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A strange five vertex model and

multispecies ASEP on a ring

Atsuo Kuniba, Masato Okado & Travis Scrimshaw

ABSTRACT We revisit the problem of constructing the stationary states of the multispecies asym-
metric simple exclusion process on a one-dimensional periodic lattice. Central to our approach
is a quantum oscillator weighted five vertex model which features a strange weight conserva-
tion distinct from the conventional one. Our results clarify the interrelations among several
known results and refine their derivations. For instance, the stationary probability derived
from the multiline queue construction by Martin (2020) and Corteel-Mandelshtam—Williams
(2022) is identified with the partition function of a three-dimensional system. The matrix prod-
uct operators by Prolhac—Evans—Mallick (2009) acquire a natural diagrammatic interpretation
as corner transfer matrices (CTM). The origin of their recursive tensor structure, as ques-
tioned by Aggarwal-Nicoletti—Petrov (2023), is revealed through the CTM diagrams. Finally,
the derivation of the Zamolodchikov—Faddeev algebra by Cantini-de Gier-Wheeler (2015) is
made intrinsic by elucidating its precise connection to a solution to the Yang—Baxter equation
originating from quantum group representations.

1. INTRODUCTION

The asymmetric simple exclusion process (ASEP) [22, 25] is a fundamental model
of non-equilibrium stochastic dynamics with many applications in physics, biology,
probability theory, and other scientific fields. In recent years, it has been extensively
studied, particularly in one dimension, leading to a variety of generalizations and a
wealth of results that intersect with statistical mechanics, algebraic combinatorics,
special functions, integrable systems, representation theory, etc. See for example [2,
3, 5,6, 7,8, 23, 24] and the references therein.

In this paper, we consider the standard continuous time n-species ASEP on a
periodic lattice of length L. Each local state is selected from {0,1,...,n}, where
1,...,n represent the presence of one of the n species of particles, and 0 corresponds
to an empty site. The model includes a parameter ¢ that determines the asymmetry
of the nearest-neighbor hopping rates. The first significant problem is to construct a
stationary state, which is unique within each sector specified by the particle content.
The problem is trivial for n = 1, where all the possible states are equally probable.
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The multispecies case n > 2 is non-trivial and has been solved in two intriguing
ways: combinatorially and algebraically. The combinatorial approach is known as the
multiline queue (MLQ) construction [7, 23], while the algebraic method is based on the
Zamolodchikov—Faddeev (ZF) algebra [6, 24]. The latter directly leads to the matrix
product formula for the (unnormalized) stationary probability of the configuration
(01,...,01)€{0,...,n}t:

P(O’l,.. -7UL) = T‘I‘(Xal "-XUL).

Here Xy, ..., X,, are operators acting on some auxiliary space over which the trace
is taken. It is well known that the above formula is valid if there are (not necessarily
unique) spectral parameter dependent versions Xo(z),..., X, (z) satisfying the ZF
algebra whose structure function is a stochastic R matrix related to the Markov
matrix of the n-ASEP.

Central in our approach is a certain five vertex model on the two-dimensional square
lattice whose “Boltzmann weights” take values in a t-deformed quantum oscillator
algebra acting on its bosonic Fock space. We call it the t-oscillator weighted five
vertex model. See (54). A curious feature is that it does not satisfy the usual weight
conservation or the so-called “ice condition” as in the six vertex model [4], nor does
it satisfy the Yang-Baxter equation. However, the model can also be interpreted as a
three-dimensional system, where the Fock space is attached to the edges in the third
direction.

The strange five vertex model plays a pivotal role, refining many known results [6,
7, 23, 24] and synthesizing their techniques together. Despite not satisfying the Yang—
Baxter equation, it still presents many beneficial aspects:

e The operators Xo(z),...,Xn(z) are formulated as corner transfer matrices
(CTM) a la Baxter (cf. [4, Chap.13]).

e These CTM diagrams immediately lead to the recursion relation of these
operators with respect to n.

e Stationary probabilities are identified with the partition functions of a three-
dimensional system.

e The generating sums of the combinatorial weights in MLQs are readily iden-
tified with a simple trace of the t-oscillators.

e The rank-reducing RT'T' = TTR relation for proving the ZF algebra is linked
with the standard solution of the Yang—Baxter equation constructed from the
symmetric tensor representations of the quantum group (see Remark 5.1).

The second item above clarifies the origin of the tensor structure of X, questioned
at the end of [2, Sec.4.2]. The conservation law in the strange five vertex model is
designed around the MLQ pairing, providing a natural framework for such analysis.
This paper presents these results concisely, without the need for heavy machinery
from integrable probability, making it both accessible and efficient to read.

The outline of the paper is as follows. In Section 2, we recall the n-ASEP and a
general relation between a matrix product formula Tr(X,, - - X,, ) for the stationary
probabilities and the ZF algebra among the spectral parameter-dependent operators
Xo(2),. ..y Xn(2).

In Section 3, we reexamine the combinatorial approach to stationary states by
the MLQ construction [7, 23]. We demonstrate that the result can be expressed as
a certain composition M(q,t) of linear operators which naturally lends itself to a
diagrammatic representation as a CTM of size n (Proposition 3.6 and (46)).

In Section 4, we introduce the strange five vertex model, whose statistical weights
take values in a t-oscillator algebra A. This model can be interpreted as a three
dimensional (3D) system, where A acts on Fock spaces in the third dimension. We
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establish that the stationary probabilities correspond to the partition function of
this 3D system, with boundary conditions derived from the n-ASEP configuration
(Theorem 4.4 and (77)). The matrix product operators Xy(z),...,X,(z) play the
role of the layer transfer matrices of the system (78). They obey a recursion relation
with respect to the rank n, which follows directly from the CTM diagrams.

In Section 5, we provide a new proof of the ZF algebra relation among the matrix
product operators Xo(z),..., X, (z). It is the most natural one from the perspective
of quantum integrable systems, elucidating a precise relationship (97) with the Yang—
Baxter equation of the relevant quantum R matrices.

Section 6 is devoted to concluding remarks.

After the basic definitions of the model in Section 2, the text can also be read in
the following order: Section 4 and Section 5, to establish the matrix product formula
first before proceeding to Section 3, where the connection with the MLQ method is
explained.

2. MULTISPECIES ASEP

2.1. DEFINITION OF n-ASEP. Consider the periodic 1D lattice with L sites, which
will be denoted by Zj,. Each site ¢ € Z, is assigned with a variable o; € {0,1,...,n},
where ¢; = « is interpreted as the site ¢ is occupied by a particle of type «a if a # 0
and vacant if & = 0. We assume 1 < n < L throughout. The space of states is given
by

(1) (CrHh)®E ~ b Cloi,...,oL).

