
ALGEBRAIC
 COMBINATORICS

Atsuo Kuniba, Masato Okado & Travis Scrimshaw
A strange five vertex model and multispecies ASEP on a ring
Volume 8, issue 6 (2025), p. 1713-1741.
https://doi.org/10.5802/alco.457

© The author(s), 2025.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.457
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 8, issue 6 (2025), p. 1713–1741
https://doi.org/10.5802/alco.457

A strange five vertex model and
multispecies ASEP on a ring

Atsuo Kuniba, Masato Okado & Travis Scrimshaw

Abstract We revisit the problem of constructing the stationary states of the multispecies asym-
metric simple exclusion process on a one-dimensional periodic lattice. Central to our approach
is a quantum oscillator weighted five vertex model which features a strange weight conserva-
tion distinct from the conventional one. Our results clarify the interrelations among several
known results and refine their derivations. For instance, the stationary probability derived
from the multiline queue construction by Martin (2020) and Corteel–Mandelshtam–Williams
(2022) is identified with the partition function of a three-dimensional system. The matrix prod-
uct operators by Prolhac–Evans–Mallick (2009) acquire a natural diagrammatic interpretation
as corner transfer matrices (CTM). The origin of their recursive tensor structure, as ques-
tioned by Aggarwal–Nicoletti–Petrov (2023), is revealed through the CTM diagrams. Finally,
the derivation of the Zamolodchikov–Faddeev algebra by Cantini–de Gier–Wheeler (2015) is
made intrinsic by elucidating its precise connection to a solution to the Yang–Baxter equation
originating from quantum group representations.

1. Introduction
The asymmetric simple exclusion process (ASEP) [22, 25] is a fundamental model
of non-equilibrium stochastic dynamics with many applications in physics, biology,
probability theory, and other scientific fields. In recent years, it has been extensively
studied, particularly in one dimension, leading to a variety of generalizations and a
wealth of results that intersect with statistical mechanics, algebraic combinatorics,
special functions, integrable systems, representation theory, etc. See for example [2,
3, 5, 6, 7, 8, 23, 24] and the references therein.

In this paper, we consider the standard continuous time n-species ASEP on a
periodic lattice of length L. Each local state is selected from t0, 1, . . . , nu, where
1, . . . , n represent the presence of one of the n species of particles, and 0 corresponds
to an empty site. The model includes a parameter t that determines the asymmetry
of the nearest-neighbor hopping rates. The first significant problem is to construct a
stationary state, which is unique within each sector specified by the particle content.
The problem is trivial for n “ 1, where all the possible states are equally probable.
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The multispecies case n ě 2 is non-trivial and has been solved in two intriguing
ways: combinatorially and algebraically. The combinatorial approach is known as the
multiline queue (MLQ) construction [7, 23], while the algebraic method is based on the
Zamolodchikov–Faddeev (ZF) algebra [6, 24]. The latter directly leads to the matrix
product formula for the (unnormalized) stationary probability of the configuration
pσ1, . . . , σLq P t0, . . . , nuL:

Ppσ1, . . . , σLq “ TrpXσ1 ¨ ¨ ¨ XσL
q.

Here X0, . . . , Xn are operators acting on some auxiliary space over which the trace
is taken. It is well known that the above formula is valid if there are (not necessarily
unique) spectral parameter dependent versions X0pzq, . . . , Xnpzq satisfying the ZF
algebra whose structure function is a stochastic R matrix related to the Markov
matrix of the n-ASEP.

Central in our approach is a certain five vertex model on the two-dimensional square
lattice whose “Boltzmann weights” take values in a t-deformed quantum oscillator
algebra acting on its bosonic Fock space. We call it the t-oscillator weighted five
vertex model. See (54). A curious feature is that it does not satisfy the usual weight
conservation or the so-called “ice condition” as in the six vertex model [4], nor does
it satisfy the Yang–Baxter equation. However, the model can also be interpreted as a
three-dimensional system, where the Fock space is attached to the edges in the third
direction.

The strange five vertex model plays a pivotal role, refining many known results [6,
7, 23, 24] and synthesizing their techniques together. Despite not satisfying the Yang–
Baxter equation, it still presents many beneficial aspects:

‚ The operators X0pzq, . . . , Xnpzq are formulated as corner transfer matrices
(CTM) à la Baxter (cf. [4, Chap.13]).

‚ These CTM diagrams immediately lead to the recursion relation of these
operators with respect to n.

‚ Stationary probabilities are identified with the partition functions of a three-
dimensional system.

‚ The generating sums of the combinatorial weights in MLQs are readily iden-
tified with a simple trace of the t-oscillators.

‚ The rank-reducing RTT “ TTR relation for proving the ZF algebra is linked
with the standard solution of the Yang–Baxter equation constructed from the
symmetric tensor representations of the quantum group (see Remark 5.1).

The second item above clarifies the origin of the tensor structure of Xα questioned
at the end of [2, Sec.4.2]. The conservation law in the strange five vertex model is
designed around the MLQ pairing, providing a natural framework for such analysis.
This paper presents these results concisely, without the need for heavy machinery
from integrable probability, making it both accessible and efficient to read.

The outline of the paper is as follows. In Section 2, we recall the n-ASEP and a
general relation between a matrix product formula TrpXσ1 ¨ ¨ ¨ XσL

q for the stationary
probabilities and the ZF algebra among the spectral parameter-dependent operators
X0pzq, . . . , Xnpzq.

In Section 3, we reexamine the combinatorial approach to stationary states by
the MLQ construction [7, 23]. We demonstrate that the result can be expressed as
a certain composition Mpq, tq of linear operators which naturally lends itself to a
diagrammatic representation as a CTM of size n (Proposition 3.6 and (46)).

In Section 4, we introduce the strange five vertex model, whose statistical weights
take values in a t-oscillator algebra A. This model can be interpreted as a three
dimensional (3D) system, where A acts on Fock spaces in the third dimension. We
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establish that the stationary probabilities correspond to the partition function of
this 3D system, with boundary conditions derived from the n-ASEP configuration
(Theorem 4.4 and (77)). The matrix product operators X0pzq, . . . , Xnpzq play the
role of the layer transfer matrices of the system (78). They obey a recursion relation
with respect to the rank n, which follows directly from the CTM diagrams.

In Section 5, we provide a new proof of the ZF algebra relation among the matrix
product operators X0pzq, . . . , Xnpzq. It is the most natural one from the perspective
of quantum integrable systems, elucidating a precise relationship (97) with the Yang–
Baxter equation of the relevant quantum R matrices.

Section 6 is devoted to concluding remarks.
After the basic definitions of the model in Section 2, the text can also be read in

the following order: Section 4 and Section 5, to establish the matrix product formula
first before proceeding to Section 3, where the connection with the MLQ method is
explained.

2. Multispecies ASEP
2.1. Definition of n-ASEP. Consider the periodic 1D lattice with L sites, which
will be denoted by ZL. Each site i P ZL is assigned with a variable σi P t0, 1, . . . , nu,
where σi “ α is interpreted as the site i is occupied by a particle of type α if α ‰ 0
and vacant if α “ 0. We assume 1 ď n ă L throughout. The space of states is given
by

pCn`1qbL »
⊕

pσ1,...,σLqPt0,...,nuL

C|σ1, . . . , σLy.(1)

Consider a stochastic process in which neighboring pairs of local states pσi, σi`1q “

pσ, σ1q are interchanged as pσ, σ1q Ñ pσ1, σq with the transition rate tθpσăσ1
q with

some parameter t ě 0. Here and in what follows we use the notation θptrueq “ 1 and
θpfalseq “ 0. Let P pσ1, . . . , σL; T q be the probability of finding the state |σ1, . . . , σLy

at time T , and set

|P pT qy “
ÿ

pσ1,...,σLqPt0,...,nuL

P pσ1, . . . , σL; T q|σ1, . . . , σLy.(2)

By n-ASEP we mean a Markov process governed by the continuous-time master equa-
tion

d

dT
|P pT qy “ H|P pT qy,(3)

where the Markov matrix(1) has the form

H “
ÿ

iPZL

H loc
i,i`1, H loc : |α, βy ÞÑ p|β, αy ´ |α, βyqtθpαăβq,(4)

where H loc
i,i`1 acts on the ith and the pi`1qth components as H loc and as the identity

elsewhere. By the definition H loc is expressed as

H loc “
ÿ

0ďαăβďn

ptEβα b Eαβ ´ tEαα b Eββ ` Eαβ b Eβα ´ Eββ b Eααq(5)

in terms of the matrix unit Eαβ acting as Eαβ |γy “ δβγ |αy.

(1)Also called a “Hamiltonian” by abuse of terminology despite it not being Hermitian in general.
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Example 2.1. Consider n “ 1 and L “ 3, then we have

H loc
1,2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
0 0 0
0 ´t 1
0 t ´1

´t 1 0
t ´1 0
0 0 0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

|000y

|001y

|010y

|100y

|011y

|101y

|110y

|111y

, H “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
A 1 t
t A 1
1 t A

A 1 t
t A 1
1 t A

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where A “ ´t ´ 1 and H “ H loc
1,2 ` H loc

2,3 ` H loc
3,1 with H loc

3,1 “ H loc
3,4 by convention.

As H preserves the particle content, it acts on each sector labeled with the multi-
plicity m “ pm0, . . . , mnq P pZě0qn`1 of the particles:

W pmq “
ÿ

σPΣpmq

C|σy, Σpmq “ tσ “ pσ1, . . . , σLq P r0, nsL |

L
ÿ

j“1
δα,σj

“ mα, @αu,

(6)

where r0, ns “ t0, . . . , nu. Note that m0 ` ¨ ¨ ¨ ` mn “ L holds and dim W pmq “
L!

m0!¨¨¨mn! . A sector W pm0, . . . , mnq such that mα ě 1 for all 0 ď α ď n is called basic.
Non-basic sectors are equivalent to a basic sector for n1-ASEP with some n1 ă n by a
suitable relabeling of species. Thus we shall exclusively deal with basic sectors in this
paper (hence n ď L as mentioned before).

