ Φ(πππ′)) = λ•(πππ ⋖ πππ′).

Before we prove the lemma, let us provide a quick example of the map Φ. Suppose
that α = 145̃6/27̃9/38̃. Then 12567̃9/38̃ is in U(α) and Φ(12567̃9/38̃) = 12̃/3̃. The
pointed block 12̃ comes from the fact that we merged the blocks 145̃6 and 27̃9 and
chose to keep 7 pointed. As a result we point 2 when we apply the map Φ since 2 is
the minimum element in the block containing 7. The block 38̃ does not get merged,
but since we reduce to the minimum element of the block when applying Φ, we get
the pointed block 3̃.

Proof. We will show first that the function Φ preserves the u-merging of two blocks
for u ∈ {0, 1}. Let A1 = Bj1 ∪ · · · ∪ Bjr

with j1 < j2 < · · · < jr and q1 = pjl
for

some l ∈ [r] and let A2 = Bk1 ∪ · · · ∪ Bkt with k1 < k2 < · · · < kt and q2 = pkm

for some m ∈ [t]. Without loss of generality we assume j1 < k1 so min A1 < min A2.
We denote Aq1

1 ∪u Aq2
2 = (A1 ∪A2)q the u-merging of the pointed blocks Aq1

1 and Aq2
2

where q = q1 if u = 1 and q = q2 if u = 0.
Φ(Aq1

1 ∪u Aq2
2 ) =Φ({Bj1 ∪ · · · ∪Bjr

∪Bk1 ∪ · · · ∪Bkt
}q)

= {min Bj1 ∪ · · · ∪min Bjr
∪min Bk1 ∪ · · · ∪min Bkt

}q̃

= {min Bj1 ∪ · · · ∪min Bjr
}min Bjs

∪u {min Bk1 ∪ · · · ∪min Bkt}
min Bku

=Φ(Aq1
1 ) ∪u Φ(Aq2

2 ),
where q̃ = min Bjs

if u = 1 and q̃ = min Bku
if u = 0. Since the blocks of ααα

are in bijection with the blocks of min B1/ · · · / min Bl and all elements of U(ααα) are
obtained uniquely by a sequence of u-merges of blocks of ααα and the elements of
Π•

{min B1,...,min Bl} are obtained uniquely by a sequence of u-merges of the blocks of
min B1/ · · · / min Bl, we conclude that Φ is a bijection. Moreover, Φ and Φ−1 preserve
cover relations and hence Φ is a poset isomorphism.

Now, to see that the labeling according to λ• of equation (1) is preserved, note
that in a cover relation where we u-merge the blocks Aq1

1 and Aq2
2 the label is

(min A1, min A2)u = (min Bj1 , min Bk1)u,

which is the same obtained by u-merging the blocks Φ(Aq1
1 ) and Φ(Aq2

2 ). □

As we explain in the proof of the following proposition, Lemma 2.10 essentially
reduces the task of finding a unique increasing chain in each interval to finding an
increasing chain in every maximal interval.
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Proposition 2.11. The labeling λ• of equation (1) is an ER-labeling of Π•
n.

Proof. Let πππ,πππ′ ∈ Π•
n such that πππ ⩽ πππ′. We want to show that there is a unique

increasing saturated chain in [πππ,πππ′].
Assume first that πππ = 0̂ and πππ′ = [n]p, so [πππ,πππ′] = [0̂, [n]p] is a maximal interval.

We will construct an increasing saturated chain in [0̂, [n]p] and show that such chain
is the only increasing saturated chain in [0̂, [n]p]. Consider the chain c[n]p whose label
sequence is as follows.

(2) λ•(c[n]p) =


(1, 2)1(1, 3)1 · · · (1, n− 1)1(1, n)1 if p = 1,

(1, p)0(1, 2)1 · · · (1, p− 1)1(1, p + 1)1 · · · (1, n)1 if 1 < p < n,

(1, n)0(1, 2)1 · · · (1, n− 1)1 if p = n.

Because of Proposition 2.9, there is at most one such chain with the above label
sequence. It is not hard to check that such a chain does in fact exist. In the case
p = 1, it is easy to see that the chain is increasing. On the other hand, if p ̸= 1, the
chain is also increasing since (1, p)0 is smaller than any label of the form (1, b)1 and
the remaining values are increasing in Λ•

n.
We now show that the chain c[n]p is indeed the only increasing chain in [0̂, [n]p]. We

discuss the case when p ̸= 1. The case when p = 1 follows the same idea. Note that if
c′ is any other chain in [0̂, [n]p] it must have as final label either (1, a)0 or (1, a)1 for
some a ̸= 1 since in the last step the block with minimal label 1 always be involved. It
follows that for c′ to be increasing all the labels along the chain must be of the form
(1, b)u for some b and u. Hence c′ has to be constructed by a step-by-step process of
merging blocks with the block that contains the element 1. Hence, the labels in the
second component will form a permutation of the elements {2, 3, . . . , n}. Since p has
to be the pointed element, we will have a step where the label (1, p)0 appears. Since
(1, p)0 and (1, a)0 are not comparable when a ̸= p, we see that c′ cannot have the
label (1, a)0 where a ̸= p as c′ would not be increasing. Hence, all other labels are of
the form (1, a)1 and the only way to order them increasingly is as in equation (2). By
Proposition 2.9, λ• is injective and so c′ = c[n]p .

Now, we consider an interval of the form [0̂,πππ] where πππ ∈ Π•
n and πππ has at least two

blocks. Let πππ = {Bp1
1 , . . . , Bpl

l } where min B1 < · · · < min Bl. For each i = 1, . . . , l,
let cB

pi
i

be the unique increasing chain of [0̂, Bpi

i ]. To see why such chains exist and
are unique, apply the same idea from the previous paragraph to each of the intervals
[0̂, Bpi

i ]. We will now consider the word of labels of cB
pi
i

, λ•(cB
pi
i

). Note that this
word will be empty if |Bi| = 1. Now let cπππ be the chain in [0̂,πππ] that first merges the
elements with labels in B1 as instructed in cB

p1
1

, then merges the elements with labels
in B2 as instructed in cB

p2
2

, and so on. Then cπππ has the word of labels obtained by
the concatenation of words

λ•(cπππ) = λ•(cB
p1
1

)λ•(cB
p2
2

) · · ·λ•(cB
pl
l

).

Note that this chain is increasing because min B1 < · · · < min Bl and there is only
one chain with this word of labels because of Proposition 2.9. In order to see that
λ•(cπππ) is the unique increasing chain in [0̂,πππ], let c′ be any other increasing chain in
this interval and for every i = 1, . . . , l, and let

wi = λ•(c′)i1λ•(c′)i2 · · ·λ•(c′)i|Bi|

be the subword of λ•(c′) whose labels belong to the steps in c′ where blocks with
elements in Bi were merged. Since wi is a subword of an increasing word it must
also be increasing. Then by the discussion in the paragraph above, we conclude that
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Type I intervals

Type II intervals

ApA/BpB /CpC /DpD

ABp1/CpC /DpD ApA/BpB /CDp2

ABp1/CDp2

(a, b) u
1 (c,

d)
u2

(c,
d)

u2 (a, b) u
1

ApA/BpB /CpC

ApA/BCpB ABpA/CpC ACpA/BpB ApA/BCpC

ABCpA

(b, c) 1
(a, b) 1 (a,

c)
1

(b, c)0

(a, b)1

(a,
c)

1

(a, b) 1

(a, b) 1

ApA/BpB /CpC

ApA/BCpB ABpB /CpC ACpA/BpB ACpC /BpB

ABCpB

(b, c) 1
(a, b) 0 (a,

c)
1

(a, c)0

(a, b)0

(a,
c)

1

(a, b) 0

(a, b) 0

ApA/BpB /CpC

ApA/BCpC ACpC /BpB ABpA/CpC ABpB /CpC

ABCpC

(b, c) 0
(a, c) 0 (a,

b)
1

(a, b)0

(a, b)0

(a,
b)

1

(a, c) 0

(a, c) 0

Figure 6. Rank two intervals in Π•
3. Here A, B, C, D are the blocks

that get merged in the interval and a = min(A) < b = min(B) <
c = min(C) < d = min(d). The blocks that are not changed in the
interval are not depicted. Edges given in red correspond to the rank
two switching property.

there is a unique way to apply the merges in order to get an increasing word and
this word is λ•(cB

pi
i

). Note that all the labels from all these words are compara-
ble among each other since the min Bi are all different. There is then a unique
shuffle of the subwords λ•(cB

pi
i

) that leads to an increasing word λ•(c′) which is
λ•(cB

p1
1

)λ•(cB
p2
2

) · · ·λ•(cB
pl
l

). So we have that c′ = cπππ.
Finally, consider an interval of the form [πππ,πππ′] in Π•

n with πππ = {Bp1
1 , . . . , Bpl

l }.
We have by Lemma 2.10 that [πππ,πππ′] is isomorphic to an interval [0̂,πππ′′] in the poset
Π•

{min B1,...,min Bl} through an isomorphism that preserves the labels of the maximal
chains. Hence by the discussion in the paragraph before we have that there is a
unique increasing chain in the interval [0̂,πππ′′] of the latter poset and hence in [πππ,πππ′],
completing the proof. □

To finish showing that the labeling λ• is an EW-labeling, we just need to show λ•
has the rank two switching property. There are two types of rank two intervals in Π•

n.
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The type I is where there are two pairs of blocks that get merged independently of
each other and the type II is where there are three blocks all of which get merged.
These two types are shown in Figure 6. In type II, there are 3 possible choices for
which initial block the pointed element at the top of the interval comes from. From
Figure 6 one can readily see that we have the following proposition.
Proposition 2.12. The labeling λ• of equation (1) satisfies the rank two switching
property.