(01100001 )E{0,.ccsn}

Consider a stochastic process in which neighboring pairs of local states (oy,0;41) =
(0,0") are interchanged as (0,0") — (0’,0) with the transition rate t?(°<") with
some parameter ¢ > 0. Here and in what follows we use the notation f(true) = 1 and
O(false) = 0. Let P(o1,...,0L;T) be the probability of finding the state |o1,...,0L)
at time 7', and set

(2) |P(T)) = > P(o1,...,00;T)|o1,...,0L0).

(011000 L)E{0,.ccsn}

By n-ASEP we mean a Markov process governed by the continuous-time master equa-
tion

d
—|P(T)) = H|P(T
3) = IP(T)) = H|P(T),
where the Markov matrix() has the form
(4) H= Y H<%,, — H": |o,8) (I8,a)— |a, )P,
€L,

where Hfolﬁrl acts on the ith and the (i+1)th components as H'*¢ and as the identity
elsewhere. By the definition H'°¢ is expressed as

(5) H'* = Z (tEga ® Eap — tEaa ® Egs + Eap ® Ega — Egs ® Eaa)

o<a<f<n

in terms of the matrix unit F,g acting as E,g|vy) = dg~|a).

(D Also called a “Hamiltonian” by abuse of terminology despite it not being Hermitian in general.
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EXAMPLE 2.1. Consider n = 1 and L = 3, then we have

0 1000) 0
00 001)
—t 1 010)
t —1 1100)
—t 10 |[lo11y A

t

1

>—k<~o~:|>
s

o O O
o

t
t =10 |[101) 1
0 00 [|110) A

0/[111) 0

&+

where A= —t—1and H = H{OQC + Héog + Héof with Héof = zl,ﬁf by convention.

As H preserves the particle content, it acts on each sector labeled with the multi-

plicity m = (mg,...,my) € (Z=o)"*! of the particles:
(6)
L
W(m) = Z Clo), %(m)={o = (01,...,0p) € [0,n]" | Z Sa,o; = Ma, Yo,
oeX(m) j=1

where [0,n] = {0,...,n}. Note that my + --- + m,, = L holds and dimW(m) =
ﬁ A sector W(my,...,my,) such that m, > 1 for all 0 < a < n is called basic.
Non-basic sectors are equivalent to a basic sector for n’-ASEP with some n’ < n by a
suitable relabeling of species. Thus we shall exclusively deal with basic sectors in this

paper (hence n < L as mentioned before).

ExXAMPLE 2.2. Consider n = 2 and L = 4. Then the matrix H restricted to the sector
m=(2,1,1) is

1 t ) ]0012)

1 t |lo102)
t 11002)

1 0120)

1 11020)
0021)
1 [|1200)

1 10201)
1 0 [|0210)
1 0 [|2001)
B 1 [|2010)
t C)]2100)

where A = =2t — 1, B = =2t — 2, and C = —t — 2. Note that the left null eigenvector
of the Markov matrix H is (1,...,1) reflecting the total probability conservation.

2.2. STATIONARY STATES. In each sector W (m) there is a unique state |P(m)) up to
a normalization, called the stationary state, satisfying H|P(m)) = 0.

The stationary state for 1-ASEP is uniform in that all the configurations are real-
ized with an equal probability.

EXAMPLE 2.3. We present (unnormalized) steady states in small sectors of 2-ASEP
and 3-ASEP in the form

[P(m)) = [¢(m)) + Cl¢(m)) + - + CF7Hg(m))
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where C' denotes a cyclic shift C|oy,...,0L) = |o,01,...,05_1). Note that the choice
of [£(m)) is not unique.

[€(1,1,1)) = (2 + ¢)|012) + (1 + 2¢)|021),

1€(2,1,1)) = (3 +1)]0012) + 2(1 + ¢)]0102) + (1 + 3¢)[1002),

1€(1,2,1)) = (2 + ¢ + t2)]0112) + (1 4+ £)%]1012) + (1 + ¢ + 2¢?)[1102),
1€(1,1,2)) = (3 4 1)]1220) + 2(1 + 1)|2120) + (1 + 3t)|2210),

1€(1,2,2)) = (3 4+t +t%)[11220) + (2 + 2t + ¢*)[12120) + (1 + 3¢ + t*)|12210)

+ (24t + 2t%)[21120) + (1 + 2t + 2t%)|21210) + (1 + ¢ + 3t)|22110),
1€(2,1,2)) = (1 4 6t 4 7t% + 6t2)]00221) + (2 + 7t + 6% + 5¢°)|02021)
(1 +1)(3 + 4t + 3t2)[02201) + (1 + )(3 + 4¢ + 3t?)[20021)
(5 + 6t + 7t* + 2t3)]20201) + (6 4 7t + 6t% + %)|22001),
1€(2,2,1)) = (3 +t +¢2)]00112) + (2 + 2¢ + ¢3)[01012) + (2 + ¢ + 2t%)|01102)

+ (14 3t + t%)[10012) + (1 + 2t + 2t%)[10102) + (1 + ¢ + 3t*)[11002),
1€(1,1,1,1)) = (9 + 7t + 7t* + ¢3)]|0123) + (3 + 11t + 5% + 5¢3)[0213)

+3(1 + 1)%1023) + (5 + 5t + 11¢% + 3t%)|1203)

+3(1 +t)*[2013) + (1 + 7t + 7t* + 9t%)|2103).

These formulas reduce to [21, Ex.2.1] at ¢ = 0. The result |{(1,1,1,1)) agrees with the
anti-clockwise reading of [23, Fig.1.3] with ¢ — ¢, if the local states 1,2, 3, - therein are
replaced by 3,2, 1,0 here, respectively. Moreover, according to |£(2,1, 1)) in the above,
the right null eigenvector of the Markov matrix H from Example 2.2, the nontrivial
stationary state up to normalization, is equal to the (column) vector

[3+t,2(1+1),1+3t,3+¢,2(1+1),1+3t,34+t,2(1+1),14+3t,3+1¢,2(1+1t),1+3t]*.

+ o+

2.3. MATRIX PRODUCT CONSTRUCTION. Consider the stationary state
(7 [P(m))= ) P(o)lo)
oeX(m)

and suppose that the stationary probability P(o) is expressed in the matrix product
form

(8) P(oy,...,01) = Tr( Xy, - Xo,)

in terms of some (not necessarily unique) operators Xj,...,X,. Introduce the no-
tations for the matrix elements of the local Markov matrix (5) and the associated
product of X;’s as

9) H'lo, B) = Y W10, 0),  (hXX)ap i= A5 X, Xs.
v¥,8 ~¥,0

Then we have

H|P(m))

Z Z o303, 0441, - )H17+1| Ui70i+17~-->

1€ZL oeX(m

’ !
Ti1T441
Z Z Z TI' o‘ 0’1+1 '”)hgi-ﬁ'i+1 U UL+17"'>

€2y oeX(m) 0},07,

DD T (X X )g iy ) O T,

oeX(m) i€Zy,
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Therefore if there are another set of operators X Tyen- ,)A(n obeying the hat relation
(10) (hXX)ap = XoaXp — XoXp,

the vector (7) satisfies H|P(m)) = 0 thanks to the cyclicity of the trace. Then (8),
assuming it is non-zero and finite, must coincide with the actual stationary probability
up to an overall normalization due to the uniqueness of the stationary state. Note on
the other hand that )A(l satisfying the hat relation (10) for a given X; is not unique.
For example X; — X; + cX; keeps (10) valid.