Example 2.2. Consider n “ 2 and L “ 4. Then the matrix H restricted to the sector
m “ p2, 1, 1q is

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

A 1 0 0 0 1 0 0 0 0 t 0
t B 1 1 0 0 0 0 0 0 0 t
0 t C 0 1 0 0 0 0 t 0 0
0 t 0 A 1 0 0 0 1 0 0 0
0 0 t t B 1 1 0 0 0 0 0
t 0 0 0 t C 0 1 0 0 0 0
0 0 0 0 t 0 A 1 0 0 0 1
0 0 0 0 0 t t B 1 1 0 0
0 0 0 t 0 0 0 t C 0 1 0
0 0 1 0 0 0 0 t 0 A 1 0
1 0 0 0 0 0 0 0 t t B 1
0 1 0 0 0 0 t 0 0 0 t C

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

|0012y

|0102y

|1002y

|0120y

|1020y

|0021y

|1200y

|0201y

|0210y

|2001y

|2010y

|2100y

where A “ ´2t ´ 1, B “ ´2t ´ 2, and C “ ´t ´ 2. Note that the left null eigenvector
of the Markov matrix H is p1, . . . , 1q reflecting the total probability conservation.

2.2. Stationary states. In each sector W pmq there is a unique state |P pmqy up to
a normalization, called the stationary state, satisfying H|P pmqy “ 0.

The stationary state for 1-ASEP is uniform in that all the configurations are real-
ized with an equal probability.

Example 2.3. We present (unnormalized) steady states in small sectors of 2-ASEP
and 3-ASEP in the form

|P pmqy “ |ξpmqy ` C|ξpmqy ` ¨ ¨ ¨ ` CL´1|ξpmqy
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where C denotes a cyclic shift C|σ1, . . . , σLy “ |σL, σ1, . . . , σL´1y. Note that the choice
of |ξpmqy is not unique.

|ξp1, 1, 1qy “ p2 ` tq|012y ` p1 ` 2tq|021y,

|ξp2, 1, 1qy “ p3 ` tq|0012y ` 2p1 ` tq|0102y ` p1 ` 3tq|1002y,

|ξp1, 2, 1qy “ p2 ` t ` t2q|0112y ` p1 ` tq2|1012y ` p1 ` t ` 2t2q|1102y,

|ξp1, 1, 2qy “ p3 ` tq|1220y ` 2p1 ` tq|2120y ` p1 ` 3tq|2210y,

|ξp1, 2, 2qy “ p3 ` t ` t2q|11220y ` p2 ` 2t ` t2q|12120y ` p1 ` 3t ` t2q|12210y

` p2 ` t ` 2t2q|21120y ` p1 ` 2t ` 2t2q|21210y ` p1 ` t ` 3t2q|22110y,

|ξp2, 1, 2qy “ p1 ` 6t ` 7t2 ` 6t3q|00221y ` p2 ` 7t ` 6t2 ` 5t3q|02021y

` p1 ` tqp3 ` 4t ` 3t2q|02201y ` p1 ` tqp3 ` 4t ` 3t2q|20021y

` p5 ` 6t ` 7t2 ` 2t3q|20201y ` p6 ` 7t ` 6t2 ` t3q|22001y,

|ξp2, 2, 1qy “ p3 ` t ` t2q|00112y ` p2 ` 2t ` t2q|01012y ` p2 ` t ` 2t2q|01102y

` p1 ` 3t ` t2q|10012y ` p1 ` 2t ` 2t2q|10102y ` p1 ` t ` 3t2q|11002y,

|ξp1, 1, 1, 1qy “ p9 ` 7t ` 7t2 ` t3q|0123y ` p3 ` 11t ` 5t2 ` 5t3q|0213y

` 3p1 ` tq3|1023y ` p5 ` 5t ` 11t2 ` 3t3q|1203y

` 3p1 ` tq3|2013y ` p1 ` 7t ` 7t2 ` 9t3q|2103y.

These formulas reduce to [21, Ex.2.1] at t “ 0. The result |ξp1, 1, 1, 1qy agrees with the
anti-clockwise reading of [23, Fig.1.3] with q Ñ t, if the local states 1, 2, 3, ¨ therein are
replaced by 3, 2, 1, 0 here, respectively. Moreover, according to |ξp2, 1, 1qy in the above,
the right null eigenvector of the Markov matrix H from Example 2.2, the nontrivial
stationary state up to normalization, is equal to the (column) vector

r3 ` t, 2p1 ` tq, 1 ` 3t, 3 ` t, 2p1 ` tq, 1 ` 3t, 3 ` t, 2p1 ` tq, 1 ` 3t, 3 ` t, 2p1 ` tq, 1 ` 3tsT .

2.3. Matrix product construction. Consider the stationary state

|P pmqy “
ÿ

σPΣpmq

Ppσq|σy(7)

and suppose that the stationary probability Ppσq is expressed in the matrix product
form

Ppσ1, . . . , σLq “ TrpXσ1 ¨ ¨ ¨ XσL
q(8)

in terms of some (not necessarily unique) operators X0, . . . , Xn. Introduce the no-
tations for the matrix elements of the local Markov matrix (5) and the associated
product of Xi’s as

H loc|α, βy “
ÿ

γ,δ

hγ,δ
α,β |γ, δy, phXXqα,β :“

ÿ

γ,δ

hα,β
γ,δ XγXδ.(9)

Then we have

H|P pmqy “
ÿ

iPZL

ÿ

σPΣpmq

Pp. . . , σi, σi`1, . . .qH loc
i,i`1|. . . , σi, σi`1, . . .y

“
ÿ

iPZL

ÿ

σPΣpmq

ÿ

σ1
i
,σ1

i`1

Trp¨ ¨ ¨ Xσi
Xσi`1 ¨ ¨ ¨ qh

σ1
i,σ1

i`1
σi,σi`1 |. . . , σ1

i, σ1
i`1, . . .y

“
ÿ

σPΣpmq

ÿ

iPZL

Trp¨ ¨ ¨ phXXqσi,σi`1 ¨ ¨ ¨ q|. . . , σi, σi`1, . . .y.
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Therefore if there are another set of operators pX1, . . . , pXn obeying the hat relation

phXXqα,β “ Xα
pXβ ´ pXαXβ ,(10)

the vector (7) satisfies H|P pmqy “ 0 thanks to the cyclicity of the trace. Then (8),
assuming it is non-zero and finite, must coincide with the actual stationary probability
up to an overall normalization due to the uniqueness of the stationary state. Note on
the other hand that pXi satisfying the hat relation (10) for a given Xi is not unique.
For example pXi Ñ pXi ` cXi keeps (10) valid.

From (5) we find the explicit form of (10) as

tθpαąβqXβXα ´ tθpαăβqXαXβ “ Xα
pXβ ´ pXαXβ p0 ď α, β ď nq.(11)

It is easily seen that (11) is satisfied by setting

Xα “ Xαp1q, pXα “ p1 ´ tq
dXαpzq

dz

∣∣∣∣
z“1

(12)

for the operator X0pzq, . . . , Xnpzq involving a spectral parameter z provided that they
obey the relations

px ´ tyqXαpyqXβpxq “ p1 ´ tqxXαpxqXβpyq ` px ´ yqXβpxqXαpyq p0 ď α ă β ď nq,

(13)

rXαpxq, Xβpyqs “ rXαpyq, Xβpxqs p0 ď α, β ď nq.

(14)

The relation (13) allows one to interchange the order of the spectral parameters y, x
into x, y for α ă β. An analogous relation for α ą β can be derived by combining (14)
and (13) as

XαpyqXβpxq “ XβpxqXαpyq ´ XβpyqXαpxq ` XαpxqXβpyq

“

ˆ

1 ´
p1 ´ tqx

x ´ ty

˙

XβpxqXαpyq `

ˆ

1 ´
x ´ y

x ´ ty

˙

XαpxqXβpyq.

In this way, one finds that (13) and (14) are presented in the form of a Zamolodchikov–
Faddeev (ZF) algebra:

XαpyqXβpxq “

n
ÿ

γ,δ“0
R

`

y{x
˘β,α

γ,δ
XγpxqXδpyq.(15)

Here the structure function is given by

Rpzqα,α
α,α “ 1, Rpzq

α,β
α,β “

p1 ´ zqtθpαăβq

1 ´ tz
, Rpzq

β,α
α,β “

p1 ´ tqzθpαąβq

1 ´ tz
,(16)

for α ‰ β. The other elements are zero. This is known as a quantum R matrix for
the vector representation of Utppsln`1q [10, 16]. Set qRpzq “ PRpzq with P being the
transposition P pu b vq “ v b u. This satisfies the Yang–Baxter relation (cf. [4])

qR23pyq qR12pxyq qR23pxq “ qR12pxq qR23pxyq qR12pyq,(17)

which is the associativity of (15). The R matrix is stochastic in the sense that
ř

α,β Rα,β
γ,δ pzq “ 1 for any 0 ď γ, δ ď n.

3. Multiline queue construction
We recapitulate the multiline queue (MLQ) construction of ASEP states by [23] in a
form adapted to our conventions. See also [7]. We also reformulate it as a composition
of the matrix |Mpz, tq, which we introduce as the building block of the construction.
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3.1. Ball system. We use the following notations:

i “ pi1, . . . , iLq P t0, 1uL, |i| “ i1 ` ¨ ¨ ¨ ` iL, i ď j def
ðñ j ´ i P pZě0qL,(18)

Bl “ ti “ pi1, . . . , iLq P t0, 1uL | |i| “ lu.(19)
Consider a basic sector W pmq for m “ pm0, . . . , mnq, and set

li “ mi ` mi`1 ` ¨ ¨ ¨ ` mn p0 ď i ď nq,(20)
Bpmq “ Bln

b Bln´1 b ¨ ¨ ¨ b Bl1 .(21)
We prefer to use b to denote the product of sets rather than ˆ as we are treating
these sets as basis elements (in the sense of Kashiwara’s crystal bases [17]). Note that
L “ l0 ą l1 ą ¨ ¨ ¨ ą ln ě 1 since the sector W pmq is assumed to be basic. Elements
of Bpmq will be referred to as a ball system.