By Propositions 2.9, 2.11 and 2.12 we have that the labeling λ• on Π•
n satisfies

Definition 2.5 which proves the following theorem.
Theorem 2.13. The labeling λ• is an EW-labeling of Π•

n. As a consequence, the poset
Π•

n has a Whitney dual.
We will give a combinatorial description of the corresponding Whitney dual in

Section 3.3.

2.5. EL-labelings for the pointed partition poset. In [10, Theorem 1.11]
Chapoton and Vallete show that Π•

n has a CL-labeling and hence is Cohen-Macaulay.
In Remark 1.11 of that paper, they leave open the question of if maximal intervals of
Π•

n have EL-labelings. We give a positive answer to their question below by providing
an EL-labeling for Π•

n (which restricts to an EL-labeling in every maximal interval).
Before we do, let us note that Bellier-Millès, Delcroix-Oger and Hoffbeck [2, Proposi-
tion 3.13] propose an edge labeling for Π•

n that the authors claim is an EL-labeling.
However, we later argue that the proposed labeling does not satisfy the conditions to
be an EL-labeling (see Remark 2.16).

One might hope that our previous EW-labeling λ• is an EL-labeling. Unfortunately,
this is not the case. Indeed, consider the rank two interval [1̃/2̃/3̃, 123̃]. The unique
increasing chain 1̃/2̃/3̃ ⋖ 13̃/2̃ ⋖ 123̃ has word of labels (1, 3)0(1, 2)1. However, this
sequence is not lexicographically comparable with the word of labels (1, 2)0(1, 3)0 of
the chain 1̃/2̃/3̃ ⋖ 12̃/3̃ ⋖ 123̃ in the same interval (see Figure 4). Although λ• is
not an EL-labeling, if we keep the same edge labels, but instead use the ordering of
the labels that we used for the weighted partition poset, we do get an EL-labeling.
More specifically, we claim that the labeling λ•2 : E(Π•

n)→ Λw
n where λ•2(πππ ⋖ πππ′) :=

λ•(πππ ⋖ πππ′) is an EL-labeling.
The following theorem has a very similar proof to the one of Proposition 2.11

and [15, Theorem 3.2]. To avoid a lengthy discussion we just provide the relevant
steps in the proof, which can be verified by the reader.
Theorem 2.14. The labeling λ•2 is an EL-labeling of Π•

n. Consequently, Π•
n is EL-

shellable and its maximal intervals are Cohen-Macaulay.
Proof idea: We need to show that in each interval [πππ,πππ′] of Π•

n there is a unique
increasing maximal chain and that this chain is lexicographically first.

First we consider an interval of the form [0̂, [n]p]. For this type of interval the reader
can verify that there is an increasing maximal chain that has word of labels

(3) λ•2(c′
[n]p) =


(1, 2)1 · · · (1, n)1 if p = 1,

(1, 2)0 · · · (1, p)0(1, p + 1)1 · · · (1, n)1 if 1 < p < n,

(1, 2)0 · · · (1, n)0, if p = n,

and which is of the form (where we represent each pointed partition by its unique
non-singleton block):

c′
[n]p = (0̂ ⋖ [2]2 ⋖ · · ·⋖ [p]p ⋖ [p + 1]p ⋖ · · ·⋖ [n]p).
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We note that a similar argument given in the proof of Proposition 2.11 shows that
this is the only increasing maximal chain in [0̂, [n]p]. To show that this chain is lexico-
graphically smallest, suppose this was not the case. Then there is some other maximal
chain, d, whose words of labels is not lexicographically larger. Let d1d2 · · · dn−1 be
the word of labels of d and assume that the first time it disagrees with the increasing
chain at di−1. Note that we may assume that i > 2 since the first label along the
increasing chain is the smallest possible label.

First, suppose that i−1 < p and that (1, i)0 ̸< di−1. Then based on Λw
n , di−1 must

be of the form (1, b)1 where b < i. But this is impossible since by the time d adds the
label di−1, b was already in the same block as 1 as d agrees with c′

[n]p up to this step.
If i− 1 ⩾ p and (1, i)1 ̸< di−1. This would imply that di−1 is of one of the following
forms: (1, b)0 with b > i or (1, b)u with b < i and u ∈ {0, 1}. By this point along d,
p is the pointed element in its block and this block contains 1. So, all the labels at
this point must have an exponent of 1 and thus it cannot be of the form (1, b)0. It
also cannot be of the form (1, b)1 with b < i since b is already in the block with 1 by
this point along d. We conclude that the unique maximal chain is lexicographically
smallest.

For an interval of the form [0̂,πππ] where πππ is of the form πππ = {Bp1
1 , . . . , Bpl

l } with
min B1 < · · · < min Bl and l ⩾ 2, we consider the unique increasing word of labels
c′

B
pi
i

in [0̂, Bpi

i ] and then the unique maximal chain c′
πππ in [0̂,πππ] with word of labels

λ•2(c′
πππ) = λ•(c′

B
p1
1

)λ•(c′
B

p2
2

) · · ·λ•(c′
B

pl
l

)

is the unique increasing chain and is lexicographically first among maximal chains
in [0̂,πππ].

Finally, for an interval of the form [πππ,πππ′] in Π•
n, we use Lemma 2.10 to reduce to

any of the two cases before. Note that the lemma still applies in this case since the
functions λ•2 and λ• only differ in the order structure on the poset of labels. □

At this point, the reader may be wondering if λ•2 is an EW-labeling. By looking
at the last occurrence of rank 2 intervals of type II in Figure 6, we can conclude that
the unique increasing chain has a word of labels (a, b)0(a, c)0, but there is no chain
with a word of labels (a, c)0(a, b)0. Hence, the EL-labeling λ•2 of Theorem 2.14 fails
the rank two switching property and is not an EW-labeling.

As we mentioned earlier, λ• is an EW-labeling, but is not an EL-labeling. Never-
theless, if we take the order dual of Π•

n and reverse the ordering on the labels for λ•,
we do get an EL-labeling of the order dual.

Given a poset P , let P ∗ be the order dual of P . Moreover, given a labeling λ :
E(P )→ Λ of a poset P with label poset Λ, we define the dual labeling λ∗ : E(P ∗)→ Λ∗

of the order dual poset P ∗ to be given by
λ∗(y ⋖P ∗ x) = λ(x ⋖P y).

In other words, the edge labels do not change when passing from P to its order
dual P ∗, just the ordering on the labels.

Theorem 2.15. The labeling λ∗
• is an EL-labeling of Π•

n
∗. Consequently the maximal

intervals of the order dual are EL-shellable.

Proof. First note that since we reverse the order of the labels from λ• to get λ∗
•, an

increasing chain in an interval [ααα,πππ] of Π•
n

∗ is exactly the order dual of an increasing
chain in the interval [πππ,ααα] of Π•

n. It follows that since λ• is an ER-labeling, λ∗
• is also

an ER-labeling. So to finish the proof, we need only show that in every interval of
Π•

n
∗, the increasing chain with respect to λ∗

• is lexicographically smallest. Note that
when we restrict the (unique) increasing chain on an interval to a smaller subinterval,

Algebraic Combinatorics, Vol. 8 #6 (2025) 1581



Rafael S. González D’León, Joshua Hallam & Yeison A. Quiceno D.

that restriction is again the (unique) increasing chain in the said subinterval. Now,
since the order on the labels are reversed, it is enough to show that in any interval of
Π•

n the last label along the increasing chain is strictly larger than the other possible
last labels of other chains in that interval. The rest of the argument will follow by
induction on the smaller subinterval that is obtained by removing the last step on
the unique increasing chain. By appealing to Lemma 2.10, we only need to check this
condition for increasing chains in intervals of the form [0̂,πππ] in Π•

n. This is what we
do next.