From (5) we find the explicit form of (10) as

(11) t0e=P x o X, — 19N X X = XoX5— XoXs (0<a,f<n).
Tt is easily seen that (11) is satisfied by setting

dXo(z)

(12) Xo = Xa(1), )?oz =(1-1) dz

2=1
for the operator Xo(2), ..., X, (z) involving a spectral parameter z provided that they
obey the relations
(13)
(z — ty) Xa(y)Xp(x) = (1 = )aXa(2)Xp(y) + (v —y) Xp(z) Xa(y) (0<a<f<n),
(14)
[Xa(z), X3(y)] = [Xa(y), Xs(x)] (0<a,f<n).
The relation (13) allows one to interchange the order of the spectral parameters y, x

into z,y for @ < 8. An analogous relation for a > 8 can be derived by combining (14)
and (13) as

X)X (&) = X (@) Xa(y) — X5(4)Xa(2) + Xa()Xs(y)
=(1—“‘¢”)Xmmxam+(1—m‘y)XAMXMw.

Tz —1ly Tz —1ly

In this way, one finds that (13) and (14) are presented in the form of a Zamolodchikov—
Faddeev (ZF) algebras:

n

(15) XaW)Xp@) = Y, R(y/z))s X, (2) Xs(y).
~,0=0

Here the structure function is given by

_ )0(a<p) _ £\ 0(a>p)

a,a _ a,f (1 Z)t B, (1 t)Z

16) R(zlaa =1 R@as="—7_7— Bls="—F—"73—
for a # (. The other elements are zero. This is known as a quantum R matrix for
the vector representation of Uy(sl,4+1) [10, 16]. Set R(z) = PR(z) with P being the

transposition P(u ® v) = v ® u. This satisfies the Yang—Baxter relation (cf. [4])
(17) Ros(y) Rua(wy) Ras (x) = Ruz () Ras(wy) Raa(y),
which is the associativity of (15). The R matrix is stochastic in the sense that
Yos R:?(z) =1 for any 0 < 7,0 <n.
3. MULTILINE QUEUE CONSTRUCTION

We recapitulate the multiline queue (MLQ) construction of ASEP states by [23] in a
form adapted to our conventions. See also [7]. We also reformulate it as a composition

of the matrix M (z,t), which we introduce as the building block of the construction.
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3.1. BALL sYSTEM. We use the following notations:

(18) i=(i1,-..rir) € {0,135, [i| =1 +---+ir, 1<j<>j—ie (Zso),
(19) By ={i=(i1,...,i5) € {0, 1} | i| = 1}.
Consider a basic sector W (m) for m = (mo, ..., my,), and set
(20) lLi=m;+mip1+---+my, (0<i<n),
(21) B(m)=5B,®B;, ,® - ®DBy,.

We prefer to use ® to denote the product of sets rather than x as we are treating
these sets as basis elements (in the sense of Kashiwara’s crystal bases [17]). Note that
L=1Ily>1l;>-->1, > 1 since the sector W(m) is assumed to be basic. Elements
of B(m) will be referred to as a ball system.

Consider a ball system given as b = b, ® --- ® by € B(m), where b; =
(bi1, ... ,bir) € By,. We identify b with a ball diagram, which is an n x L rectangular
tableau in which the box at the ith row and the jth column contains a ball if b;; = 1
and is empty if b;; = 0. Here and in what follows, the rows (resp. columns) are
numbered from the top (resp. the left) of the diagram. The r-th row corresponding
to b, will simply be called Row r. A ball is understood as carrying the information
of its location in the tableau.

ExAMPLE 3.1. Consider the 3-ASEP on the length L = 9 lattice in the sector W (i)
with m = (2,3,2,2). We have (I1,1s,13) = (7,4,2). Consider a ball system

(22a) b=b3®b;®b; € B, ® B4 ® Br,

(22b) bs = (001010000), by = (110100010), by = (011111101).

Its corresponding ball diagram looks as follows:

Rowl o O O O O O O ¢ O
Row2 (O O e () e e e () e
Row 3 ] ° O ° O ° ° ° °

3.2. MULTILINE QUEUE. Let us introduce a pairing of a ball system. Given a ball
system b = b, ®---®b; € B(m), we set b(® = b, m™ = m and construct a family
of smaller ball systems

(23) b™) e B(m) = B ®---®B» (lm =M+ M1+ +my)

?

in the order r =n —1,n—2,...,1. The component B, corresponds to the Row i of

the ball system b(™. Note that I\ = m,.. Let di, ..., dn, be the balls of Row r in the
ball diagram of (23) from left to right in this order. We pair the ball d, to a ball d,
in Row (r—1) in the order o = 1,2,...,m,. The choice of d,, is arbitrary except that
if there is a yet unpaired ball just above d,, that must be selected. (Such a case is
called trivial pairing.) The partners dj, ..., d;, are not necessarily aligned from left
to right in Row (r —1). Let df,...,d;, be these balls read from left to right. They
are paired to the balls in Row (r — 2) in this order similarly. Repeating this process

we get a sequence of injections
(24) {balls in Row 7 of b(™} < {balls in Row (r — 1) of b} < ...
> {balls in Row 1 of b("}.

Denote the final image by ¢, € By, . This procedure will be referred to as the (n+1—r)
th round of the whole pairing. After completion of it, we assign a color r to all the
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balls captured in the round, and eliminate them. The resulting ball system defines
b=V, A pairing of b € B(m) is obtained by doing the round 1,2,...,n in this order,
where the last round n actually does not introduce an injection but only assigns the
color 1 to the remaining balls in the Row 1.

A pairing of a ball system b € B(m) may be regarded as a collection ¢ =
(¢1,2,-- -, Pn—1,n) of injections

(25) ¢s—1,s: {balls in Row s of b} < {balls in Row (s — 1) of b}

satisfying a certain condition. A ball system assigned with a pairing is called a mul-
tiline queue (MLQ) and denoted by @ = (¢, b). We identify it with a MLQ diagram,
which is the ball diagram endowed with an arrow d’ <« d assigned to each pair of
balls d,d’ such that d' = ¢,_1,(d) for some 2 < r < n. The arrow starts from d
and proceeds to the left, cyclically wrapping if necessary, until it reaches d’ upstairs.
There are in general many MLQs @ = (¢,b) for a given ball system b. The set of
MLQs built in this way based on the set of ball systems B(m) in (21) will be denoted
by MLQ(m).