Consider a ball system given as b “ bn b ¨ ¨ ¨ b b1 P Bpmq, where bi “

pbi1, . . . , biLq P Bli . We identify b with a ball diagram, which is an n ˆ L rectangular
tableau in which the box at the ith row and the jth column contains a ball if bij “ 1
and is empty if bij “ 0. Here and in what follows, the rows (resp. columns) are
numbered from the top (resp. the left) of the diagram. The r-th row corresponding
to br will simply be called Row r. A ball is understood as carrying the information
of its location in the tableau.

Example 3.1. Consider the 3-ASEP on the length L “ 9 lattice in the sector W pmq

with m “ p2, 3, 2, 2q. We have pl1, l2, l3q “ p7, 4, 2q. Consider a ball system
b “ b3 b b2 b b1 P B2 b B4 b B7,(22a)

b3 “ p001010000q, b2 “ p110100010q, b1 “ p011111101q.(22b)
Its corresponding ball diagram looks as follows:

Row 1

Row 2

Row 3

3.2. Multiline queue. Let us introduce a pairing of a ball system. Given a ball
system b “ bn b ¨ ¨ ¨ b b1 P Bpmq, we set bpnq “ b, mpnq “ m and construct a family
of smaller ball systems

bprq P Bpmprqq “ B
l

prq
r

b ¨ ¨ ¨ b B
l

prq

1
pl

prq

i “ mi ` mi`1 ` ¨ ¨ ¨ ` mrq(23)

in the order r “ n ´ 1, n ´ 2, . . . , 1. The component B
l

prq

i

corresponds to the Row i of

the ball system bprq. Note that l
prq
r “ mr. Let d1, . . . , dmr

be the balls of Row r in the
ball diagram of (23) from left to right in this order. We pair the ball dα to a ball d1

α

in Row pr ´ 1q in the order α “ 1, 2, . . . , mr. The choice of d1
α is arbitrary except that

if there is a yet unpaired ball just above dα, that must be selected. (Such a case is
called trivial pairing.) The partners d1

1, . . . , d1
mr

are not necessarily aligned from left
to right in Row pr ´ 1q. Let d2

1, . . . , d2
mr

be these balls read from left to right. They
are paired to the balls in Row pr ´ 2q in this order similarly. Repeating this process
we get a sequence of injections

(24)
tballs in Row r of bprqu ãÑ tballs in Row pr ´ 1q of bprqu ãÑ ¨ ¨ ¨

ãÑ tballs in Row 1 of bprqu.

Denote the final image by cr P Bmr
. This procedure will be referred to as the pn`1´rq

th round of the whole pairing. After completion of it, we assign a color r to all the
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balls captured in the round, and eliminate them. The resulting ball system defines
bpr´1q. A pairing of b P Bpmq is obtained by doing the round 1, 2, . . . , n in this order,
where the last round n actually does not introduce an injection but only assigns the
color 1 to the remaining balls in the Row 1.

A pairing of a ball system b P Bpmq may be regarded as a collection ϕ “

pϕ1,2, . . . , ϕn´1,nq of injections

ϕs´1,s : tballs in Row s of bu ãÑ tballs in Row ps ´ 1q of bu(25)

satisfying a certain condition. A ball system assigned with a pairing is called a mul-
tiline queue (MLQ) and denoted by Q “ pϕ, bq. We identify it with a MLQ diagram,
which is the ball diagram endowed with an arrow d1 Ð d assigned to each pair of
balls d, d1 such that d1 “ ϕr´1,rpdq for some 2 ď r ď n. The arrow starts from d
and proceeds to the left, cyclically wrapping if necessary, until it reaches d1 upstairs.
There are in general many MLQs Q “ pϕ, bq for a given ball system b. The set of
MLQs built in this way based on the set of ball systems Bpmq in (21) will be denoted
by MLQpmq.

Each ball d in Q “ pϕ, bq P MLQpmq is uniquely colored as Cpdq P t1, 2, . . . , nu by
the rule explained in the above. By construction, the colors of balls in Row r range
over tr, r `1, . . . , nu. In particular, there are exactly mα balls of color α for 1 ď α ď n
in Row 1 of any MLQ from MLQpmq. We will always understand that balls in MLQs
have been colored.

Example 3.2. The following is a MLQ for the ball system in Example 3.1. Non-trivial
pairings are labeled as p1, . . . , p4 for later convenience.

Row 1

Row 2

Row 3 3 3
p2p1

3322

p3p4
3 32 21 1 1

3.3. ASEP state |PMLQpmqqy. Here we construct an ASEP state |PMLQpmqqy P

W pmq in three steps. It is known as the MLQ construction of the stationary state [7,
23]. For ASEP, only the q “ 1 case is necessary. However, we explain a generaliza-
tion including generic q that was introduced in [7] for applications to Macdonald
polynomials. We shall focus on the construction process here. The connection to the
matrix product method in Section 2.3 and a proof that |PMLQpmqq“1y is indeed the
stationary state will be presented in later sections.
Step 1: We define a map from MLQs to ASEP configurations (see (6) for the defi-

nition of Σpmq)

π : MLQpmq Ñ Σpmq; Q ÞÑ pσ1, . . . , σLq(26)

by stating that the image is the configuration of colored balls in Row 1 of Q,
where empty boxes are regarded as 0. Concretely, σj “ Cpdq P t1, . . . , nu if d is
the ball corresponding to b1,j “ 1 and σj “ 0 if b1,j “ 0. For Q in Example 3.2,
b1 “ pb1,1, . . . , b1,8q is given in Example 3.1 and πpQq “ p0, 2, 1, 3, 2, 3, 1, 0, 1q.

Step 2: We assign a weight wtq,t to a MLQ Q “ pϕ, bq as

wtq,tpQq “
ź

p

wtq,tppq,(27)

where the product is taken over all the pairs of balls p “ pd1 Ð dq in Q
specified by ϕ as d1 “ ϕr´1,rpdq for some 2 ď r ď n. Let Bc,r be the set of the
balls in Row r and Row pr´1q having the color c. There are mc such balls
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in both rows and they are paired by ϕr´1,r. We determine the weights in the
following order according to the pairing procedure explained in the previous
subsection:

Bn,n, Bn,n´1, . . . , Bn,2,

Bn´1,n´1, . . . , Bn´1,2,

. . .

B3,3, B3,2,

B2,2.

(28)

The i th row here corresponds to the i th round of the pairing. Following the
previous subsection, we consider the balls in Row r from left to right within
each Bc,r.(2) When seeking a pairing partner of a ball d in Row r, the balls
d1 in Row pr ´ 1q that are not yet paired are called free. As mentioned after
(25), the pairing p “ pd1 Ð dq is depicted as an arrow going from d to the
left cyclically until it ends at d1 upstairs. Suppose that d and d1 are in the
j-th and the j1-th columns of the MLQ diagram from the left. If j1 “ j, it
is a trivial pairing and we set wtq,tppq “ 1. Suppose j1 ‰ j. Set δwrap “ 1 if
the arrow is wrapping, i.e. j ă j1. Otherwise we set δwrap “ 0. The free balls
in Row pr ´ 1q in the columns j1 ` 1, j1 ` 2, . . . , j ´ 1 (indices regarded as
elements in ZL here) are called skipped. Now the weight is given as

wtq,tppq “
p1 ´ tqt#skippedqpc´r`1qδwrap

1 ´ qc´r`1t#free “

$

’

’

&

’

’

%

p1 ´ tqt#skipped

1 ´ qc´r`1t#free if j1 ă j,

p1 ´ tqt#skippedqc´r`1

1 ´ qc´r`1t#free if j ă j1.

(29)

In Example 3.2, the weights of the non-trivial pairings are

(30)
wtq,tpp1q “

qt2p1 ´ tq

1 ´ qt4 , wtq,tpp2q “
1 ´ t

1 ´ qt3 ,

wtq,tpp3q “
tp1 ´ tq

1 ´ q2t6 , wtq,tpp4q “
qt2p1 ´ tq

1 ´ qt5 ,

and wtq,tpQq is the product of them.
Step 3: By using π (26) and the weight (27), the state |PMLQpmqqy is constructed

as

(31) |PMLQpmqqy “
ÿ

QPMLQpmq

wtq,tpQq|πpQqy.

We note that when q “ 1, the weight wtq,tpQq is invariant under (horizontal) ZL

cyclic shifts of Q. Therefore |PMLQpmqq“1y is translationally invariant.

(2)The sum of the resulting weights (27) in (33) is actually independent of this order as shown
in [7, Lem. 2.1].
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Example 3.3. Consider the pL, nq “ p4, 2q case. The MLQs contributing to the states
|1012y, |1021y, |2011y P W p1, 2, 1q and their weights are given as

|1012y :
2

211
1,

2

211 qtp1 ´ tq

1 ´ qt3 ;

|1021y :
2

2 11
1,

2

2 11 qt2p1 ´ tq

1 ´ qt3 ;

|2011y :
2

2 11
1,

2

2 11 1 ´ t

1 ´ qt3 .

Summing them at q “ 1 yields

(32)
p1 ` t ` t2q|PMLQp1, 2, 1qq“1y “ p1 ` tq2|1012y ` p1 ` t ` 2t2q|1021y

` p2 ` t ` t2q|2011y ` ¨ ¨ ¨ ,

which agrees with |ξp1, 2, 1qy in Example 2.3 in view of the cyclic ZL symmetry.

3.4. Matrix |M . We introduce a matrix |M which describes the interaction between
neighboring rows in MLQs. Consider a MLQ for n “ 2 case with pl1, l2q “ pm, lq pl ă

mq. It contains two rows and have the form Q “ pϕ, i b jq with i b j P Bl b Bm. Here
i “ pi1, . . . , iLq P Bl means that there is ikp“ 0, 1q ball in the k th column from the
left in the lower Row 2. Similarly j “ pj1, . . . , jLq P Bm specifies the positions of balls
in the upper Row 1.