Consider the interval [0̂,πππ] and let cπππ be the increasing chain. Suppose that the
last cover relation on cπππ is ααα ⋖ πππ. We will show that the label λ•(ααα ⋖ πππ) is strictly
larger than any other label of the form λ•(ααα′ ⋖ πππ). Suppose that πππ is of the form

πππ = {Bp1
1 , . . . , Bps

s , B
ps+1
s+1 , . . . , Bpl

l },

where πππ is written such that Bps
s is the last non-singleton block and min B1 < · · · <

min Bs.
Note that for any ααα′ ⋖ πππ, we have labels of the form λ•(ααα′ ⋖ πππ) = (min Bi, a)u

with a ∈ Bi, for some i ∈ {1, . . . , s} and u ∈ {0, 1}. Hence, the largest possible label
that appears along the edges of [0̂,πππ] is of the form (min Bs, a)u. Moreover, since
min Bs ⩾ min Bi for all 1 ⩽ i ⩽ s, we know that (min Bs, a)u is larger than any label
in [0̂,πππ] of the form (min Bi, b)u with i ̸= s. Since the elements of Bs must be merged
together when going from 0̂ to πππ, a label of this form must occur on every maximal
chain in [0̂,πππ]. It follows that the increasing chain must end with a label of the form
(min Bs, a)u.

Now we distinguish between two cases whether |Bs| = 2 or |Bs| > 2. If |Bs| = 2
there is only one label of the form (min Bs, a)u where a is the unique element in
Bs ∖ {min Bs} and u ∈ {0, 1} is uniquely determined to be u = 0 if ps = a or u = 1
otherwise. In either case, all other labels in [0̂,πππ] are of the form (min Bi, b)u, which
are strictly smaller than (min Bs, a)u.

Now suppose that |Bs| > 2 and let b = max Bs. If ps ̸= b then the label in the
uppermost cover relation of cπππ is (min Bs, b)1 (see the proof of Proposition 2.11)
which is the largest label among all labels that appear in the interval [0̂,πππ]. Since
b is the largest value in its block, there is only one ααα′ with this property. That is
ααα′ = {Bp1

1 , . . . , Bs ∖ {b}ps , {b}b, B
ps+1
s+1 , . . . , Bpl

l } which is the second to last element
of cπππ.

If ps = b then the label in the uppermost cover relation of cπππ is (min Bs, c)1

where c = max(Bs ∖ {b}). Note that the only label of the form (min Bs, a)u larger
than (min Bs, c)1 is (min Bs, b)1. But this label cannot actually appear among the
cover relations ααα′⋖πππ since this would indicate that ps ̸= b which is not the case. Thus
(min Bs, c)1 is the largest possible label that can occur in [0̂,πππ] and this also determines
uniquely ααα′ = {Bp1

1 , . . . , Bs ∖ {c}b, {c}c, B
ps+1
s+1 , . . . , Bpl

l } which is the second to last
element of cπππ. We conclude that λ∗

• is an EL-labeling. □

We finish this section with a remark regarding a proposed edge labeling of Π•
n given

by Bellier-Millès, Delcroix-Oger, and Hoffbeck in [2].(1)

Remark 2.16. The authors in [2] define a labeling λ̃ : E(Π•
n) → N × N where N × N

has the lexicographic order. To describe their labeling, let πππ ⋖ πππ′ be such that the
two pointed blocks in πππ which were u-merged to get πππ′ are Aqi

i and A
qj

j , with a =

(1)In the ArXiv v2 version of this paper, the authors have not included this labeling anymore.
We include here an explanation of why the proposed labeling is not an EL-labeling.
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min(Ai) < b = min(Aj). Then define

λ̃(πππ ⋖ πππ′) =
{

(b, a + n− |πππ|) if u = 0,

(b, b + n− |πππ|) if u = 1.

With this labeling in the interval [0̂, 123̃] of Π•
3, we see that the chains 0̂⋖1̃2/3̃⋖123̃

and 0̂⋖ 12̃/3̃⋖ 123̃ have words of labels (2, 2)(3, 2) and (2, 1)(3, 2) respectively, which
are both increasing in the lexicographic order on N × N. This shows that λ̃ already
fails to satisfy the requirement of the uniqueness of the increasing chain in the interval
[0̂, [3]3]. Note that this issue does not arise in the interval [0̂, [3]1]. So λ̃ is an EL-
labeling of at least one maximal interval of Π•

3. Moreover since [0̂, [3]1] ∼= [0̂, [3]3],
their labeling shows all maximal intervals of Π•

3 have an EL-labeling. However, by
extending this idea one can show that if n ⩾ 6, λ̃ is not an EL-labeling for any
maximal interval of Π•

n. To see why, note that if n ⩾ 6, [0̂, [n]i] always contains an
interval of the form [0̂, [6]j/7̃/ · · · /ñ] where j ∈ [6]. If j = 4, 5, 6 then the interval
[0̂, 123̃/4̃/ · · · /ñ] is in [0̂, [6]j/7̃/ · · · /ñ] and so we have the same problem as before.
If j = 1, 2, 3, then we claim the interval [123j/4̃/ . . . /ñ, 123j/456̃/7̃ · · · /ñ] has two
increasing chains. The chain

123j/4̃/5̃/6̃/ · · · /ñ ⋖ 123j/4̃5/6̃/ · · · /ñ ⋖ 123j/456̃/ · · · /ñ

has label sequence (5, 7)(6, 7) and the chain

123j/4̃/5̃/6̃/ · · · /ñ ⋖ 123j/45̃/6̃/ · · · /ñ ⋖ 123j/456̃/ · · · /ñ

has label sequence (5, 6)(6, 7), both of which are increasing. It follows that λ̃ is not
an EL-labeling in general.

3. Combinatorial Descriptions of Whitney duals
In this section we give combinatorial descriptions of the Whitney duals of Πw

n and Π•
n

that come from the EW-labelings we discussed in Section 2.

3.1. Constructing Whitney duals. We start with a quick review of how to con-
struct Whitney duals from EW-labelings. The full details can be found in [14]. Note
that in [14], the authors introduce two (isomorphic) Whitney duals that can be con-
structed using an EW-labeling. The first construction, which is denoted Qλ(P ) in [14],
is obtained by taking a quotient of the poset of saturated chains containing 0̂. This
quotient is based on a quadratic relation on these chains. The second construction,
denoted Rλ(P ), is a poset on ascent-free saturated chains containing 0̂ and whose
order relation is given by sorting a label into an existing ascent-free chain. Here we
will only use the sorting description.

Let Λ be a poset of labels and consider the following sorting algorithm on words
over Λ. Given the word w = w1w2 · · ·wiwi+1 · · ·wn, let i be the smallest index such
that wi < wi+1. If no such i exists, the algorithm terminates and returns w. If i does
exist, swap wi and wi+1 to get the word w′ = w1w2 · · ·wi+1wi · · ·wn. Next, apply
the deterministic procedure to w′ and continue until the algorithm terminates. Once
the algorithm terminates one obtains an ascent-free word with the same underlying
multiset of labels as the original word. We denote this word as sort(w).

As an example of the sorting algorithm described above, consider the poset of la-
bels Λ shown in Figure 7. Applying the sorting algorithm to adbca gives the following.

abdca→ adbca→ dabca→ dacba→ dcaba

Thus, sort(adbca) = dcaba.
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a b

c

d

Λ

Figure 7. A poset of labels

Definition 3.1 (Definition 4.2 [14]). Suppose that P is a poset with an EW-labeling λ.
Let Rλ(P ) be the set of pairs (x, w) where x ∈ P and w is the sequence of labels along
a 0̂− x ascent-free chain. Order the elements of Rλ(P ) by (x, w) ⋖ (y, u) if and only
if x⋖ y in P and u = sort(wλ(x⋖ y)), where wλ(x⋖ y) denotes the concatenation of
the words w and λ(x ⋖ y) and sort is done with respect to the ordering of the labels
of λ.

Theorem 3.2 (Theorem 4.4 [14]). Suppose that P is a poset with an EW-labeling λ.
Then P and Rλ(P ) are Whitney duals.