Each ball d in @ = (¢, b) € MLQ(m) is uniquely colored as C(d) € {1,2,...,n} by
the rule explained in the above. By construction, the colors of balls in Row r range
over {r,r+1,...,n}. In particular, there are exactly m,, balls of color a for 1 < a < n
in Row 1 of any MLQ from MLQ(m). We will always understand that balls in MLQs
have been colored.

ExXAMPLE 3.2. The following is a MLQ for the ball system in Example 3.1. Non-trivial

pairings are labeled as pq, ..., ps for later convenience.
Row 1 D ° @ @ @ @ p3® @
Row 2 ?@ ° e o o (;) °
Row 3 e p1® ° p2® e o o o

3.3. ASEP STATE |Puiq(m),). Here we construct an ASEP state |Pupg(m),) €
W (m) in three steps. It is known as the MLQ construction of the stationary state [7,
23]. For ASEP, only the ¢ = 1 case is necessary. However, we explain a generaliza-
tion including generic ¢ that was introduced in [7] for applications to Macdonald
polynomials. We shall focus on the construction process here. The connection to the
matrix product method in Section 2.3 and a proof that |Pyrg(m),=1) is indeed the
stationary state will be presented in later sections.

Step 1: We define a map from MLQs to ASEP configurations (see (6) for the defi-
nition of ¥(m))

(26) m: MLQ(m) — X(m); Qv (01,...,0L)

by stating that the image is the configuration of colored balls in Row 1 of @,

where empty boxes are regarded as 0. Concretely, o; = C(d) € {1,...,n} if dis

the ball corresponding to by ; = 1 and 0; = 0if by ; = 0. For @) in Example 3.2,

by = (b1,1,...,b1,8) is given in Example 3.1 and 7(Q) = (0,2, 1,3,2,3,1,0,1).
Step 2: We assign a weight wt,,, to a MLQ Q = (¢, b) as

(27) Wt (Q) = [ [wtau(p),

where the product is taken over all the pairs of balls p = (d' <« d) in Q
specified by ¢ as d’ = ¢,_1,,(d) for some 2 < r < n. Let B, be the set of the
balls in Row r and Row (r—1) having the color ¢. There are m, such balls
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in both rows and they are paired by ¢,_1,. We determine the weights in the
following order according to the pairing procedure explained in the previous
subsection:

Bn,na Bn,n—la cee 7811,2;

Bn—l,n—la s aB7L—1,27

83,37 83,27
Ba .

The i th row here corresponds to the i th round of the pairing. Following the
previous subsection, we consider the balls in Row r from left to right within
each BC,T.(Q) When seeking a pairing partner of a ball d in Row r, the balls
d’" in Row (r — 1) that are not yet paired are called free. As mentioned after
(25), the pairing p = (d’ < d) is depicted as an arrow going from d to the
left cyclically until it ends at d’ upstairs. Suppose that d and d’ are in the
j-th and the j’-th columns of the MLQ diagram from the left. If 5/ = j, it
is a trivial pairing and we set wt, ((p) = 1. Suppose j' # j. Set dwrap = 1 if
the arrow is wrapping, i.e. j < j’. Otherwise we set dyrap = 0. The free balls
in Row (r — 1) in the columns j' + 1,5 +2,...,j — 1 (indices regarded as
elements in Zj, here) are called skipped. Now the weight is given as

(1 _ t>t#skipped
(1 _ t)t#skippedq(c—T+1)5wrap 1— qC*T“Flt#fYCC

(29) Wtq,t(p) = 1— qc—r+1t#free = (1 _ t)t#skippedqc—r+1

1— qc—r+1t#free

if j" <j,

if j <j'.
In Example 3.2, the weights of the non-trivial pairings are
Cqt*(1—1t) 1—t

Wtgt(p1) = ————37, Wtge(p2) = [y

1—qtt’
t(1—1t) qt?(1 —1t)
1—qts ’

1 _q2t6’

(30)
Wty ¢(p3) = wtq t(pa) =

and wt, ¢(Q) is the product of them.
Step 3: By using 7 (26) and the weight (27), the state |PyLg(m),) is constructed
as

(31) |Pao(m)gy = > wig(Q)In(Q)).

QeMLQ(m)

We note that when ¢ = 1, the weight wt, +(Q) is invariant under (horizontal) Z;,
cyclic shifts of Q. Therefore |Pyvrg(m)g—1) is translationally invariant.

(2)The sum of the resulting weights (27) in (33) is actually independent of this order as shown
in [7, Lem. 2.1].
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EXAMPLE 3.3. Consider the (L,n) = (4,2) case. The MLQs contributing to the states
[1012),]1021), |2011) € W(1,2,1) and their weights are given as

|1012) : @ . ®§ 1, ...® * O @& qt(l—t)

37
° b 1—qt

° @ @© e @ qt?(1—t)
N

E ¢ D % OO
12011) : C. . 1, ) . T

Summing them at g = 1 yields
(1+t+ %) Punq(1,2,1)4=1) = (1 + 1)?|1012) + (1 + ¢ + 2¢?)[1021)
+ (24t +17))2011) + - - -,

11021) :

(32)

which agrees with |£(1,2,1)) in Example 2.3 in view of the cyclic Zj symmetry.

3.4. MATRIX M. We introduce a matrix M which describes the interaction between
neighboring rows in MLQs. Consider a MLQ for n = 2 case with (I1,12) = (m,1) (I <
m). It contains two rows and have the form @ = (¢,i®j) with i®j € B; ® B,. Here
i= (i1,...,ir) € B; means that there is ix(= 0,1) ball in the k th column from the
left in the lower Row 2. Similarly j = (j1,...,jr) € By, specifies the positions of balls
in the upper Row 1.

For any a®b e Bi® B,,_; and i® j € B; ® B, with | < m, define a generating
function of the weights by

a,b
(33) M(q, 1) = 632> T wtg4(Q),
¢
where 05 = 0(x = y). The sum is taken over the pairings ¢ satisfying the condition

(34) ¢({balls in i}) = {balls in a}.

To summarize, the indices a, b,i,j of M(q, t)?jb have the following meaning, where
the last column is an interpretation in the language of the queuing processes in [23]:

Indices ‘ball picture ‘queuing process
B;5i |balls in the lower row arrival

(35) B,, 3] |balls in the upper row service
B; 3 a |paired balls in the upper row departure

B,,,_; 3 bjunpaired balls j — a in the upper row|unused service

The constraint a + b = j in (33) is natural from the queuing process interpretation.
In general, there are numerous choices for ¢ contributing to the sum (33), with a
maximum of [!.