For any a b b P Bl b Bm´l and i b j P Bl b Bm with l ă m, define a generating
function of the weights by

(33) Mpq, tqa,b
i,j “ δa`b

j

ÿ

ϕ

wtq,tpQq,

where δx
y “ θpx “ yq. The sum is taken over the pairings ϕ satisfying the condition

ϕptballs in iuq “ tballs in au.(34)

To summarize, the indices a, b, i, j of Mpq, tqa,b
i,j have the following meaning, where

the last column is an interpretation in the language of the queuing processes in [23]:

(35)

Indices ball picture queuing process
Bl Q i balls in the lower row arrival
Bm Q j balls in the upper row service
Bl Q a paired balls in the upper row departure

Bm´l Q b unpaired balls j ´ a in the upper row unused service

The constraint a ` b “ j in (33) is natural from the queuing process interpretation.
In general, there are numerous choices for ϕ contributing to the sum (33), with a
maximum of l!.

Example 3.4. Consider the two MLQs for pl1, l2q “ pα ` β ` 1, 2q as follows:

¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨

α
hkkkkkkikkkkkkj

β
hkkkkkkikkkkkkj

¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨

α
hkkkkkkikkkkkkj

β
hkkkkkkikkkkkkj
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For the corresponding a, b, i, j one has

(36)
Mpq, tqa,b

i,j “
tβ´1p1 ´ tq

1 ´ qtα`β`1
1 ´ t

1 ´ qtα`β
`

qtα`βp1 ´ tq

1 ´ qtα`β`1
tβ´1p1 ´ tq

1 ´ qtα`β

“
tβ´1p1 ´ tq2p1 ` qtα`βq

p1 ´ qtα`βqp1 ´ qtα`β`1q
.

For l P Zě1, let Vl be the vector space having a basis tvbu labeled by Bl from 19:
Vl “

⊕
bPBl

Cpq, tqvb.(37)

For l ă m, we define a linear operator |Mpz, tq depending on t and another variable z
by

|Mpz, tq : Vl b Vm Ñ Vm´l b Vl(38a)

vi b vj ÞÑ
ÿ

abbPBlbBm´l

Mpz, tqa,b
i,j vb b va pi b j P Bl b Bmq,(38b)

where the double sum in the RHS is actually a single sum
ÿ

aPBl,aďj
Mpz, tqa,j´a

i,j vj´a b va

since Mpz, tqa,b
i,j “ 0 unless b “ j ´ a by (33).

Remark 3.5. One might think that by introducing M 1pq, tqa,b
i,j :“ δa`b

i`j
ř

ϕ wtq,tpQq,
setting

|M 1pz, tq : Vl b Vm Ñ Vm b Vl

vi b vj ÞÑ
ÿ

abbPBlbBm

M 1pz, tqa,b
i,j vb b va

is more natural rather than (33) and (38) since it possesses the standard “weight
conservation”’ property common in quantum R matrices. The reason we employ the
strange |Mpz, tq in (38) is to make it fit with the queuing process interpretation in
(35) and will further be detailed in the next subsection. We additionally note that
the Yang–Baxter equation

|M 1px, tq1,2 |M 1pxy, tq2,3 |M 1py, tq1,2 “ |M 1py, tq2,3 |M 1pxy, tq1,2 |M 1px, tq2,3

is not valid for generic x and y.

3.5. ASEP state |PMLQpmqqy from |M . Let us depict (38b) in a conventional dia-
gram for vertex models (see e.g. [4]):

(39) i a

j

b

z

ÐÑ Mpz, tqa,b
i,j ,

where we are taking b “ j ´ a. The arrows here and in the rest of this section, as
seen in (45) and (46), correspond to the indices from Bl in (19). In contrast, the
arrows in the next section, except those in (64)–(68), carry a single integer. In order
to distinguish them, we use thick arrows for the former and thin arrows for the latter.

In what follows |Mpz, tq will simply be denoted by |Mpzq as the parameter t is fixed
everywhere. Let |Mpzqj,j´1 be the operator acting on the pj, j ´ 1q th components
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Vsj
bVsj´1 in Vsn

b¨ ¨ ¨bVs1 as |Mpzq and as the identity elsewhere (sα’s are arbitrary
positive integers).

A key role in our work is played by the operator

Mpq, tq : Vln
b Vln´1 b ¨ ¨ ¨ b Vl1 Ñ Vm1 b Vm2 b ¨ ¨ ¨ b Vmn

,(40)

where mi’s and li’s are related by (20). It is given as a composition of 1
2 npn ´ 1q |M ’s

as

Mpq, tq “ An´1An´2 ¨ ¨ ¨ A1,(41)

Aj “ |Mpqn´jqj`1,j
|Mpqn´j´1qj`2,j`1 ¨ ¨ ¨ |Mpqqn,n´1.(42)

Explicitly, it reads

Mpq, tq “ |Mpqqn,n´1

ˆ|Mpq2qn´1,n´2 |Mpqqn,n´1

¨ ¨ ¨

ˆ|Mpqn´1q2,1 |Mpqn´2q3,2 ¨ ¨ ¨ |Mpqqn,n´1,

(43)

where the rth row from the bottom is Ar. Let us illustrate the n “ 3 case:

Mpq, tq “ |Mpqq3,2
looomooon

A2

|Mpq2q2,1 |Mpqq3,2
looooooooomooooooooon

A1

.(44)

The matrix elements of A1 for the transition vb3 b vb2 b vb1 Ñ vb1
2

b vb1
1

b vc3 and
those of A2 for vb1

2
b vb1

1
b vc3 Ñ vc1 b vc2 b vc3 are depicted as

(45)

b1

b1
1

b2

b1
2

b3 c3
q q2

b1
1

c1

b1
2 c2

q

Let us explain the meaning of these diagrams along with Example 3.2. The left dia-
gram in (45) for A1 shows the first round of the pairing process corresponding to the
red arrows in Example 3.2. One lets b3 on Row 3 “penetrate” Row 2 and then Row 1,
obtaining the image c3 which specifies the location of color 3 balls at the top. See the
definition of cr given after (24). The elements b1

2 and b1
1 represent the free balls left

intact in Row 2 and Row 1 in the first round, respectively. In the second round of the
pairing, one lets b1

2 interact with b1
1 as indicated by the blue arrows in Example 3.2.

This is depicted in the right diagram in (45) for A2, where c2 and c1 correspond to
the color 2 and 1 balls in Row 1, respectively. In this way, c1, c2, c3 give the final list
of color 1, 2, and 3 balls in Row 1. The weight wtpQqq,t of the MLQ is equal to the
element of Mpq, tq for the transition vb3 b vb2 b vb1 Ñ vc1 b vc2 b vc3 . Its diagram
is obtained by combining the two in (45). It results in a single diagram in the left of
the following:
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(46)

n “ 3:

b1

c1

b2

c2

b3

c3
q

q

q2

n “ 4:

b1

c1

b2

c2

b3

c3

b4

c4
q

q

q

q2

q2

q3

Note that vc1 bvc2 bvc3 P Vm1 bVm2 bVm3 from (38a) and (20). The right one in (46)
is the n “ 4 case. From (46), the general n case is clear. The diagram for Mpq, tq has
the form of the corner transfer matrix (CTM) of the NW quadrant in [4, Fig. 13.2].(3)

The operator Aj (42) corresponds to the j th row from the bottom in the diagram. It
encodes the weights in the j th round of the pairing process, which concerns the balls
in the j th line of (28) from the top, and they are colored in n ` 1 ´ j. The reason
we employ the unusual b “ j ´ a weight conservation in (38b) and (39) is that it is
necessary to describe the unpaired balls, which remain active and will be the relevant
players in the subsequent rounds. See (35).

The outputs of Mpq, tq are superpositions of data of the form vc1 b ¨ ¨ ¨ b vcn P

Vm1 b ¨ ¨ ¨ b Vmn
. They are transformed to the ASEP states in W pmq (6) by a simple

“projection”:

(47)
Π: Vm1 b ¨ ¨ ¨ b Vmn Ñ W pmq

vc1 b ¨ ¨ ¨ b vcn
ÞÑ |c1 ` 2c2 ` ¨ ¨ ¨ ` ncny,

where the 0 th component of m “ pm0, m1, . . . , mnq is determined by the condi-
tion |m| “ L. To summarize the argument so far, we have explained that the state
|PMLQpmqqy constructed from the MLQ approach is expressed as follows.

Proposition 3.6 (CTM interpretation of the MLQ construction).

|PMLQpmqqy “ Π
´

Mpq, tq
ÿ

bnb¨¨¨bb1PBpmq

vbn
b ¨ ¨ ¨ b vb1

¯

.(48)

It is known to yield the actual stationary states at q “ 1 [23].

4. t-oscillator weighted five vertex model
We will compute the stationary probabilities by introducing a five vertex model. It
is different from those considered in [20, 21] and does not satisfy the usual weight
conservation property. Instead, it uses the same strange weight conservation as in the
previous section.

4.1. t-deformed quantum oscillator. Our five vertex model will be weighted
using a t-oscillator algebra A generated by xa`, a´, ky satisfying the relations

k a˘ “ t˘1a˘k, a´a` “ 1 ´ tk, a`a´ “ 1 ´ k.(49)

(3)It coincides with a wiring diagram of the longest element of the symmetric group Sn.
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It has a natural representation from its triangular decomposition, which we refer to
as the bosonic Fock space:

F :“
8⊕

d“0
Qptq|dy; k|dy “ td|dy, a`|dy “ |d ` 1y, a´|dy “ p1 ´ tdq|d ´ 1y,

(50)

extended by linearity with the convention |´1y :“ 0. We will also use the “number”
operator h defined by

(51) h|dy “ d|dy

so that k “ th.