The reader can verify that the poset labeled Q in Figure 1 is Rλ(P ) where λ is
the EW-labeling of P given in the figure. In addition to being EW-labelings, where
ascent-free chains have a unique word of labels in their own interval, λw and λ• have
the additional property that the sequence of labels along a saturated chain starting
at 0̂ completely determines the elements on that chain. So the word of labels identifies
the saturated chain uniquely in the poset and as a result, when we consider Rλ(P )
the “x" in the pair (x, w) is redundant. In other words, we need only to consider
ascent-free chains as elements of Rλ(P ). Figure 8 depicts Πw

3 and the Whitney dual
corresponding to the EW-labeling described in the previous section. See Figure 15 for
an isomorphic version of Rλw

(Πw
n ) whose elements are described in terms of a family

of forests.

3.2. Combinatorial families for the Whitney duals. We now turn our atten-
tion to giving combinatorial descriptions of the Whitney duals of Π•

n and Πw
n . First,

we need to describe the combinatorial objects on which the Whitney duals will be
defined.

A tree is an undirected graph in which any two vertices are connected by exactly
one path. We say that a tree is rooted if there is a distinguished vertex that we call
the root. If, in order to travel through the unique path from a vertex b to the root
we need to pass through a vertex a, we say that a is an ancestor of b. In the specific
cases that {a, b} is an edge, we say that a is the parent of b (or equivalently, b is a
child of a). Every vertex in a rooted tree T which has at least one child is considered
an internal vertex. If it has no child we say that the vertex is a leaf. A planar tree
is a rooted tree in which the set of children of each internal vertex comes equipped
with a total order (which we represent by placing the vertices from left to right in
this order). A binary tree is a rooted planar tree in which every internal vertex has
two children, a left child and a right child. All the trees we consider from now on
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(a) Bicolored tree

8

7

6

1 9

5

2 2

4

3

4

5 8

3

1

6 7
0 1

(b) The internal vertices have been la-
beled in the reverse-minimal linear exten-
sion of the tree to the left

Figure 9. Example of a bicolored binary tree and its reverse-
minimal linear extension

are both rooted, planar, and binary so we will be referring to them (informally) as
“binary trees" when the context makes it clear.

We say a binary tree is a bicolored binary tree if there is a function color that
assigns to each internal vertex x a number color(x) ∈ {0, 1} (a color). Note that in
all of our figures, we represent the color 0 with blue and the color 1 with red.
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A linear extension of a binary tree T is a listing v1, v2, . . . , vn−1 of the internal
vertices of T such that each vertex precedes its parent. Let T be a bicolored binary
tree and v a vertex of T . We define the valency of v, ν(v), to be the smallest leaf
label of the subtree rooted at v. Note that, by this definition, if w is an ancestor of v
we have that ν(v) ⩾ ν(w). Hence, since the leaves are labeled by the totally ordered
set [n], there is a unique linear extension v1, v2, . . . , vn−1 of T such that

ν(v1) ⩾ ν(v2) ⩾ · · · ⩾ ν(vn−1).(4)

We will call this linear extension the reverse-minimal linear extension of the internal
vertices of T . Figure 9b depicts the reverse-minimal linear extension of the tree in
Figure 9a. Note that we can extend the notion of reverse linear extension to forests
with leaf set [n]. For example, see the forest in Figure 11. As we will see later, the
reverse-minimal linear extension gives us a recipe to build a forest step-by-step in a
way that corresponds to the ascent-free chains of the weighted and pointed partition
posets.

Let v be an internal vertex of a bicolored binary tree T . We denote as L(v) the left
child of v and as R(v) the right child of v. We say that T is normalized if for every
internal vertex v we have that

(N) ν(v) = ν(L(v)).

In other words, a tree is normalized if the smallest leaf label always appears in a
leaf to its left. One can check that the tree depicted in Figure 9 is normalized. We
say a forest is normalized if all the trees in the forest are normalized. Whenever T is
normalized, we say that an internal vertex v is Lyndon if L(v) is a leaf or else if L(v)
is not a leaf then we have that

(L) ν(R(L(v))) > ν(R(v)).

Returning to our example in Figure 9, we see that the internal vertices that are
labeled by 1, 2, 3, 4, 5, 6 are all Lyndon since for each, their left child is a leaf. The
internal vertex labeled as 7 is also Lyndon but 8 is not. To see why 7 is Lyndon,
note that R(L(7)) is the leaf labeled 9 (and hence has valency 9) and R(7) = 5 which
has valency 2. Thus, ν(R(L(7))) > ν(R(7)). To see that 8 is not Lyndon, note that
ν(R(L(8))) = 2 ̸> 3 = ν(R(8)), i.e. inequality L is not satisfied.

The Whitney duals for the weighted partition poset and the pointed partition
poset can both be described using special types of normalized bicolored binary trees
together with a sliding procedure used to merge such trees. We now discuss these
special types of trees.

3.2.1. Pointed Lyndon forests. Let us define first the objects used to describe the
Whitney dual of the pointed partition poset.

Definition 3.3. A normalized bicolored binary tree T is said to be a pointed Lyndon
tree if for each internal vertex v of T such that L(v) is not a leaf it must be that:

(PL1) color(L(v)) ⩾ color(v)

and

(PL2) If color(L(v)) = color(v) = 1, then v is a Lyndon node.

We say a forest F is a pointed Lyndon forest if all the connected components of F
are pointed Lyndon trees. We denote as FLyn•

n the set of all pointed Lyndon forests
whose leaf label set is [n].
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Figure 10. A bicolored Lyndon tree on the left (which is not a
pointed Lyndon tree) and a pointed Lyndon tree on the right (which
is not a bicolored Lyndon tree).

.

The tree in Figure 9 is a pointed Lyndon tree. Indeed, we need only check the
conditions for the internal vertices labeled by 7 and 8 since the left children of the
other internal vertices are leaves. For 7, both it and its left child 6 are colored by 1
(red) and 7 is Lyndon. For 8, it is colored 0 (blue) so we do not need to check anything
else.

3.2.2. Bicolored Lyndon forests. Let us now define the trees used for the Whitney
dual of the weighted partition poset.

Definition 3.4. Let T be a normalized bicolored binary tree, we say that T is a
bicolored Lyndon tree if, for each internal vertex v of T whose left child is an internal
vertex, either v is a Lyndon vertex or it must be that:

(CL) color(L(v)) > color(v).

We say a forest F is a bicolored Lyndon forest if all the connected components of
F are bicolored Lyndon trees. We denote as FLynw

n the set of all bicolored Lyndon
forests whose leaf label set is [n].

The tree in Figure 9 is a bicolored Lyndon tree. As mentioned earlier, the only
internal vertex that is not a Lyndon vertex is the one labeled by 8. Its color is 0
(blue) and its left child is colored by 1 (red), so it satisfies condition (CL).

At this point, the reader may be wondering if pointed Lyndon trees and bicolored
Lyndon trees are the same. To see that this is not the case, consider the trees in
Figure 10. We claim that the tree T1 is bicolored, but not pointed. All the internal
vertices of T1 are Lyndon, so it is automatically a bicolored Lyndon tree. However,
it is not a pointed Lyndon tree because the color of the root is larger than its left
child, a violation of condition (PL1). On the other hand, we claim that T2 is a pointed
Lyndon tree, but not a bicolored Lyndon tree. It is pointed since both vertices are
colored by 0 (blue). However, it is not a bicolored Lyndon tree since the root is not a
Lyndon vertex and the root’s color is not strictly larger than its left child, a violation
of condition (CL).

Remark 3.5. Note that condition (CL) implies that the family of classical Lyndon
trees coincide with the subfamily of bicolored Lyndon trees that either have only
internal vertices of color 0 (blue) or that have only internal vertices of color 1 (red).
On the other hand condition (PL2) implies that the family of classical Lyndon trees
coincide with the subfamily of pointed Lyndon trees which have all internal nodes
colored 1 (red).

Algebraic Combinatorics, Vol. 8 #6 (2025) 1587



Rafael S. González D’León, Joshua Hallam & Yeison A. Quiceno D.

3.3. A Whitney dual for Π•
n. Let F be a pointed Lyndon forest. We explain how

to associate an ascent-free saturated chain c(F ) starting at 0̂ in Π•
n. Recall that F has

a unique reverse-minimal linear extension order on the internal vertices. To construct
an ascent-free chain from F , we start with the bottom element, 1̃/2̃/ · · · /ñ. In the
first step, we merge together the two blocks which are in the left subtree and right
subtree rooted at the first internal vertex. We keep the point on the element of the left
tree if the first internal vertex is colored 1 (red) and we keep the point on the element
of the right tree if it is colored is 0 (blue). We continue doing this so that at the ith

step we merge together the elements of the left and right subtrees rooted at the ith

internal vertex and keep the pointed element of the left subtree if it is colored 1 (red)
or the right subtree if it is colored 0 (blue).