EXAMPLE 3.4. Consider the two MLQs for (I1,l2) = (o + § + 1, 2) as follows:

[e3%

@%ﬁ f@ﬁrb%ﬁ
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For the corresponding a, b, i, j one has
ab  PTHI—t)  1—t gtP (1 —t) P11 —¢t)
LT ] —gtetBt1 ] —gtatB T 1 — gtotBtl 1 — gtatB
911 —1)2(1 + gt +P)
(1= =¥ 7)(1 = a¥7+1)°

M(q,1)

(36)

For | € Z=1, let V} be the vector space having a basis {vp} labeled by B; from 19:

(37) Vi= @ C(g,t)vp.
beB,;

For | < m, we define a linear operator M (z,t) depending on ¢t and another variable z
by

(38a) M(z,t): Vi@ Vi = Vin i ®V

(38b) v vy — > M(z,t)}Pve®va  (i®j€ BI®Bp),
a®beBiQ®Bm—1

where the double sum in the RHS is actually a single sum

Z M(z, t)i’ij_a Vj—a ® Ua

aeBl,aSj

since M(zj)f:jb =0 unless b = j — a by (33).

REMARK 3.5. One might think that by introducing M'(q,t)ijb = (5ia:jb 2 What(Q),
setting

M'(z,t): ViV, - V,®V
v @ vy — Z M’(z,t)f:ib Vp ® Va
a®beB ;@B

is more natural rather than (33) and (38) since it possesses the standard “weight
conservation”’ property common in quantum R matrices. The reason we employ the
strange M (2,t) in (38) is to make it fit with the queuing process interpretation in
(35) and will further be detailed in the next subsection. We additionally note that
the Yang—Baxter equation

M (z,t)1 oM (xy, t)2 sM' (y,t)12 = M'(y, t)2sM' (xy, 1)1, 2M' (2,1)2,3
is not valid for generic z and y.

3.5. ASEP STATE |Pyrqg(m),) FROM M. Let us depict (38b) in a conventional dia-
gram for vertex models (see e.g. [4]):

b
b
(39) i=— a — M(th)ij )
z
J

where we are taking b = j — a. The arrows here and in the rest of this section, as
seen in (45) and (46), correspond to the indices from B; in (19). In contrast, the
arrows in the next section, except those in (64)—(68), carry a single integer. In order
to distinguish them, we use thick arrows for the former and thin arrows for the latter.

In what follows M (z,t) will simply be denoted by M (2) as the parameter ¢ is fixed

everywhere. Let M(z);,;_1 be the operator acting on the (j,j—1) th components
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Ve, ®Vs,_, inV, ®---®V;, as ]\\/[/(z) and as the identity elsewhere (s, ’s are arbitrary
positive integers).
A key role in our work is played by the operator

(40) M(qa t) : W,L ® ‘/ln,1 ® e ® ‘/ll - le ® sz ® e ® an7

where m;’s and [;’s are related by (20). It is given as a composition of 1n(n —1) M's
as

(41) M(q,t) = Ap_145—2--- Ay,
(42) Aj = jz(qn_j)j+1gj2(qn_j_1)j+2g+1'"EZ(QLLn71-

Explicitly, it reads

M(Qvt) = M(Q)n,nfl

2
(43) ’

~

xM(q" a1 M(q" )32 M(Q)nn-1,

where the rth row from the bottom is A,. Let us illustrate the n = 3 case:

(44) M(q,t) = M(q)s.2 M(q%)2.1M(q)s.2 -
A A
2 1

The matrix elements of Ay for the transition vp, ® vp, ® Vb, — Vb, ® Vb @ Ve, and
those of Ay for Uy, @ Vb @ Vg — Ve; ® Ve, ® ey are depicted as

b'2 b'l C1

(45) bs c3 by C2
a g q
by by b}

Let us explain the meaning of these diagrams along with Example 3.2. The left dia-
gram in (45) for A; shows the first round of the pairing process corresponding to the
red arrows in Example 3.2. One lets bz on Row 3 “penetrate” Row 2 and then Row 1,
obtaining the image c3 which specifies the location of color 3 balls at the top. See the
definition of ¢, given after (24). The elements b/, and b} represent the free balls left
intact in Row 2 and Row 1 in the first round, respectively. In the second round of the
pairing, one lets b}, interact with b/ as indicated by the blue arrows in Example 3.2.
This is depicted in the right diagram in (45) for Ay, where ¢y and c; correspond to
the color 2 and 1 balls in Row 1, respectively. In this way, c1, ¢z, c3 give the final list
of color 1, 2, and 3 balls in Row 1. The weight wt(Q)4, of the MLQ is equal to the
element of M(q,t) for the transition vp, ® Vb, ® Vb, — Ve; & Ve, ® Vey. Its diagram
is obtained by combining the two in (45). It results in a single diagram in the left of
the following:
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n=4
n=3: —> €1
—> C1

» Co

» Co q
(46) a > C3

» C3 @1 ¢
[ q ¢ » Cy4

b3 b2 b1 [ q q2 q3

by, bz by by

Note that ve; ®Ve, ®Vey € Ving ® Vin, ® Vin, from (38a) and (20). The right one in (46)
is the n = 4 case. From (46), the general n case is clear. The diagram for M(q,t) has
the form of the corner transfer matriz (CTM) of the NW quadrant in [4, Fig. 13.2].(3)
The operator A; (42) corresponds to the j th row from the bottom in the diagram. It
encodes the weights in the j th round of the pairing process, which concerns the balls
in the 7 th line of (28) from the top, and they are colored in n + 1 — j. The reason
we employ the unusual b = j — a weight conservation in (38b) and (39) is that it is
necessary to describe the unpaired balls, which remain active and will be the relevant
players in the subsequent rounds. See (35).

The outputs of M(q,t) are superpositions of data of the form ve, ® -+ ® ve, €
Vi, ® -+ - ®V,,,. . They are transformed to the ASEP states in W (m) (6) by a simple
“projection”:

47 I: Vi, ® - @V, & W(m)
(47) Ve; ® - QUg, — |C1 +2C2+ -+ + ncy),

where the 0 th component of m = (mg,my,...,m,) is determined by the condi-
tion |[m| = L. To summarize the argument so far, we have explained that the state
| Pyrg(m),) constructed from the MLQ approach is expressed as follows.

PROPOSITION 3.6 (CTM interpretation of the MLQ construction).

(48) Prrom)) =M(M(gt) Y] b, @ @up, ).
b,® -®bieB(m)

It is known to yield the actual stationary states at ¢ = 1 [23].

4. 1-OSCILLATOR WEIGHTED FIVE VERTEX MODEL

We will compute the stationary probabilities by introducing a five vertex model. It
is different from those considered in [20, 21] and does not satisfy the usual weight
conservation property. Instead, it uses the same strange weight conservation as in the
previous section.

4.1. t-DEFORMED QUANTUM OSCILLATOR. Our five vertex model will be weighted
using a t-oscillator algebra A generated by (a*,a~, k) satisfying the relations

(49) kat = ttlatk, a—a” =1—tk, ata” =1-k.