Remark 4.1. Consider a τ -twist quantum oscillator algebra Aτ having the relations

k a˘ “ t˘1a˘k, a´a` “ 1 ´ tτ kτ , a`a´ “ 1 ´ kτ(52)

and the representation of F :

k|dy “ td|dy, a`|dy “ |d ` 1y, a´|dy “ p1 ´ tτdq|d ´ 1y,(53)

in place of (49) and (50). In this paper, we will use A “ Aτ“1 only, but let us
make a few remarks about the general case. The representations of the quantum
oscillator algebra can be used to construct representations of a (Drinfel’d–Jimbo)
quantum group (see e.g. [12, 18]), where the twist parameter τ is related to the
deformation parameter in parallel to [1]. When τ “ 2, this is the quantum oscillator
algebra that has appeared in relation to the tetrahedron equation; see e.g. [21, 18].
The idea of realizing Lie algebra generators using bosons, i.e. creation and annihilation
operators, in physics dates back to [13], which is referred to as the Holstein–Primakoff
transformation.

4.2. t-oscillator weighted five vertex model. We define our vertex model
weights Sab

ij as follows:
(54)

i a

j

b

0 0
0

0
1 1

1

0
0 0

1

1
0 1

1

0
1 0

0

0

Sab
ij 1 1 k a´ a`

We set Sab
ij “ 0 for all the other configurations. Note that k corresponds to the unique

configuration such that j ´ a ą 0. The weight conservation holds in an unusual form:

Sab
ij “ 0 unless a ` b “ j.(55)

Compare (55) with (33). We let the number operator h also act on the t0, 1u states.
Then (54) satisfies

(56) zh`aSab
ij “ Sab

ij zh`i,

which implies that the total weight of the first and the t-oscillator components is
conserved. That is a ´ i is equal to the change in the weight of a bosonic Fock space
element by the t-oscillator algebra element Sab

ij .

Remark 4.2. The multispecies totally asymmetric simple exclusion process (TASEP)
is the special case corresponding to t “ 0 in the ASEP. The five vertex model utilized
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in [20, Eq.(2.20)] for TASEP has the weights rSab
ij |t“0, where rSab

ij is given by
(57)

i a

j

b

0 0
0

0
1 1

1

1
0 0

1

1
0 1

1

0
1 0

0

1

rSab
ij 1 1 k a´ a`

It satisfies the usual weight conservation, i.e. rSab
ij “ 0 unless a ` b “ i ` j. The two

models are related by Sab
ij “ rSa,b`i

ij . Both can be interpreted as three-dimensional
vertex models in which the t-oscillator acts in the third direction. The model (57)
works efficiently for TASEP revealing the crystal theoretical nature [20] of the MLQ
method [11] and reducing the relevant ZF algebra to the tetrahedron equation at
t “ 0 [21, 18]. Although the ZF algebras for TASEP and ASEP are smoothly connected
via the parameter t, we have not found a method to formulate the results in the present
paper based on the model (57).

Next, for any abb P Bl bBm´l and ibj P Bl bBm with l ă m, we define Spq, tqa,b
i,j

by a matrix product formula

(58) Spq, tqa,b
i,j “ p1 ´ qtm´ℓq TrF

`

qhSa1b1
i1j1

Sa2b2
i2j2

¨ ¨ ¨ SaLbL
iLjL

˘

,

where the trace is taken over F . When the trace space is clear, we will omit it from
the notation. From (55) it follows that

Spq, tqa,b
i,j “ 0 unless a ` b “ j.(59)

Moreover from |j| ´ |a| “ m ´ l ą 0 and the comment after (54), there is at least one
k in the operators Sa1b1

i1j1
, . . . , SaLbL

iLjL
. Therefore the trace (58) is a valid formal power

series in t even at q “ 1. The definition (58) is depicted as [18, Fig.11.3]|zÑq if the
vertices therein are regarded as Sarbr

irjr
. See also (75) below.

Example 4.3. Suppose pl, mq “ p2, α ` β ` 1q with α, β ě 1 and take a, i P Bl, j P Bm

and b P Bm´l as

a “ p1, 0β´1, 0, 1, 0, 0αq, b “ p0, 1β´1, 0, 0, 0, 1αq,

i “ p0, 0β´1, 1, 0, 1, 0αq, j “ p1, 1β´1, 0, 1, 0, 1αq,

which satisfies a ` b “ j. Now (58) is calculated as

Spq, tqa,b
i,j “ p1 ´ qtα`β´1q Tr

`

qhS10
01pS01

01qβ´1S00
10S10

01S00
10pS01

01qα
˘

“ p1 ´ qtα`β´1q Tr
`

qha´kβ´1a`a´a`kα
˘

“ p1 ´ qtα`β´1q
ÿ

dě0
qdp1 ´ td`1qtpβ´1qpd`1qp1 ´ td`1qtαd

“
tβ´1p1 ´ tq2p1 ` qtα`βq

p1 ´ qtα`βqp1 ´ qtα`β`1q
.

Note that this coincides with Mpq, tqa,b
i,j in (36). The equality holds in general as

shown in Theorem 4.4 below, which is an essential result quantifying the algorithmic
MLQ construction into the t-oscillator algebra.

Theorem 4.4. For any a, i P Bl, i P Bm and j P Bm´l with l ă m, the following
equality is valid:

(60) Mpq, tqa,b
i,j “ Spq, tqa,b

i,j .
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Proof. In view of (33) and (59), we shall exclusively consider the non-trivial situation
a ` b “ j. We prove (60) by comparing the recursion relations with respect to l

on both hand sides. Let us illustrate the derivation for Spq, tqa,b
i,j using the example

i “ p000000110100q, a “ p100010000100q P Bl“3, j “ p100110001101q P Bm“6 with
b “ j´a and L “ 12. According to (35), the ball diagram relevant to Mpq, tqa,b

i,j looks
as

a´ k a´ a` a` k 1 k

(61)

where the upper and lower rows stand for j and i, respectively, and a is depicted as
the red shaded balls.(4) We have also presented Sa1b1

i1j1
, . . . , SaLbL

iLjL
that are not 1 at the

bottom, except for the third column from the right, for later convenience. Thus (58)
reads

Spq, tqa,b
i,j “ p1 ´ qt3qΘ0, Θ0 “ Trpqha´k a´a`a`k 1kq.

What we do is to move the leftmost a` here to the left cyclically to go around the
trace once by using the following form of the relations (49) for A:

a´a` “ ta`a´ ` p1 ´ tq,(62a)
k a` “ ta`k,(62b)
qha` “ q a`qh.(62c)

By applying (62a), the trace Θ0 is decomposed as
(63)
Θ0 “ Θ1

0 ` Θ1, Θ1
0 “ p1 ´ tq Trpqha´k a`k 1kq, Θ1 “ t Trpqha´k a`a´a`k 1kq.

The term Θ1
0 corresponds to the following diagram where the connected balls should

be understood as absent:
1´t

a´ k a` k 1 k

(64)

The trace Θ1 is decomposed as

Θ1 “ t2 Trpqha´a`k a´a`k 1kq “ Θ1
1 ` Θ2,

Θ1
1 “ t2p1 ´ tq Trpqhk a´a`k 1kq, Θ2 “ t3 Trpqha`a´k a´a`k 1kq.

(65)

The term Θ1
1 corresponds to the following diagram where the connected balls should

be understood as absent:
1´t t t

k a´ a` k 1 k

(66)

(4)This red shading has nothing to do with the color C of balls assigned in the MLQs explained
in Section 3.2.
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The trace Θ2 is decomposed by rewriting the operator 1 as p1 ´ tq ` t as

Θ2 “ qt4 Trpqha´k a´a`k 1a`kq “ Θ1
2 ` Θ3,

Θ1
2 “ qt4p1 ´ tq Trpqha´k a´a`k a`kq, Θ3 “ qt6 Trpqha´k a´a`a`k kq “ qt6Θ0.

(67)

The term Θ1
2 corresponds to the following diagram where the connected balls should

be understood as absent:
q t t t 1´t t

a´ k a´ a` k a` k

(68)

Thus we have the relation
p1 ´ qt6q Trpqha´k a´a`a`k kq “ p1 ´ qt6qΘ0 “ Θ1

0 ` Θ1
1 ` Θ1

2.

The traces in Θ1
α involve operators obtained by eliminating a`a´, with (62a) replaced

by 1 ´ t if the target of the pairing is free from a ball directly below it. If the target
has a ball underneath, the corresponding operator 1 is replaced by a`. The coefficient
t (resp. q) in the RHS of (62) counts the number of skipped balls (resp. wrapping).
In general an analogous manipulation yields

(69)
p1 ´ qtmq Tr

`

qhSa1b1
i1j1

Sa2b2
i2j2

¨ ¨ ¨ SaLbL
iLjL

˘

“
ÿ

leftmost pairings
p1 ´ tqq#wrappedt#skipped Trpunpaired partsq,

where the sum extends over the leftmost pairings, which means those between the
leftmost a` in the downstairs and the red shaded balls, i.e. a P Bl, in the upstairs.
Thus there are |a| “ l summands. Let a1, i1 P Bl´1, j1 P Bm´1 and j1 P Bpm´1q´pl´1q “

Bm´l be the arrays corresponding to the unpaired parts. Then from the definition
(58), the recursion relation (69) is translated as

Spq, tqa,b
i,j “

1 ´ t

1 ´ qtm

ÿ

leftmost pairings
q#wrappedt#skippedSpq, tqa1,b1

i1,j1 .(70)

On the other hand, from the queuing algorithm explained in the previous section, it
is clear that the same recursion relation holds also for Mpq, tqa,b

i,j . In particular, the
factor p1 ´ qtmq´1 emerges from the fact that the denominators 1 ´ qt#free in (29)
lead to

śl
r“1p1 ´ qtm`1´rq for Mpq, tqa,b

i,j whereas
śl´1

r“1p1 ´ qtm´rq for Mpq, tqa1,b1

i1,j1 .
It follows, by induction on l, the proof of (60) reduces formally to l “ 0. When l “ 0,
one has Mpq, tqa,b

i,j “ δb
j from (33), and Spq, tqa,b

i,j “ p1 ´ qtmq Trpqhkmqδb
j “ δb

j from
(54) and (58). This completes the proof. □

Recall from (33) that Mpq, tqa,b
i,j consists of numerous summands, which have to

be calculated resorting to pairing diagrams by counting the skipped/free balls and
wrapping. Theorem 4.4 identifies it with a single trace that is free from such pairing
details. Put in the other way, Mpq, tqa,b

i,j was giving a combinatorial description for
an expansion of the trace Spq, tqa,b

i,j .
In view of Theorem 4.4, the interpretation of the multi-indices a, b, i, j in (35) and

the layer structure in (77), the five vertex weights in (54) describes a local event in
the queuing process with respect to the “time” α P ZL, where the number of the
customers in the queue is increased or decreased by a`

α or a´
α.
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4.3. Operator Spq, tq. A key ingredient in Proposition 3.6 is the operator Mpq, tq

whose building block was |Mpq, tq in (38). From Theorem 4.4, it is natural to reformu-
late them in terms of Spq, tqa,b

i,j . This is what we do in this subsection as a preparation
for the introduction of the operator Xαpzq in the next subsection.