Figure 11 has a depiction of a pointed Lyndon forest F and its corresponding chain
c(F ). In the first step of the chain, we merge the blocks containing 6 and 7 since they
are the leafs in the left and right tree rooted at the first internal vertex. We keep 6
pointed because this first internal vertex is colored by 1 (red). Continuing this process
gives the saturated chain seen in the figure.

Let F be a pointed Lyndon forest and let ai be the valency of left child of the
ith internal vertex and bi the valency of right child of ith internal vertex. That is
ai = ν(L(i)) and bi = ν(R(i)). Note that ai is also the valency of i since our trees are
normalized (i.e. ν(i) = ν(L(i))). Then, it is straightforward to see that the sequence
of labels along the chain c(F ) is (a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk where ui is the color
of the ith internal vertex.

Let us return to the forest in Figure 11. Since the left child of the first internal
vertex is the leaf labeled 6, the right child is a leaf labeled 7, and the first internal
vertex is colored 1 (red), we have that (a1, b1)u1 = (6, 7)1. Moving to the second
internal vertex we see its left child is the leaf 5 and the right child is the leaf 8. Since
it is colored by 1 (red) the next label is (5, 8)1. Next, moving to the third internal
vertex, we see that the left child is a leaf 4 and the right child is the first internal vertex
whose valency is 6. Since the third internal vertex is colored 1 (red), the corresponding
label is (4, 6)1. Continuing this, we see the sequence we get from the forest is

(6, 7)1(5, 8)1(4, 6)1(3, 4)0(2, 5)0(1, 9)1(1, 2)1

Note that the sequence (and hence its chain) is ascent-free with respect to the ordering
of the labels for λ•. It turns out that this not a coincidence as we show next.
Theorem 3.6. The map sending F to c(F ) is a bijection between pointed Lyndon
forest whose leaf label set is [n] and ascent-free chains starting at 0̂ of Π•

n, where the
ascent-free condition is defined with respect to λ•.
Proof. First, we show that the map is well-defined. That is, c(F ) is in fact ascent-
free for all pointed Lyndon forest F . Assume that the internal vertices are 1, 2, . . . , k
which is also the reverse-minimal ordering. Let (a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk be the
sequence of labels along c(F ). As mentioned earlier, ai is the valency of i. Since we
are using the reverse-minimal order, this gives us a1 ⩾ a2 ⩾ · · · ⩾ ak. If ai > ai+1,
then (ai, bi)ui > (ai+1, bi+1)ui+1 in the ordering of labels of λ•. On the other hand,
if ai = ai+1, then i + 1 is an ancestor of i and i must be in the left tree rooted at
i + 1. Since the reverse-minimal ordering is a linear extension of the internal vertices,
it must be the case that i is the left child of i + 1. Since F is a pointed Lyndon
forest, condition (PL1) implies that ui = color(i) ⩾ color(i + 1) = ui+1. If i + 1 is
not Lyndon, then condition (PL2) implies that ui > ui+1. Since ui, ui+1 ∈ {0, 1}, this
implies that ui = 1 and ui+1 = 0. So, if i+1 is not Lyndon, (ai, bi)ui > (ai+1, bi+1)ui+1 .
On the other hand, if i + 1 is Lyndon, bi+1 = ν(R(i + 1)) < ν(R(L(i + 1))) = bi.
Then either (ai, bi)ui > (ai+1, bi+1)ui+1 (if ui > ui+1 or ui = 1 = ui+1) or (ai, bi)ui
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c(F )

1̃/2̃/3̃/4̃/5̃/6̃/7̃/8̃/9̃

1̃/2̃/3̃/4̃/5̃/6̃7/8̃/9̃

1̃/2̃/3̃/4̃/5̃8/6̃7/9̃

1̃/2̃/3̃/4̃67/5̃8/9̃

1̃/2̃/34̃67/5̃8/9̃

1̃/25̃8/34̃67/9̃

1̃9/25̃8/34̃67

1̃2589/34̃67

Figure 11. Pointed Lyndon forest F and corresponding ascent-free
chain c(F ).

and (ai+1, bi+1)ui+1 are incomparable (if ui = 0 = ui+1). It follows that the map is
well-defined.

We claim that the map sending F to c(F ) is invertible. Suppose we have an ascent-
free chain with sequence

(a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk .

Build a forest recursively by first placing n isolated vertices (which will be the leafs)
labeled by [n]. Now assume that you are at the ith step of this process. Let T1 be
the connected component of the forest with minimal leaf label ai and let T2 be the
connected component of the forest with minimal leaf label bi. Add a vertex colored
ui and add edges from this vertex to the roots of T1 and T2. Repeat this pro-
cess until each pair (aj , bj)uj has been used and call the resulting forest F . Since
(a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk is ascent-free, it must be the case that a1 ⩾ a2 ⩾
· · · ⩾ ak. It then follows that the reverse minimal ordering on F is exactly the order
that the internal vertices were added in the process. Upon observing this, it is clear
that c(F ) is the chain with label sequence (a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk . So, if we
can show this map is well-defined, we will have that the map sending F to c(F ) is
invertible and thus a bijection. We do this next.

Let F be a forest obtained by using the inverse procedure described in the previous
paragraph. We need to show that F is a pointed Lyndon forest. First, it is clear from
the construction that F is a bicolored binary tree. Since ai < bi for all i, we also
have that F is normalized. Now consider an internal vertex v and suppose that v is
the ith internal vertex in the reverse minimal order. If L(v) is not a leaf, then L(v)
must immediately precede v in the reverse minimal ordering. That is, L(v) is the
(i − 1)th internal vertex. Since F is normalized, v and L(v) have the same valency
and so ai−1 = ai. Since (a1, b1)u1(a2, b2)u2 · · · (ak, bk)uk is ascent-free, this means
that ui−1 ⩾ ui. Thus, color(L(v)) = ui−1 ⩾ ui = color(v) and so condition (PL1)
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↓
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2 34r
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5 7

6

Figure 12. Pointed Lyndon tree obtained by a 1-merge of two
pointed Lyndon trees T1 and T2.

is satisfied. If ui−1 = 1 = ui, then the fact that ai−1 = ai implies that bi−1 > bi

(otherwise either a label would be repeated in the sequence or the sequence would
have an ascent). Thus, ν(R(L(v)) = bi−1 > bi = ν(R(v)) and so v is a Lyndon vertex
(equation (L)). It follows that condition (PL2) is also satisfied. We conclude that F
is a pointed Lyndon forest. Thus, the inverse map is well-defined, completing the
proof. □

By the previous theorem and Theorem 3.2, we can describe the Whitney dual of
the pointed partition poset using pointed Lyndon forests. To do this, we will need to
describe how to merge trees in a Lyndon forest. Suppose that T1 and T2 are trees in
a Lyndon forest with roots r1 and r2 where the minimum leaf label of T1 is less than
the minimum leaf label of T2. Let u ∈ {0, 1}. To u-merge T1 with T2, we first create
a new vertex r and color it so color(r) = u. Then we add edges from r to r1 and r2.
If the resulting tree is a pointed Lyndon tree, we stop. If it is not, we slide the new
internal vertex r together with its right subtree past its left child and check if the
result is a pointed Lyndon tree. We continue this process until we obtain a pointed
Lyndon tree.

An example of a 1-merge of two pointed Lyndon trees is illustrated in Figure 12.
First, we add a vertex r colored by 1 (red) and add edges from r to the roots
of T1 and T2. We then need to check whether or not this construction results into
a pointed Lyndon tree. Since color(L(r)) = 0 < 1 = color(r), we have a viola-
tion of condition (PL1) at r and hence, this is not yet a pointed Lyndon tree. We
then slide r together with its right subtree, to its left, interchanging r and L(r).
After sliding r to its left we have that color(L(r)) = color(r) = 1. However,
4 = v(R(L(r))) < v(R(r)) = 5 resulting in a violation of condition (PL2), so we
slide r once more to its left to finally get a valid pointed Lyndon tree.

Let us remark here that this process always terminates in a valid pointed Lyndon
tree. This is the case since if we keep sliding until we cannot anymore, the left child
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of the root will be a leaf. We are now in a position to put an ordering on the pointed
Lyndon forests.

Definition 3.7. The poset of pointed Lyndon forests is the set FLyn•
n together with

the cover relation F ⋖ F ′ whenever F ′ is obtained from F when exactly two trees of
F are u-merged for some u ∈ {0, 1}.