()1t coincides with a wiring diagram of the longest element of the symmetric group &,,.
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It has a natural representation from its triangular decomposition, which we refer to
as the bosonic Fock space:

(50)
Fo- é@(t)ld% kldy = t'ldy, a*ldy=|d+1), a~|d)=(1—t)d—1),

extended by linearity with the convention |—1) := 0. We will also use the “number”
operator h defined by

(51) h|d) = d|d)

so that k = ¢B.

REMARK 4.1. Consider a 7-twist quantum oscillator algebra A, having the relations
(52) ka® = tTlatk, aa” =1-t"k", ata” =1-k7

and the representation of F:

(53) K=, atldy=|d+1), aldy—(1—t)d-1),

in place of (49) and (50). In this paper, we will use A = A,_; only, but let us
make a few remarks about the general case. The representations of the quantum
oscillator algebra can be used to construct representations of a (Drinfel’d-Jimbo)
quantum group (see e.g. [12, 18]), where the twist parameter 7 is related to the
deformation parameter in parallel to [1]. When 7 = 2, this is the quantum oscillator
algebra that has appeared in relation to the tetrahedron equation; see e.g. [21, 18].
The idea of realizing Lie algebra generators using bosons, i.e. creation and annihilation
operators, in physics dates back to [13], which is referred to as the Holstein—Primakoff
transformation.

4.2. t-OSCILLATOR WEIGHTED FIVE VERTEX MODEL. We define our vertex model
weights ngb as follows:

(54)

b 0 0 1 0 0
i*}’a 0{—»0 1{—»1 0«{—»0 0«{—»1 1«}»0
J 0 1 1 1 0
ngb 1 1 k a~ at

We set S{“f = 0 for all the other configurations. Note that k corresponds to the unique
configuration such that j —a > 0. The weight conservation holds in an unusual form:

ab .
(55) Si7 =0 unless a+b=j.

Compare (55) with (33). We let the number operator h also act on the {0,1} states.
Then (54) satisfies

(56) Zh-‘raqujb _ S;zjbzh-&-i’

which implies that the total weight of the first and the t-oscillator components is
conserved. That is a — i is equal to the change in the weight of a bosonic Fock space
element by the t-oscillator algebra element Sfjb.

REMARK 4.2. The multispecies totally asymmetric simple exclusion process (TASEP)
is the special case corresponding to ¢ = 0 in the ASEP. The five vertex model utilized
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in 20, Eq.(2.20)] for TASEP has the weights §fjb\t=0, where §;’jb is given by
(57)

b 0 1 1 0 1
i*}’a 0{—»0 1{—»1 0{—»0 0«}»1 1«}»0
J 0 1 1 1 0
§%b 1 1 k a~ at

It satisfies the usual weight conservation, i.e. gijb = 0 unless a + b = i + j. The two

models are related by Sfjb = gfj’bﬂ. Both can be interpreted as three-dimensional
vertex models in which the t-oscillator acts in the third direction. The model (57)
works efficiently for TASEP revealing the crystal theoretical nature [20] of the MLQ
method [11] and reducing the relevant ZF algebra to the tetrahedron equation at
t =021, 18]. Although the ZF algebras for TASEP and ASEP are smoothly connected
via the parameter ¢, we have not found a method to formulate the results in the present
paper based on the model (57).

Next, for any a®b € B;® B,,,—; and i®j € B;® B,,, with [ < m, we define S(q, t)ijb
by a matrix product formula

(58) S(g. )3 = (1— qt™ ) Trp (¢S S22 . Sfebr),

11J1 T 2])2 1LjL
where the trace is taken over F. When the trace space is clear, we will omit it from
the notation. From (55) it follows that

(59) S(q,t)fjb =0 unless a+b=j.
Moreover from |j| —|a] = m — 1 > 0 and the comment after (54), there is at least one
k in the operators S;“Jbll, cey S’fLijLL. Therefore the trace (58) is a valid formal power

series in t even at ¢ = 1. The definition (58) is depicted as [18, Fig.11.3]|._,4 if the
vertices therein are regarded as Sf:jlir. See also (75) below.

EXAMPLE 4.3. Suppose (I,m) = (2,a+ 8 +1) with a, 8 > 1 and take a,i€ B;,j € By,
and b € B,,_; as

= (1,0°7%,0,1,0,0%), b = (0,1°71,0,0,0,1%),
= (0,0°71,1,0,1,0%), j=(1,17710,1,0,1%),
which satisfies a + b = j. Now (58) is calculated as
S(a, 055" = (1 — a7 71) Tr(q" S50 (S51) 7" 510509516 (551)*)
) Tr
)

= (1 —qtotP1 (q a"k’lata ~a’k?)
( qta+/3 1 Z q td+1 (5_1)(d+1)(1 _td-‘rl)tozd
d=0

P =62 (1 + gt TP
T (1 gt tB)(1 - gtorAE)

Note that this coincides with M (q,t);b in (36). The equality holds in general as
shown in Theorem 4.4 below, which is an essential result quantifying the algorithmic
MLQ construction into the t-oscillator algebra.

THEOREM 4.4. For any a,i € B;,i € B, and j € B,,_; with | < m, the following
equality is valid:

(60) M(g, 13 = S(a. 03P,
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Proof. In view of (33) and (59), we shall exclusively consider the non-trivial situation
a+ b = j. We prove (60) by comparing the recursion relations with respect to !
on both hand sides. Let us illustrate the derivation for S(q, t)‘;&b using the example
i = (000000110100),a = (100010000100) € B;—3, j = (100110001101) € B,,—¢ with
b =j—aand L = 12. According to (35), the ball diagram relevant to M (g, t)f"jb looks

as

@ ¢ ¢ O@ ¢ ¢ ¢ OO O
(61) e o o o o o OO e (O e o

a~ k a- at at k 1 k
where the upper and lower rows stand for j and i, respectively, and a is depicted as
the red shaded balls.(¥) We have also presented St ljbll, cee SfLijLL that are not 1 at the
bottom, except for the third column from the right, for later convenience. Thus (58)
reads

S(q,t)::ib = (1 —qt*)0y, 0Oy = Tr(¢"a"ka ata'k1k).

What we do is to move the leftmost at here to the left cyclically to go around the
trace once by using the following form of the relations (49) for A:

(62a) a—at =tata + (1-1t),
(62Db) ka® = ta'k,
(62¢) ¢Pat = gatgh

By applying (62a), the trace Oq is decomposed as
(63)
Op = Of + 91, b=(0—1t)Tr(¢"a kaTk1k), ©; =tTr(¢"a"kata a*klk).