For l ă m, define a linear operator qSpq, tq in parallel with |Mpq, tq in (38):

qSpq, tq : Vl b Vm Ñ Vm´l b Vl

(71a)

vi b vj ÞÑ
ÿ

abbPBlbBm´l

Spq, tqa,b
i,j vb b va “

ÿ

aPBl,aďj
Spq, tqa,j´a

i,j vj´a b va,(71b)

where i b j P Bl b Bm and the last equality in (71b) is due to (59). By Theorem 4.4
we know

|Mpq, tq “ qSpq, tq.(72)

Substituting this into (43) we have

Mpq, tq “ Spq, tq :“ qSpqqn,n´1

ˆ qSpq2qn´1,n´2 qSpqqn,n´1

¨ ¨ ¨

ˆ qSpqn´1q2,1 qSpqn´2q3,2 ¨ ¨ ¨ qSpqqn,n´1.

(73)

From these definitions, Proposition 3.6 can be restated as

Corollary 4.5.

|PMLQpmqqy “ Π
´

Spq, tq
ÿ

bnb¨¨¨bb1PBpmq

vbn
b ¨ ¨ ¨ b vb1

¯

.(74)

4.4. Matrix product operators Xαpzq. In the remainder of this section we con-
centrate on the q “ 1 case, which is relevant to the actual stationary states on the
n-ASEP. We do not exhibit z in the vertex diagram (39) and q in the diagrams
like (45) and (46) assuming that they are all set to 1. We depict (58) as

(75) Sp1, tqa,b
i,j “ p1 ´ tm´ℓqTrF

¨

˚

˚

˚

˚

˚

˚

˝

a1

i1

j1

b1

a2

i2

j2

b2

aL

iL

jL

bL

˛

‹

‹

‹

‹

‹

‹

‚

.

Here each vertex signifies Sarbr
irjr

taking values in the t-oscillator algebra as in (54).
Blue arrows are added to signify the Fock space F (50) on which it acts and the trace
is taken. The operator qSp1, tq from (71) will similarly be depicted by suppressing the
indices.

The operator Sp1, tq shares the same corner transfer matrix (CTM) diagram repre-
sentation as Mp1, tq in (46), with each vertex (39) of thick arrows now possessing the
structure in the “third dimension” as illustrated in (75). As the result, the stationary
state in Corollary 4.5 is given as

|PMLQpmqq“1y “
ÿ

σPΣpmq

Ppσq|σy,(76)

where the (unnormalized) stationary probability Ppσq, for example for n “ 3, has the
diagram representation:
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(77) P pσq “ TrF b3

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

,

where there are L layers of the CTM.
The dependence on σ “ pσ1, . . . , σLq is reflected in the boundary condition. In fact,

comparison of (77) and (8) amounts to identifying the ith layer with Xσi . Moreover,
inspecting the projection Π in (47) leads to the constraint that Xα pα “ 0, . . . , nq is a
partition function of the five vertex model in the NW quadrant with a free boundary
condition at the bottom and a fixed one on the right, where the edge states s1, . . . , sn

on the outgoing arrows (numbered from the top) are specified as si “ δi,α. Such a
CTM diagram representation of the stationary probabilities was first obtained for
TASEP (the t “ 0 case) in [20, 21] using the five vertex model in Remark 4.2. See
the recent work [15] for a new application.

Recall from Section 2.3 that one also needs the spectral parameter dependent
version Xαpzq of Xα in order to establish the stationary condition by resorting to the
ZF algebra (15) independently from the MLQ construction.

Definition 4.6 (The operator Xαpzq). We introduce the operator Xαpzq pα “

0, . . . , nq as the CTM with each vertex having a t-oscillator valued weight specified
in (54) and depicted as

(78) Xαpzq “

δα1

...

zh

δα2

...

zh

δα3

...

zh
δαn

zh

. .
.

¨ ¨ ¨

...

where the zh are denoted by ‚. The diagram indicates that all edge variables are
summed over t0, 1u. The variables on the right outgoing edges are fixed as shown, while
there is no boundary condition along the bottom. This depiction should be understood
as having an additional arrow at each vertex, perpendicular to the layer, corresponding
to the t-oscillator acting on its own Fock space.

Example 4.7. The operators Xαpzq can be written as

(79)

1
ř

i1,i2“0
zi1`i2

i1

δα1

i2

δα2

1
ř

i1,i2,i3“0
zi1`i2`i3

i1

δα1

i2

δα2

i3

δα3

n “ 2 n “ 3

Obviously this Xαpzq reduces to the Xα considered previously when z “ 1. It is
an element of EndpF b

npn´1q

2 q. We number the vertices in (78) from top to bottom
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in the rightmost column, and then similarly in the second rightmost column, and so
on, as 1, . . . , npn´1q

2 in this order. The t-oscillator generators acting on the ith copy
of the Fock space F in this numbering will be distinguished by the subscript i when
n ě 3. Thus, the generators with different subscripts commute. To summarize, we
have proved the following.

Theorem 4.8 (Five vertex CTM interpretation of the MLQ construction). The MLQ
construction in Section 3 yields the matrix product formula (8) of the unnormalized
stationary probability, where the operators X0, . . . , Xn are given as Xα “ Xαpz “ 1q

for Xαpzq defined by (78) and the trace is taken over F b
npn´1q

2 .

In the next section, we will establish the same matrix product formula by the ZF
algebra without relying on the MLQ construction.

Example 4.9. For n “ 2, Xαpzq is given by

X0pzq “

0

0

0

0
`

0

0

1

0
z

“ 1 ` za`,

X1pzq “

1

1

0

0
z

“ zk,

X2pzq “

1

0

0

1
z `

1

0

1

1
z2

“ za´ ` z2.

These formulas for X0pzq, X1pzq, X2pzq agree with [6, Eq.(46)] under the formal trans-
formation pa`, a´, k, zq Ñ pa, a:, k, xq. For n “ 3, Xαpzq is given by

X0pzq “

0

0

0

0

0
0

00

0 `

0

0

1

0

0
0

01

0 z `

0

0

1

0

0
0

00

1 z `

0

0

0

0

1
0

00

0 z `

0

0

1

0

1
0

00

1 z2

“ 1 ` za`
1 k3 ` za`

2 a´
3 ` za`

3 ` z2a`
2 ,

X1pzq “

1

1

0

0

0
0

10

0 z `

1

1

0

0

1
0

10

0 z2

“ zk1k2 ` z2k1k2a`
3 ,

X2pzq “

1

0

0

1

0
0

10

0 z `

1

0

0

1

1
0

10

0 z2 `

1

0

1

1

0
0

11

0 z2

“ za´
1 k2 ` z2a´

1 k2a`
3 ` z2k2k3,

X3pzq “

1

0

0

0

0
1

00

0 z `

1

0

0

0

1
1

00

0 z2 `

1

0

1

0

0
1

00

1 z2 `

1

0

1

0

0
1

01

0 z2 `

1

0

1

0

1
1

00

1 z3

“ za´
2 ` z2a´

2 a`
3 ` z2a´

3 ` z2a`
1 a´

2 k3 ` z3.
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4.5. Recursion relation of Xαpzq. For 0 ď i ď n ´ 1, 0 ď j ď n, define T pzqij to
be the t-oscillator valued weight for the following configuration:

(80) T pzqij “

0

0 0

0 0

0 0

0 0

0 1 Ð j

i Ñ 1 0

zh 1

1

1

1

0

0

0

0

0

It is a column consisting of pn ´ 1q vertices, and the t-oscillators attached to the rth
one from the top is denoted by a`

r , a´
r , kr. The indices i (resp. j) specifies the position

of the unique 1 on the left (resp. right) horizontal edges, and i “ 0 (resp. j “ 0) means
that all the left (resp. right) horizontal edges assume 0. When j “ 0, we also take the
bottom vertical edge to be 0. The figure corresponds to a case i, j ě 1. Explicitly one
has
(81)

T pzqi0 “ a`
i p0 ď i ď n´1q, T pzqij “

$

’

&

’

%

zkj ¨ ¨ ¨ kn´1 pj “ i ` 1q

za`
i a´

j´1kj ¨ ¨ ¨ kn´1 pj ě i ` 2q

0 pj ď iq

for j ě 1,

where we regard a`
0 as 1. Note that T pzqij depends on a˘

r , kr with r “ 1, . . . , n ´ 1.

Proposition 4.10 (The recursion relation for Xαpzq with respect to rank). Let
X0pzq, . . . , Xnpzq be the operators defined by Equation (78) for the n-ASEP. Let
rX0pzq, . . . , rXn´1pzq be the operators for the pn ´ 1q-ASEP with a˘

i , ki relabelled as
a˘

i`n´1, ki`n´1. Then the following recursion relation is valid:

Xαpzq “

n´1
ÿ

i“0

rXipzqT pzqiα p0 ď α ď nq.(82)

Proof. Consider the diagram (78), and let sβ pβ “ 1, . . . , n ´ 1q be the variable on
the left side of the crossing for the βth horizontal edge from the top in the rightmost
column. As demonstrated in Example 4.11, a close inspection of the rightmost two
columns in (78) shows that the configurations that make non-zero contributions to
Xαpzq are only those satisfying sβ “ δβ,i for some i “ 0, 1, . . . , α ´1. The correspond-
ing term is equal to rXipzqT pzqiα, where the factors T pzqiα is the weight from the
rightmost pn´1q vertices and rXipzq emerges from the remaining part. □

In view of (81), the sum (82) for the case α ě 1 is actually restricted as
řα´1

i“0
rXipzqT pzqiα. Clearly, rXipzq and T pzqiα in (82) are commutative.
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Example 4.11. Let us consider Xα“7pzq for n “ 9 given as a configuration sum (78).
We illustrate how the i “ 3 term in the RHS of (82) shows up. A crucial property is
the strange weight conservation of Sab

ij in (54).