1̃

2 3

1

2̃ 3 1 3

2̃

1 2

3̃

1̃ 3

2

1 3

2̃

1 2

3̃ 1̃

2 3

1

2 3̃

2̃ 3

1̃

1 3̃

2̃

1̃ 2

3̃

1̃ 3

2̃

1 2̃

3̃

2 3̃

1̃

˙̃1 ˙̃2 ˙̃3

Figure 13. FLyn•
3.

We illustrate FLyn•
3 in Figure 13. The sliding procedure described to merge two

pointed Lyndon trees is just a way to explain the sorting procedure used to define the
Whitney dual Rλ in Definition 3.1. Note that in the definition of the map sending F
to c(F ) we did not need F to be a pointed Lyndon forest nor do we need to use the
reverse-minimal ordering on the internal vertices. Indeed as long as F is a normalized
bicolored binary forest and we use some linear extension of the internal vertices,
the map still produces a saturated chain in Π•

n starting at 0̂. In the case that the
corresponding chain is not necessarily ascent-free, swapping the labels in an ascent
either corresponds to reordering the internal vertices to get the reverse-minimal order
or corresponds to the sliding procedure. For example, say we have the following label
sequence in Π•

4
(1, 2)1(3, 4)1

This corresponds to a pointed Lyndon forest with two components where the internal
vertices are ordered so that the internal vertex above leafs 1 and 2 comes first. When
we swap the labels in the sequence to get the ascent-free sequence

(3, 4)1(1, 2)1

we are just reordering the internal vertices so the one above leafs 3 and 4 comes first.
For an example where sliding occurs, consider the sliding procedure shown in Fig-

ure 12. The sequence of labels of the pointed Lyndon forest in the upper left corner
of the figure is

(5, 7)1(5, 6)0(2, 3)1(1, 4)1(1, 2)0
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Adding the red vertex r is corresponds to adding the label (1, 5)1 at the end of the
sequence since it merges together the components with minimal leaf label 1 and 5. So
we would have the sequence

(5, 7)1(5, 6)0(2, 3)1(1, 4)1(1, 2)0(1, 5)1.

This is the label sequence for a saturated chain starting at 0̂ of Π•
n. However, it is not

ascent-free since (1, 2)0(1, 5)1 is an ascent. Moreover, the corresponding tree in the
upper right corner of Figure 12 is not a pointed Lyndon tree. As λ• has the rank two
switching property, we can swap these to labels to get the sequence

(5, 7)1(5, 6)0(2, 3)1(1, 4)1(1, 5)1(1, 2)0.

This swap corresponds to sliding the root r to the left of its left child giving the
tree in the bottom right corner of Figure 12 whose label sequence is the one given
above. This sequence has an ascent at (1, 4)1(1, 5)1 and the corresponding tree is not
a pointed Lyndon tree. Swapping labels, we get

(5, 7)1(5, 6)0(2, 3)1(1, 5)1(1, 4)1(1, 2)0

which is ascent-free. Again, this swap corresponds to sliding r once again past its left
child to get the tree in the bottom left corner to Figure 12. Note that this sequence is
ascent-free and the tree we finish with is the corresponding pointed Lyndon tree for
this sequence.

Because the sliding procedure corresponds to the sorting procedure in the Whitney
dual, we get the following.

Theorem 3.8. The poset FLyn•
n is a Whitney dual to Π•

n. In particular, FLyn•
n
∼=

Rλ•(Π•
n).

We omit the full details of this proof here since it is rather technical and it is a case
by case analysis of the ways one can have ascents in the chains. For all the details,
the reader can consult [20, Section 3.2.2].

3.4. A Whitney dual for Πw
n . Here we give a combinatorial description for the

Whitney dual of the weighted partition poset. The method closely follows what we
did in the previous subsection. As such, we do not provide as many detailed examples.

In [15, Theorem 5.7], it was shown that the maximal ascent-free saturated chains
of Πw

n with respect to λw are in bijection with bicolored Lyndon trees. This bijection
can be modified to give a bijection between ascent-free chains of Πw

n starting at 0̂ and
bicolored Lyndon forests. It follows that the elements of the Whitney dual Rλw (Πw

n )
can be described using bicolored Lyndon forests. We briefly explain this bijection.

Let F be a bicolored Lyndon forest. As mentioned in Section 3.2, F has a unique
reverse-minimal linear extension on the internal vertices. To construct our ascent-free
chain c(F ), we follow a similar procedure as in the case for pointed Lyndon forests
(see Figure 11). We start with the bottom element, 10/20/ · · · /n0. At the ith step we
merge together the elements of the left and right subtrees rooted at the ith internal
vertex. We add together the weights of these blocks and add 1 to this weight if this
internal vertex is colored by 1. If the internal vertex is colored by 0, we do not add 1
to this sum. See [15, Figure 4] for an example.

To describe the covering relation in Rλ(Πw
n ), we need to describe a method to

merge bicolored Lyndon trees. Just like the case for the pointed partition poset,
the covering relation is defined using a sliding process. Let T1 and T2 be bicolored
Lyndon trees with the minimum leaf label of T1 less than the minimum leaf label
of T2. Let u ∈ {0, 1}. To u-merge T1 and T2, we first create a new vertex r and color
it so that color(r) = u. Then we add edges from r to the roots of T1 and T2. If the
resulting tree is a bicolored Lyndon tree, we stop. If not, we slide the new internal
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Figure 14. Bicolored Lyndon tree obtained by a 1-merge of two
bicolored Lyndon trees T1 and T2.

vertex r together with its left subtree past its left child. We continue this procedure
until we get a bicolored Lyndon tree. See Figure 14 for an example of this procedure.
Definition 3.9. The poset of bicolored Lyndon forests is the set of bicolored Lyndon
forests on [n], FLynw

n , together with the cover relation F ⋖F ′ whenever F ′ is obtained
from F when exactly two trees of F are u-merged for some u ∈ {0, 1}.

1

2 3

1

2 3 1 2

3

1 3

2

1 3

2

1 3

2

1 3

2 1

2 3

1

2 3

2 3

1

1 2

3

1 3

2

1 2

3

1 3

2

2 3

1

1̇ 2̇ 3̇

Figure 15. FLynw
3 .

Figure 15 depicts FLynw
3 .

Algebraic Combinatorics, Vol. 8 #6 (2025) 1593



Rafael S. González D’León, Joshua Hallam & Yeison A. Quiceno D.

Theorem 3.10. FLynw
n is a Whitney dual of Πw

n . In particular, FLynw
n
∼= Rλw

(Πw
n ).

As is the case with the pointed partition poset, the proof is a case by case analysis
of the ways one might have an ascent on an ascent-free chain when we add a new
label. See [20, Section 3.1.2] for all the details.

Remark 3.11. In Πw
n , the interval [0̂, [n]0] is isomorphic to the partition lattice Πn.

The labeling λw restricted to this interval is also an EW-labeling, and hence a subposet
of FLynw

n is also a Whitney dual for the partition lattice. In [0̂, [n]0] all labels are of the
form (a, b)0. Thus, all the ascent-free chains correspond to bicolored Lyndon forests
where every vertex must be Lyndon. Moreover, all the internal vertices are colored 0
(blue), so we can just assume that the internal vertices are uncolored. We then get a
Whitney dual of Πn where the elements are normalized binary forests whose internal
vertices are Lyndon and where the covering relation is given by merging together trees
to get normalized binary trees whose vertices are Lyndon. By restricting to forests
with internal vertices colored 0 (blue) in Figure 15, we get a depiction of this Whitney
dual of Π3. We should note that restricting λw to [0̂, [n]0] yields Stanley’s labeling [23]
for Πn. Stanley’s labeling was used in [14, Corollary 5.7] to construct a Whitney dual
to Πn isomorphic to the poset of increasing spanning forests ISFn. It follows then
that the subposet of FLynw

n formed by Lyndon forests (with blue internal nodes) is
isomorphic to ISFn.

4. Algebraic consequences of the EL-labelings
4.1. Homological consequences of the EL-labelings. In Section 2.4 we
showed that λ• is an EL-labeling of the order dual of Π•

n and λ•2 is an EL-labeling
of Π•

n. A poset and its order dual have the same order complex and hence also have
the same cohomology. As a result, Theorem 2.3 implies that the two EL-labelings
give bases for the cohomology of maximal intervals of Π•

n. These bases are indexed
by the ascent-free chains in the two labelings.