The term O corresponds to the following diagram where the connected balls should
be understood as absent:

1-¢
@ ¢ o O e o o O O® O
(64) oooooo;)QoOoo
a~ k at k 1 k
The trace ©1 is decomposed as
(65) 0, = t?Tr(¢Pa"a*ka atklk) = ©) + O,
0] =t*(1 —t) Tr(¢"ka"a'k1k), O, =t*Tr(¢"aTa ka aTklk).

The term ©) corresponds to the following diagram where the connected balls should
be understood as absent:

1-t tot

@+ 0@+ +0@+0O

(66) c o 0o o 0 e 0D e e e
k a- at k1 k

(4 This red shading has nothing to do with the color C of balls assigned in the MLQs explained
in Section 3.2.
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The trace ©4 is decomposed by rewriting the operator 1 as (1 —t) + ¢ as

(67)

0, = qt* Tr(¢"a"ka atklatk) = 6} + O3,

0, = qt*(1 —t) Tr(¢"a"ka aTka'k), O3 =qt°Tr(¢"a"ka atatkk) = ¢qt°0,.
The term ©Y corresponds to the following diagram where the connected balls should
be understood as absent:

q t t t 1-t t
- @ ¢ ¢ O Q@ ¢ o o (O Q e O
e o o o 06 6 OO e e
a” k a~ at k at k
Thus we have the relation
(1—qt%) Tr(¢"a"ka-atatkk) = (1 — ¢t®)0y = O, + O] + O},

The traces in O/, involve operators obtained by eliminating a*ta~, with (62a) replaced
by 1 —t if the target of the pairing is free from a ball directly below it. If the target
has a ball underneath, the corresponding operator 1 is replaced by a™. The coefficient
t (resp. ¢) in the RHS of (62) counts the number of skipped balls (resp. wrapping).
In general an analogous manipulation yields

(1 _ qtm) Tr(qhst_llbl S{l2b2 . S‘_ILbL)

i1J1 Yi2j2 irjr
(69) = D (1= t)g#vrarpedg#skiveed Ty (unpaired parts),

leftmost pairings

(68)

where the sum extends over the leftmost pairings, which means those between the
leftmost a™ in the downstairs and the red shaded balls, i.e. a € By, in the upstairs.
Thus there are |a| = [ summands. Let a’,i" € B;_1,j' € B;,—1 and j' € B(,,—1)—(-1) =
B,,—; be the arrays corresponding to the unpaired parts. Then from the definition
(58), the recursion relation (69) is translated as

(M0 SO - Y Pl

leftmost pairings
On the other hand, from the queuing algorithm explained in the previous section, it
is clear that the same recursion relation holds also for M(q, t)i_’ib. In particular, the
factor (1 — gt™)~! emerges from the fact that the denominators 1 — gt#¢ in (29)

lead to Hf«:1(1 — qt™ 1) for M(q,t):jb whereas ]_[5;11(1 —qt™" ") for M(q, t)fﬁ/;)/
It follows, by induction on I, the proof of (60) reduces formally to { = 0. When [ = 0,
one has M(q,t)fjb = 6P from (33), and S(q,t)i&b = (1—qt™) Tr(¢"k™)6P = 6P from

(54) and (58). This completes the proof. O

Recall from (33) that M (q,t)?jb consists of numerous summands, which have to
be calculated resorting to pairing diagrams by counting the skipped/free balls and
wrapping. Theorem 4.4 identifies it with a single trace that is free from such pairing

details. Put in the other way, M (q,t)?jb was giving a combinatorial description for

an expansion of the trace S(q, t)?jb.

In view of Theorem 4.4, the interpretation of the multi-indices a, b, 1, j in (35) and
the layer structure in (77), the five vertex weights in (54) describes a local event in
the queuing process with respect to the “time” « € Zp, where the number of the
customers in the queue is increased or decreased by af, or a,.
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4.3. OPERATOR S(g¢,t). A key ingredient in Proposition 3.6 is the operator M(q,t)
whose building block was M (g, t) in (38). From Theorem 4.4, it is natural to reformu-

late them in terms of S(g, t)?ib. This is what we do in this subsection as a preparation

for the introduction of the operator X% (2) in the next subsect\iﬁ)n.
For | < m, define a linear operator S(g,t) in parallel with M (q,t) in (38):
(71a)
S(q,t): Vi® Vi = Vi1 @ Vi
(71b) v ®v; — > S(q, t)iib b ®va = Y, S(gt) " vja ®a,
a®beB; @B aeB;,a<]

where i® j € B; ® B,, and the last equality in (71b) is due to (59). By Theorem 4.4
we know

(72) M (g,1) = 5(g.1).

Substituting this into (43) we have

M(Qat) = S(qa t) = S/(q)n,nfl
S

(73)

xS(q")218(d" a2 S(@Dnn-1-
From these definitions, Proposition 3.6 can be restated as
COROLLARY 4.5.
(74) Puom)y) =T1(S(a,t) > wp, @@, ).
b,®--®b1€B(m)

4.4. MATRIX PRODUCT OPERATORS X, (z). In the remainder of this section we con-
centrate on the ¢ = 1 case, which is relevant to the actual stationary states on the
n-ASEP. We do not exhibit z in the vertex diagram (39) and ¢ in the diagrams
like (45) and (46) assuming that they are all set to 1. We depict (58) as

" 5(17t)§3b S h a h as h ar,

Here each vertex signifies Sf:jb: taking values in the t-oscillator algebra as in (54).
Blue arrows are added to signify the Fock space F' (50) on which it acts and the trace
is taken. The operator S (1,¢) from (71) will similarly be depicted by suppressing the
indices.

The operator S(1,¢) shares the same corner transfer matrix (CTM) diagram repre-
sentation as M(1,¢) in (46), with each vertex (39) of thick arrows now possessing the
structure in the “third dimension” as illustrated in (75). As the result, the stationary
state in Corollary 4.5 is given as

(76) |Punq(m)g=1) = Y, P(o)lo),
oeX(m)

where the (unnormalized) stationary probability P(o), for example for n = 3, has the
diagram representation:
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PaN—
(77) P(o) = Trpes @77 ,,,,,,, 4;7 ;

where there are L layers of the CTM.

The dependence on o = (01, ...,0y,) is reflected in the boundary condition. In fact,
comparison of (77) and (8) amounts to identifying the ith layer with X,,. Moreover,
inspecting the projection IT in (47) leads to the constraint that X, (o =0,...,n) isa
partition function of the five vertex model in the NW quadrant with a free boundary
condition at the bottom and a fixed one on the right, where the edge states s1,..., s,
on the outgoing arrows (numbered from the top) are specified as s; = J; o. Such a
CTM diagram representation of the stationary probabilities was first obtained for
TASEP (the t = 0 case) in [20, 21] using the five vertex model in Remark 4.2. See
the recent work [15] for a new application.

Recall from Section 2.3 that one also needs the spectral parameter dependent
version X, (z) of X, in order to establish the stationary condition by resorting to the
ZF algebra (15) independently from the MLQ construction.