0
0

0
0

0
0
0
0

1

0
0

0
0

0
0
0
0

1
0

0

0

0

0

1

1

1

0
0

0
0

0
0
0
0

1
0

0

0

0

0

1

1

1

0

0

0

0
0

0
0

0
0
0
0

1
0

0

0

0

0

1

1

1

0

0

0

1

1

1

1

1

1

0

1

0

0 0
0

0
0

0
0
0
0

1
0

0

0

0

0

1

1

1

0

0

0

0

0

1

1

1

1

1

1

0

1

0

0

From left to right, we are performing the following steps:

(1) The rightmost two columns in the diagram for X7pzq.
(2) Red vertical edge variables are determined.
(3) Red horizontal edge variables are determined.
(4) Assuming that the highest non-zero variable is the blue underlined one, the

variables shown in red are determined.
(5) Red horizontal edge variables are determined.

The weight of the eight rightmost vertices and ‚ is za`
3 a´

6 k7k8 “ T pzq37. The re-
maining part of the configuration sum can be identified with rX3pzq.

Example 4.12. A diagrammatic representation of (82) for n “ 3 is as follows:

X0pzq “

0

0
0
0

00

0

`

0

0
0
0

01

0

`

0

0
0
0

00

1

“ rX0pzq ` a`
1

rX1pzq ` a`
2

rX2pzq,

X1pzq “

1

1
0
0

10

0

z

“ zk1k2 rX0pzq,

X2pzq “

1

0
1
0

10

0

z `

1

0
1
0

11

0

z

“ za´
1 k2 rX0pzq ` zk2 rX1pzq,
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X3pzq “

1

0
0
1

00

0

z `

1

0
0
1

01

0

z `

1

0
0
1

00

1

z

“ za´
2

rX0pzq ` za`
1 a´

2
rX1pzq ` z rX2pzq.

One can also check them directly by using Example 4.9. A matrix form of (82) is

pX0pzq, X1pzq, X2pzq, X3pzqq “ p rX0pzq, rX1pzq, rX2pzqq

¨

˝

1 zk1k2 za´
1 k2 za´

2
a`

1 0 zk2 za`
1 a´

2
a`

2 0 0 z

˛

‚.

(83)

The transposition of the matrix here reproduces the 4 ˆ 3 matrix in [6, Eq.(73)]
under the conventional change pa`

i , a´
i , ki, zq Ñ pai`1, a:

i`1, ki`1, zq. The matrix
pT pzqijq0ďiďn´1,0ďjďn for n “ 4 is available in (101). The recursion relation of the
matrix product operators of the form (82) without a spectral parameter appeared
earlier in [24].

Remark 4.13. The diagram (78) makes sense only for n ě 2. We extend the definition
of X0pzq, . . . , Xnpzq to n “ 0, 1 as follows:

n “ 1: X0pzq “ 1, X1pzq “ z,

n “ 0: X0pzq “ 1.
(84)

Then the recursion relation (82) also holds at n “ 1. The n “ 1 case agrees with [6,
Eq.(42)].

Several diagrammatic representations of the matrix product operators Xα or Xαpzq

were devised in earlier works [6, 24]. However, we find that the CTM representation
in (78) is the simplest and most systematic, offering a clear visualization of their
evaluation and providing clarity to Proposition 4.10. This advancement has been
made possible through the introduction of the strange five vertex model.

5. Proof of the Zamolodchikov–Faddeev algebra relation
The aim of this section is to show the ZF algebra relation (15).

5.1. RLL “ LLR relation. Recall that the bosonic Fock space F is defined in (50).
Set F “ F bpn`1q. For a sequence of non-negative integers m “ pm0, . . . , mnq,(5) we
write |my “ |m0y b ¨ ¨ ¨ b |mny P F . Set

Fl “ Qptqx|my | m P Dly,(85)
Dl “ tm “ pm0, . . . , mnq P pZě0qn`1 | m0 ` ¨ ¨ ¨ ` mn “ lu.(86)

Denote by ei P Dl“1 the ith standard basis vector. For 0 ď α, β ď n and a, b P Dl,
set

Lpzqβ,b
α,a “ δ

eβ`b
eα`a taβ`1`¨¨¨`an p1 ´ taβ zθpα“βqqzθpαąβq,(87)

and define a linear operator

(88)
Lpzq : F1 b Fl ÝÑ F1 b Fl

|eαy b |ay ÞÝÑ
ÿ

βPt0,...,nu,bPDl

Lpzqβ,b
α,a|eβy b |by.

(5)This m should not be confused with the multiplicity introduced in (6).
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The dependence on t and l has been suppressed in the notation. We also introduce
the components

(89)
Lpzqβ

α : Fl ÝÑ Fl p0 ď α, β ď nq

|ay ÞÝÑ
ÿ

bPDl

Lpzqβ,b
α,a|by “ Lpzq

β,a`eα´eβ
α,a |a ` eα ´ eβy,

where the RHS is to be understood as 0 unless a ` eα ´ eβ P Dl.

Remark 5.1. Let RKMMOpzq
ek,δ
ej ,β denote the elements of the R matrix given in the first

equation in [19, App.A] with m replaced with l.(6) According to [19, Eqs.(15),(16)],
its stochastic gauge is given by SKMMOpzq

ek,δ
ej ,β :“ qηRKMMOpzq

ek,δ
ej ,β with η “ δ0 ` ¨ ¨ ¨ `

δk´1 ´ pβj`1 ` ¨ ¨ ¨ ` βnq. Then one has

p1 ´ q2lzqSKMMOpq1´lz´1qβ,b
α,a “ δ

eβ`b
eα`a q2pa0`¨¨¨`aβ´1qp1 ´ q2aβ zθpα“βqqzθpαăβq.(90)

The element (87) is obtained from (90) by reversing the indices as pα, βq Ñ pn´α, n´

βq, a Ñ pan, . . . , a0q, b Ñ pbn, . . . , b0q and setting q2 Ñ t. When l “ 1, it reduces
to the scalar multiple of (16) as Lpzq

γ,eδ
α,eβ “ p1 ´ tzqRpzq

γ,δ
α,β . The operator Lpzq is

“stochastic” in the sense that
ř

β,b Lpzq
β,b
α,a “ 1 ´ ztl is independent of α and a.

Proposition 5.2 (RLL “ LLR relation). For any a, b, i, j P t0, . . . , nu, the following
equality is valid:

(91)
n

ÿ

a1,b1“0
Rpx{yq

a1,b1

i,j Lpyqb
b1Lpxqa

a1 “

n
ÿ

i1,j1“0
Lpxqi1

i Lpyq
j1

j Rpx{yq
a,b
i1,j1 .

Proof. From Remark 5.1, one has the RLL “ LLR relation R12px{yqL13pxqL23pyq “

L23pyqL13pxqR12px{yq in EndpF1bF1bFlq by setting pk, l, mq Ñ p1, 1, lq and px, yq Ñ

px{y, yq in the Yang–Baxter equation for the stochastic R’s in [19, Prop. 4]. The
relation (91) is a component of it corresponding to the transition |eiy b |ejy ÞÑ |eay b

|eby in the F1 b F1 part. □

Consider the constant part of (89):

(92) Lp0qβ
α|my “

$

’

&

’

%

tmβ`1`¨¨¨`mn |my pα “ βq,

tmβ`1`¨¨¨`mn p1 ´ tmβ q|m ` eα ´ eβy pα ă βq,

0 pα ą βq.

In Proposition 5.2, replace px, yq by pcx´1, cy´1q and take the limit c Ñ 0. The result
reads

(93)
n

ÿ

a1,b1“0
Rpy{xq

a1,b1

i,j Lp0qb
b1Lp0qa

a1 “

n
ÿ

i1,j1“0
Lp0qi1

i Lp0q
j1

j Rpy{xq
a,b
i1,j1 .

We would like to reformulate (93) as a t-oscillator valued equation. On F , t-
oscillators k, a`, a´ act as (50). We let n ` 1 copies of the t-oscillators act on F .
We distinguish them by putting a subscript as a`

i to signify which component it acts
on. Note that we label the components as 0, 1, . . . , n from the left. Introduce further
the space without the 0 th component in F and the projection onto it as

F “
⊕

pm1,...,mnqPpZě0qn

Qptq|m1y b ¨ ¨ ¨ b |mny,(94)

ι : F Ñ F ; |m0y b |m1y b ¨ ¨ ¨ b |mny ÞÑ |m1y b ¨ ¨ ¨ b |mny.(95)

(6)Indices 1, . . . , n ` 1 in [19] should also be replaced with 0, . . . , n.
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Then by taking the image of (93) by ι, we obtain

(96)
n

ÿ

a1,b1“0
Rpy{xq

a1,b1

i,j Lb
b1La

a1 “

n
ÿ

i1,j1“0
Li1

i Lj1

j Rpy{xq
a,b
i1,j1 ,

where Lβ
α P EndpFq is given in terms of the t-oscillators a˘

i , ki pi “ 1, . . . , nq as

(97) Lβ
α “

$

’

&

’

%

kβ`1 ¨ ¨ ¨ kn pα “ βq,

a`
αa´

βkβ`1 ¨ ¨ ¨ kn pα ă βq,

0 pα ą βq,

for 0 ď α, β ď n with a`
0 “ 1 in the middle case. As mentioned in Remark 4.1,

the formula (97) can be interpreted as the “Holstein–Primakov representation” of the
L-operators. Analogous results in the “crystal” gauge as opposed to the stochastic
one adopted here have been obtained in [14] for A

p1q
n and also D

p1q
n in the study of

quantized box-ball systems.