In Section 3.3 we showed that the maximal ascent-free chains of Π•
n with respect

to λ• are indexed by pointed Lyndon trees. Indeed, we gave a bijection mapping each
pointed Lyndon tree T to the ascent-free chain c(T ). Note that the dual labeling λ∗

•
has the same set of ascent-free chains as λ•. Consequently Theorem 2.15 implies that
ascent-free chains of the form c(T ), where T is a pointed Lyndon tree, form a basis
for cohomology.

Let T Lyn•
n,p be the set of pointed Lyndon trees such that along the path from the

leaf labeled p to the root, if the path moves to the left, the internal vertex label is 0 and
if it is to the right, the label is given by 1. In Figure 13 the reader can easily observe
all the trees in T Lyn•

3,p for p = 1, 2, 3 by selecting the subset of maximal elements in
FLyn•

3 with the leaf p decorated with a tilde (p̃). Note that T ∈ T Lyn•
n,p, if and only

if the top element of c(T ) is [n]p. We have the following consequences of Theorems 2.3
and 2.15 together with the characterization of the ascent-free chains of λ• presented
in Section 3.3.
Theorem 4.1. For every p ∈ [n] we have that

(1) The order complex ∆((0̂, [n]p)) is shellable and has the homotopy type of a
wedge of |T Lyn•

n,p| many spheres of dimension n− 3. As a consequence, the
interval [0̂, [n]p] is Cohen-Macaulay.

(2) The set {c(T ) | T ∈ T Lyn•
n,p} forms a basis for H̃n−3(0̂, [n]p).

Remark 4.2. Note that as a consequence of Theorem 4.1 and the fact that the in-
tervals [0̂, [n]p] are isomorphic, all the sets T Lyn•

n,p are equinumerous for any given
p ∈ [n].
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Now let us turn our attention to the consequences of the EL-labelings of Π•
n for

the operad PreLie. In the theory of non-associative algebras, a PreLie-algebra is
a vector space V that comes equipped with a binary operation ◦ which satisfies for
every v, w, z ∈ V the relation

(v ◦ w) ◦ z − v ◦ (w ◦ z) = (v ◦ z) ◦ w − v ◦ (z ◦ w).

Let PreLie(n) be the multilinear component of the free PreLie algebra on n gener-
ators. In [25], Vallette proved the following theorem (in terms of homology, which we
reinterpret here in terms of cohomology).

Theorem 4.3 (Theorem 13 [25]). We have the following Sn-module isomorphism

PreLie(n) ∼=Sn

⊕
p∈[n]

H̃n−3(0̂, [n]p)⊗ sgnn,

where sgnn is the sign representation of Sn.

Under Theorem 4.3 we obtain a corresponding basis for PreLie(n), which we de-
scribe now. Let T = TL∧u TR denote a normalized bicolored binary tree where TL and
TR are respectively the left and right subtrees from the root and u is the color of the
root. Define Θ(T ) to be the element in PreLie(n) defined recursively by Θ(T ) = a
when T = a is the one-leaved tree with leaf-label a, and if T = TL ∧u TR then

Θ(T ) =
{

Θ(TL) ◦Θ(TR) if u = 1,

Θ(TR) ◦Θ(TL) if u = 0.

As an example of this definition, let T be the pointed Lyndon tree in the bottom
left of Figure 12. One can check that the associated monomial Θ(T ) is (2 ◦ 3) ◦ ((1 ◦
(6 ◦ (5 ◦ 7))) ◦ 4). Theorems 4.1 and 4.3 imply the following theorem.

Theorem 4.4. The set {Θ(T ) | T ∈ T Lyn•
n} forms a basis for PreLie(n).

In [15], the authors proved the analogous theorem to Theorem 4.1 providing a
basis for the reduced cohomology H̃n−3(0̂, [n]i) of the maximal intervals of Πw

n for
i = 0, . . . , n − 1, and for the multilinear component Lie2(n) of the free bibracketed
Lie algebra in n generators. Those bases are indexed in terms of the bicolored Lyndon
trees, T Lynw

n , since they index the ascent-free chains of λw. We will show that the
same set of trees indexes a basis for H̃n−3(0̂, [n]p) and PreLie(n).

In [15] the authors prove that there is a rank-preserving bijection between Π•
n and

Πw
n . We prove here the following further statement about their sets of saturated chains

from 0̂.

Theorem 4.5. There is a label-preserving bijection between saturated chains from 0̂
in (Π•

n, λ•) (or (Π•
n, λ•2)) and in (Πw

n , λw).

Proof. First note that between λ• and λ•2 , the edge labels are the same, only the
ordering of the labels is different. So we can find the bijection using λ•. In (Π•

n, λ•) at
every step on a saturated chain from 0̂ we u-merge two blocks (A, p) and (B, q) such
that min A < min B and assign the label

λ•2(πππ ⋖ πππ′) = (min A, min B)u.

In (Πw
n , λw) at every step we merge two blocks (A, i) and (B, j) to obtain the block

(A ∪B, i + j + u) and assign the label
λw(πππ ⋖ πππ′) = (min A, min B)u.

Note that in both cases, at every merging step from bottom to top we are free to choose
between u = 0 or u = 1 and hence the sets of words of labels for saturated chains
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from 0̂ are equal. Since the saturated chains are uniquely determined by their words
of labels in both labelings, the words of labels induce a bijection among saturated
chains. □

Theorem 2.14 gives us analogous results to Theorem 4.1 and Theorem 4.4, but this
time in terms of bicolored Lyndon trees. Let T Lynw

n,p be the set of bicolored Lyndon
trees such that along the path from the leaf labeled p to the root, if the path moves
to the left, the internal vertex label is 0 and if it is to the right, the label is given
by 1.

Remark 4.6. Note that the definition of T Lynw
n,p amounts to selecting the bicolored

Lyndon trees whose associated maximal chains belong to the interval [0̂, [n]p].

Theorem 4.7. For every p ∈ [n] we have that
(1) The order complex ∆((0̂, [n]p)) has the homotopy type of a wedge of |T Lynw

n,p|
many spheres of dimension n − 3. Hence the interval [0̂, [n]p] is Cohen-
Macaulay.

(2) The set {c(T ) | T ∈ T Lynw
n,p} forms a basis for H̃n−3(0̂, [n]p), where c(T )

gives the corresponding maximal chain associated to T in Π•
n.

(3) The set {Θ(T ) | T ∈ T Lynw
n } forms a basis for PreLie(n).

Proof. Theorem 2.14 says that λ•2 is an EL-labeling of Π•
n. Theorem 4.5 implies that

the ascent-free words of labels according to λ•2 and λw are the same. The ascent-free
words of labels of λw are indexed by bicolored Lyndon trees by [15, Theorem 5.7].
The reader can check that the bicolored Lyndon trees in T Lynw

n,p are precisely the
ones who index the ascent-free chains in [0̂, [n]p] according to λ•2 . □

Vallette also concludes in [25, Theorem 9] that a criterion to show that a basic-
set quadratic operad P and its Koszul dual P

!

have the property of being Koszul is
to show that all maximal intervals of its associated operadic partition poset ΠP are
Cohen-Macaulay. Theorems 4.1 and 4.7 give then new proofs of the following theorem.

Theorem 4.8 (Theorem 1.13 [10]). The operads Perm and PreLie are Koszul oper-
ads.

4.2. CL-labelings compatible with isomorphisms and PBW bases. The au-
thors of [2] introduce a new compatibility condition on CL-labelings on the family of
operadic posets of an operad P. This new condition gives rise to a Poincaré–Birkhoff–
Witt (PBW) basis of P. This PBW basis comes from the increasing chains instead
of the ascent-free chains that are used to give a basis for the cohomology of the poset,
and hence for the Koszul dual of the operad. This condition is called compatibility
with isomorphism of subposets and, informally, it requires that for intervals that are
“P-isomorphic” there is a consistent map between the words of labels of saturated
chains mapping increasing chains to increasing chains, ascent-free chains to ascent-
free chains, and such that the lexicographic order is preserved. We refer the reader
to [2] for the complete context and proper definitions which we mostly omit here.

Both of the labelings (Πw
n , λw) and (Π•

n, λ•2) depend only on the minimal elements
of the blocks that are being merged at each step and the generator of the corresponding
operad that is being used to merge the blocks. Because the min function is preserved
under the unique order isomorphism between two totally ordered sets of the same
cardinality, we follow a very similar argument as the one in [2, Proposition 3.11] to
conclude the following theorem.

Theorem 4.9. The EL-labelings (Πw
n , λw) and (Π•

n, λ•2) are compatible with isomor-
phisms of subposets.
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cn−1

cn−2 n

c1
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1 2

Figure 16. A generic left comb with bicolored internal nodes.

The following two theorems then highlight the relevance of the notion of CL-
labelings compatible with isomorphisms in the context of operad theory.

Theorem 4.10 (Theorem 3.9 [2]). A quadratic basic-set operad P whose operadic
poset ΠP

n admits a CL-labeling compatible with isomorphisms of subposets admits a
partially ordered PBW basis given by the increasing maximal chains of the CL-labeling
where the order is given by the lexicographic order on saturated chains.

Theorem 4.11 (Theorem 1.6 [2]). An operad equipped with a partially ordered PBW
basis is Koszul.

We obtain as a corollary of Theorems 4.9, 4.10, and 4.11 a new proof of the fact
that the operads Com2, Perm, and their Koszul duals Lie2 and PreLie are all Koszul
operads. The reader can visit [10] and [11] for the complete definitions of these operads,
as well as the isomorphisms of their related operadic posets with Π•

n and Πw
n .

To determine the corresponding PBW bases predicted by Theorem 4.10 we use the
increasing chains both of the EL-labelings λw (described in [15, Theorem 3.2]) and of
λ•2 (described in the proof of Theorem 2.14). Note that from Theorem 4.5 it follows
that the increasing chains in both (Πw

n , λw) and (Π•
n, λ•2) have the same words of

labels. These increasing words of labels are indexed by the following family of trees.
Let lcombw

n be the set of left-combs of the form
((1 ∧c1 2) ∧c2 3) · · · ) ∧cn−1 n,

where for some i ∈ [n] we have that c1 = · · · = ci−1 = 0 and ci = · · · = cn−1 = 1 (See
Figure 16).

Theorem 4.12. We have that
(1) The EL-labeling (Π•

n, λ•2) determines the PBW basis for Perm formed by the
identity and tree-monomials of the form {Θ(T ) | T ∈ lcombw

n }n⩾1.
(2) The EL-labeling (Πw

n , λw) determines a PBW basis for Com2 formed by the
identity and tree-monomials of the form

((1 ◦c1 2) ◦c2 3) · · · ) ◦cn−1 n,

where for some i ∈ [n] we have that c1 = · · · = ci−1 = 0 and ci = · · · =
cn−1 = 1.

5. Whitney twins and non-uniqueness of Whitney duals
5.1. Whitney twins. The reader might have noticed at this point that the pointed
and the weighted partition posets are closely related. From Figure 17, we can see that
already the posets Π•

3 and Πw
3 are not isomorphic. This can be easily shown in general

for Π•
n and Πw

n since all maximal intervals in Π•
n are isomorphic but this is not the

case in Πw
n . In particular, for the latter poset the intervals [0̂, [n]0] and [0̂, [n]n−1] are

isomorphic to Πn which is not the case for any maximal interval in Π•
n for n ⩾ 3.
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Figure 17. Π•
3 and Πw

3 . Möbius values in red.

The reader can verify from Figure 17 that the Whitney numbers of the first and
second kind are the same for Π•

3 and Πw
3 . In [15] the authors prove that this is true

for any n ⩾ 1. Indeed there is a rank preserving bijection Πw
n → Π•

n induced by
transforming, in a weighted partition, every weighted set Aw into the pointed set Apw

where A = {p0 < p1 < · · · < p|A|−1}. The authors then use the fact that the two
posets are uniform [12, Definition 6.2] to conclude that their Whitney numbers of the
first and second kind are the same. This gives an example of the next definition.

Definition 5.1. Two graded posets P and Q are said to be Whitney twins if their
Whitney numbers of the first and second kind are the same, i.e., they satisfy

wk(P ) = wk(Q) and Wk(P ) = Wk(Q)
for all k.

Thus in our new terminology, the results in [15] can be recast into the following
proposition.

Proposition 5.2 ([15, Section 2.4]). For all n ⩾ 1, the posets Π•
n and Πw

n are Whitney
twins.

Note that if P1 and P2 are Whitney twins and Q1 and Q2 are Whitney duals of
P1 and P2 respectively, then Q1 and Q2 are Whitney twins. Thus we also have the
following immediate corollary from Proposition 5.2 and Theorems 3.8 and 3.10.

Corollary 5.3. For all n ⩾ 1, the posets FLynw
n and FLyn•

n are Whitney twins.

We should note that if P and Q are isomorphic, they are Whitney twins. Thus, at
this point, it could be that FLynw

n and FLyn•
n are Whitney twins merely because

they are isomorphic. We will show in Theorem 5.4 that this is only true for n ⩽ 3 and
is not the case for n ⩾ 4.

5.2. Non-uniqueness of Whitney duals. As mentioned in Corollary 5.3, FLynw
n

and FLyn•
n are Whitney twins. Here we explain why they are not isomorphic in gen-

eral. This in turn will show that a poset can have multiple (non-isomorphic) Whitney
duals. We also argue that another poset SFn already studied by Reiner [21] and
Sagan [22] is a third non-isomorphic Whitney dual of Πw

n and Π•
n.

Theorem 5.4. For n ⩾ 4, FLynw
n and FLyn•

n are not isomorphic. Consequently, Πw
n

and Π•
n have multiple Whitney duals.

Proof. Consider the maximal interval of FLynw
4 depicted in Figure 18. This interval

occurs in FLynw
n for all n ⩾ 4 since adding isolated vertices to the forests of the

interval does not change the interval’s structure. We claim that there are no intervals
in FLyn•

n (for n ⩾ 4) that start at 0̂ and are isomorphic to the interval in Figure 18.
Note that if we can verify this claim we will be done.
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1 2
3 4

1 2

4

3

1 2

4
3

1 2

3
4

1̇ 2̇ 3̇ 4̇

Figure 18. An interval of rank 3 in FLynw
4 .

Suppose that such an interval in FLyn•
n exists and let I be this interval. Note that

the cover relation on FLyn•
n only depends on the relative order of the leaf labels and

not the actual leaf labels themselves. So I must be isomorphic to an interval starting
at 0̂ in FLyn•

4. A simple check (see [20, Theorem 3.3.4] for a complete argument)
of the intervals of FLyn•

4 shows that no intervals starting at 0̂ are isomorphic to I,
completing the proof. □

Reiner [21] introduced a family of posets of rooted spanning forests SFn and
Sagan [22] computed the Whitney numbers of these posets. The poset SFn is formed
by rooted spanning forests where cover relations happen when two rooted trees are
merged by their roots selecting the new roots from the two that have been merged
(see Figure 19 for an example, there the square (red) nodes represent the roots of
the trees). As mentioned in [15], the Whitney numbers Πw

n and Π•
n are switched as

compared to SFn, which implies that SFn is also a Whitney dual to both posets.
From Figures 13, 15, and 19 it is already evident that SF3 is not isomorphic to
FLynw

3
∼= FLyn•

3. We show here that in fact SFn is not isomorphic to FLynw
n or

FLyn•
n for n ⩾ 3.

Theorem 5.5. For n ⩾ 3, FLyn•
n and SFn are not isomorphic.

Proof. Note first that SFn is an uniform graded poset according to the definition
in [12]. More specifically, if F ∈ SFn is an element of rank ρ(F ) = i then the filter
U(F ) in SFn is isomorphic to SFn−i. Indeed, the rules of merging in the filter U(F )
are only dependent on the roots of F and any F ∈ SFn of rank ρ(F ) = i has n − i
roots.

When n = 3, the posets SF3 and FLyn•
3 are clearly non-isomorphic as can be

appreciated from Figures 13 and 19, so let us assume that n ⩾ 4. Consider the
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Figure 19. SF3

5

6

1 n

4

• •
2 3

Figure 20. Pointed Lyndon forest used in the proof of Theorem 5.5.

pointed Lyndon forest F of Figure 20. The root of the unique nontrivial tree in
F is a Lyndon node whose minimal element in the right subtree is 4. Since 4 is
larger than both 2 and 3, we conclude that the filter U(F ) in FLyn•

n is isomorphic
to FLyn•

3. Now, if there is an isomorphism f : FLyn•
n → SFn, this induces an

isomorphism U(F ) ∼= U(f(F )) ∼= SF3 since the element f(F ) has rank n − 3, but
this is a contradiction. □

The proof of the following theorem follows the same idea as in Theorem 5.5.

Theorem 5.6. For n ⩾ 3, FLynw
n and SFn are not isomorphic.

Remark 5.7. We should note that the first two authors have found a CW-labeling (a
more general version of an EW-labeling) of Πw

n whose corresponding Whitney dual is
SFn. This will be further discussed in a forthcoming work and can be already found
in the ArXiv version of [14].
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