5.2. Rank reducing RTT “ TTR relation. Recall that T pzqαβ is defined in (81)
for 0 ď α ď n ´ 1 and 0 ď β ď n. By direct comparison with (97), we obtain the
relation
(98) Lβ

α “ T pzqα,β`1pa´
nqδβn pz´1knqθpβ‰nq p0 ď α ď n ´ 1, 0 ď β ď nq,

where T pzqα,n`1 :“ T pzqα0. Operator ordering does not matter in (98) since T pzqij

involves only a˘
α and kα with α “ 1, . . . , n ´ 1. The relation (98) serves as the crucial

link between the RLL “ LLR relation (Proposition 5.2) and the forthcoming rank-
reducing RTT “ TTR relation (Proposition 5.4), a connection that has previously
gone unnoticed in the literature.

Example 5.3. From (97), the LHS of (98) for n “ 4 in the matrix form is given as

(99)
`

Lβ
α

˘

0ďαď3,0ďβď4 “

¨

˚

˚

˝

k1k2k3k4 a´
1 k2k3k4 a´

2 k3k4 a´
3 k4 a´

4
0 k2k3k4 a`

1 a´
2 k3k4 a`

1 a´
3 k4 a`

1 a´
4

0 0 k3k4 a`
2 a´

3 k4 a`
2 a´

4
0 0 0 k4 a`

3 a´
4

˛

‹

‹

‚

.

Similarly, the RHS of (98) for n “ 4 reads
¨

˚

˚

˝

T pzq01z´1k4 T pzq02z´1k4 T pzq03z´1k4 T pzq04z´1k4 T pzq00a´
4

T pzq11z´1k4 T pzq12z´1k4 T pzq13z´1k4 T pzq14z´1k4 T pzq10a´
4

T pzq21z´1k4 T pzq22z´1k4 T pzq23z´1k4 T pzq24z´1k4 T pzq20a´
4

T pzq31z´1k4 T pzq32z´1k4 T pzq33z´1k4 T pzq34z´1k4 T pzq30a´
4

˛

‹

‹

‚

.(100)

They indeed coincide due to (81) with n “ 4, which reads

pT pzqαβq0ďαď3,0ďβď4 “

¨

˚

˚

˝

1 zk1k2k3 za´
1 k2k3 za´

2 k3 za´
3

a`
1 0 zk2k3 za`

1 a´
2 k3 za`

1 a´
3

a`
2 0 0 zk3 za`

2 a´
3

a`
3 0 0 0 z

˛

‹

‹

‚

.(101)

The relation (96) depends on x and y only through the ratio y{x. However, switch-
ing to the description with T pzqαβ via (98) appropriately reinstates a non-trivial
dependence on the spectral parameters, as we will demonstrate below.

Proposition 5.4 (Rank-reducing RTT “ TTR relation). For 0 ď a, b ď n and
0 ď i, j ď n ´ 1, we have

(102)
n´1
ÿ

a1,b1“0
Rpy{xq

a1,b1

i,j T pyqb1bT pxqa1a “

n
ÿ

i1,j1“0
T pxqii1T pyqjj1Rpy{xq

a,b
i1,j1 .
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Proof. In (96), substitute (98) with z taken as y, x, x, y for Lb
b1 , La

a1 , Li1

i , Lj1

j , respec-
tively. Restrict the range of i, j to 0 ď i, j ď n´1. Then from the weight preservation,
one can also restrict the summation for a1, b1 to 0 ď a1, b1 ď n ´ 1. Hence we get

n´1
ÿ

a1,b1“0
Rpy{xq

a1,b1

i,j yδbnT pyqb1,b`1pa´
nqδbnkθpb‰nq

n ˆ xδanT pxqa1,a`1pa´
nqδankθpa‰nq

n

“

n
ÿ

i1,j1“0
xδi1nT pxqi,i1`1pa´

nqδi1nkθpi1
‰nq

n ˆ yδj1nT pyqj,j1`1pa´
nqδj1nkθpj1

‰nq
n Rpy{xq

a,b
i1,j1 .

Sending the t-oscillators with subscript n to the right using the commutativity with
T pzqrs, we have

n´1
ÿ

a1,b1“0
xδanyδbnRpy{xq

a1,b1

i,j T pyqb1,b`1T pxqa1,a`1A

“

n
ÿ

i1,j1“0
xδi1nyδj1nT pxqi,i1`1T pyqj,j1`1BRpy{xq

a,b
i1,j1 ,

where

A “ pa´
nqδbnkθpb‰nq

n pa´
nqδankθpa‰nq

n , B “ pa´
nqδi1nkθpi1

‰nq
n pa´

nqδj1nkθpj1
‰nq

n .

Using the commutation relation kna´
n “ t´1a´

nkn, we obtain

A “ t´θpa“n,b‰nqpa´
nqδan`δbnkθpa‰nq`θpb‰nq

n ,

B “ t´θpi1
‰n,j1

“nqpa´
nqδi1n`δj1nkθpi1

‰nq`θpj1
‰nq

n .

The t-oscillator parts of A and B are equal when Rpy{xq
a,b
i1,j1 ‰ 0. Taking the coeffi-

cients of A and B acting on the nth component, we arrive at the following:
n´1
ÿ

a1,b1“0
Rpy{xq

a1,b1

i,j T pyqb1,bT pxqa1,a

“

n
ÿ

i1,j1“0
T pxqi,i1T pyqj,j1xδi10´δa0yδj10´δb0t´θpi1

‰0,j1
“0q`θpa“0,b‰0qRpy{xq

a´1,b´1
i1´1,j1´1.

Note that we have decreased the indices a, b, i1, j1 by 1. Additionally note that when
Rpy{xq

a,b
i1,j1 ‰ 0, one has δi10 ´ δa0 “ ´pδj10 ´ δb0q. Hence, the coefficients in the RHS

can be expressed in terms of z “ y{x (see (103) below). Thus, the proof is attributed
to the next lemma. □

Lemma 5.5 (Quasi-periodicity of the R matrix). For a, b, i1, j1 P Zn`1, the following
relation holds

(103) Rpzq
a,b
i1,j1 “ zδj10´δb0t´θpi1

‰0,j1
“0q`θpa“0,b‰0qRpzq

a´1,b´1
i1´1,j1´1,

where all indices of Rpzq should be taken to be in t0, . . . , nu for the inequalities in (16).

Proof. This is immediately checked from (16) as

Rpzq
α`1,0
α`1,0 “ t´1Rpzqα,n

α,n, Rpzq
0,α`1
0,α`1 “ tRpzqn,α

n,α,

Rpzq
α`1,0
0,α`1 “ z´1Rpzqα,n

n,α, Rpzq
0,α`1
α`1,0 “ zRpzqn,α

α,n

for 0 ď α ď n ´ 1. □
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5.3. Proof of the Zamolodchikov–Faddeev algebra relation.

Theorem 5.6. The set of operators tX0pzq, . . . , Xnpzqu defined by the CTM dia-
gram (78) for n ě 2 and in Remark 4.13 for n “ 0, 1 satisfy the ZF algebra rela-
tion (15) with the structure function given by the R matrix in (16).

Proof. We prove (15) by induction on n. Substituting the recursion relation (82) into
it, we get
(104)
n´1
ÿ

i,j“0

rXipyq rXjpxqT pyqiαT pxqjβ “

n
ÿ

γ,δ“0
Rpy{xq

β,α
γ,δ

n´1
ÿ

γ1,δ1“0

rXγ1 pxq rXδ1 pyqT pxqγ1,γT pyqδ1,δ.

By means of the rank reducing RTT “ TTR relation (102), the sum
řn

γ,δ“0 in the
RHS can be taken. The result reads
(105)

n´1
ÿ

i,j“0

rXipyq rXjpxqT pyqiαT pxqjβ “

n´1
ÿ

γ1,δ1“0

rXγ1 pxq rXδ1 pyq

n´1
ÿ

i,j“0
Rpy{xq

j,i
γ1,δ1T pyqiαT pxqjβ .

This follows from the ZF algebra relation with one lower rank:

rXipyq rXjpxq “

n´1
ÿ

γ1,δ1“0

rXγ1 pxq rXδ1 pyqRpy{xq
j,i
γ1,δ1 .

Therefore the proof reduces to the n “ 0 case, which is straightforward from Re-
mark 4.13. □

Up to convention, the matrix product formula (8) was first established in [24] by a
direct, albeit quite tedious, verification of the hat relation (11). The hat relation proof
was later simplified in [6] by introducing the Yang–Baxterizations X0pzq, . . . , Xnpzq

and the ZF algebra, where Proposition 5.4 was also derived based on a few lemmas;
see [6, Eq.(36)]. Our proof, however, is the most intrinsic from the perspective of
quantum integrable systems, as it directly stems from the Yang–Baxter equation for
the stochastic R matrices, highlighted by the key connection (98).

6. Concluding remarks
We have unveiled several new insights into the construction of the stationary states
in the multispecies ASEP by invoking the strange five vertex model. Let us conclude
the paper with two remarks.

(i) The strange five vertex model in this paper differs from [20, 21] (see Remark 4.2),
where the totally asymmetric simple exclusion process (TASEP) corresponding to t “

0 was treated using CTMs and the tetrahedron equation. In particular the tetrahedron
equation leads to an elegant proof of the ZF algebra relation without going through
the inductive steps on the rank n [21, 18]. It remains an open question whether
such a superior variant of the quantum oscillator/CTM approach can be formulated
that smoothly interpolates TASEP and ASEP. Regarding this issue, an alternative
queueing construction, as discussed in [23, Sec.7], may offer valuable insights.

(ii) Stationary probabilities are connected to Macdonald polynomials, particularly
when an additional parameter q and the weight variables are supplemented [6, 7, 9].
We have touched upon the implications of the parameter q in relation to MLQs and
t-oscillators in this paper. However, a comprehensive treatment of their applications
requires further investigation.
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