DEFINITION 4.6 (The operator X,(z)). We introduce the operator X, (z)(a =
0,...,n) as the CTM with each vertex having a t-oscillator valued weight specified
in (54) and depicted as

( ’ 5041
> 60(2

(78) Xao(2) = —> 0a3

oy v v

where the 2P are denoted by e. The diagram indicates that all edge variables are
summed over {0, 1}. The variables on the right outgoing edges are fized as shown, while
there is no boundary condition along the bottom. This depiction should be understood
as having an additional arrow at each vertex, perpendicular to the layer, corresponding
to the t-oscillator acting on its own Fock space.

EXAMPLE 4.7. The operators X, (z) can be written as

— 5041
da1
L “ ! o —> Oa2
Z Zu-‘rzz 5 9 Z 211+12+13
«
(79) 41420 i1,i2.05=0 —> 03
iy 11 A
3 12 11

Obviously this X, (z) reduces to the X, considered previously when z = 1. It is
n(n—1)

an element of End(F®~ 2 ). We number the vertices in (78) from top to bottom
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in the rightmost column, and then similarly in the second rightmost column, and so

on,as 1,..., % in this order. The t-oscillator generators acting on the ith copy

of the Fock space F' in this numbering will be distinguished by the subscript ¢ when
n = 3. Thus, the generators with different subscripts commute. To summarize, we
have proved the following.

THEOREM 4.8 (Five vertex CTM interpretation of the MLQ construction). The MLQ
construction in Section 3 yields the matriz product formula (8) of the unnormalized
stationary probability, where the operators Xy, ..., X, are given as X, = Xo(z = 1)

for X, (z) defined by (78) and the trace is taken over FO™

In the next section, we will establish the same matrix product formula by the ZF
algebra without relying on the MLQ construction.

EXAMPLE 4.9. For n = 2, X,(z) is given by

L
o

= za~ + 22,

These formulas for X (z), X1(2), X2(2) agree with [6, Eq.(46)] under the formal trans-
formation (at,a”,k,z) — (a,al,k,z). For n = 3, X,(2) is given by

m-Em N-EOH 8. L L

000 010 010 100 110

za1 za2 ag + za3 + zza;,
(‘# 02+ (‘# 0 22

001 101
= Zklkg + 22k1k2a3+,

0 0 0
1 1 1
0 |1 0 |1 1 |1
= 02+ OZ2+ 022

001 101 011
= zajke za1 k2a3 + 2k2k3,
0
0 [0
= 1z+ o z+ 1 z+ o z+ 13
001 101 011 011 11
= za, + zlajaj +  z%a; + z%ajay ks +
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4.5. RECURSION RELATION OF X, (2). For 0 <i<n—1,0 < j <n, define T'(z);;
be the t-oscillator valued weight for the followmg conﬁguratlon
— 0
0——0
0
0
i—> 1——0
0
0—r—0
0
(80) T(z)ij = !
0
1
0——0
1
1
0 0
Zhel

It is a column consisting of (n — 1) vertices, and the t-oscillators attached to the rth
one from the top is denoted by al, a;, k.. The indices i (resp. j) specifies the position
of the unique 1 on the left (resp. right) horizontal edges, and ¢ = 0 (resp. j = 0) means
that all the left (resp. right) horizontal edges assume 0. When j = 0, we also take the
bottom vertical edge to be 0. The figure corresponds to a case i, j = 1. Explicitly one

has

(81)

T(2)io=al (0<i<n-—1), T(2); = zaja; kj--k,1 (j=i+ 2) for j =1,
0 (j <)

where we regard ag as 1. Note that 7'(z);; depends on af,k, with r =1,...,n— 1.

PRrROPOSITION 4.10 (The recursion relation for X,(z) with respect to rank). Let
Xo(2),...,X,(2) be the operators defined by Equation (78) for the n-ASEP. Let
Xo(2), ..., Xn_1(2) be the operators for the (n — 1)-ASEP with aX,k; relabelled as
aj:_n_pk”n,l. Then the following recursion relation is valid:

(82) 2 (0 <a<n).

Proof. Consider the diagram (78), and let sg (8 = 1,...,n — 1) be the variable on
the left side of the crossing for the Sth horizontal edge from the top in the rightmost
column. As demonstrated in Example 4.11, a close inspection of the rightmost two
columns in (78) shows that the configurations that make non-zero contributions to
X (%) are only those satisfying sg = dg,; for some i =0,1,...,a—1. The correspond-
ing term is equal to X;(2)T(2)ia, where the factors T'(2)iq is the weight from the
rightmost (n—1) vertices and X;(z) emerges from the remaining part. O

n view of (81), the sum (82) for the case @ > 1 is actually restricted as
St Xi(2)T(2)ia. Clearly, X;(z) and T(2)ia in (82) are commutative.
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EXAMPLE 4.11. Let us consider X,_7(z) for n = 9 given as a configuration sum (78).
We illustrate how the ¢ = 3 term in the RHS of (82) shows up. A crucial property is
the strange weight conservation of Sfjb in (54).

~— 0 — 0 — 0 — 0 — 0
—t 0 ﬁT’ 0 ﬁr’ 0 TT’ 0 TT 0
0 -0 -0 ——0 ——0
0 0 0 |0 0" [0
0 -0 0 ——0 —— 0
0 0 1= |0 1= |0
-0 -0 0 -0 ——0
0 0 1 0 1|0
0 0 0 0 - 0
0 0 1 0 1|0
> 1 -1 > 1 -1 > 1
1 01y IR 10 ]
0 1 0 Ol 0 IR 0 19 0
[ ] [ ] i 0 [ ] ol : O [ ] 0 o1 " 0 IHU ol - 0 1'10 o1 - 0

From left to right, we are performing the following steps:

(1) The rightmost two columns in the diagram for X,(z).

) Red vertical edge variables are determined.

) Red horizontal edge variables are determined.

) Assuming that the highest non-zero variable is the blue underlined one, the
variables shown in red are determined.

(5) Red horizontal edge variables are determined.

The weight of the eight rightmost vertices and e is za; ag krks = T'(2)37. The re-
maining part of the configuration sum can be identified with X3(z).

EXAMPLE 4.12. A diagrammatic representation of (82) for n = 3 is as follows:

— 0 — 0 — 0
— 0 — 0 — 0
Xo(Z): 0 o + 1 o + 0 |0
o0 o0 0
0 0 0
= Xo(r)  +  alXi() +  ajXs(2),
— 1
Xi(2) Y
1(2) = 0 1 z
o0
1
= ZkleXo(Z),
— 0 — 0
Xa(2) — 1 — 1
2(2) = 0 1 z + 1 1 z
o0 o0
1 1

= zal_kg)?o(z) + 2k X (2),
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— 0 — 0 — 0
— 0 — 0 — 0
X3(z) = 0o |o z + 1o z+ 0 |o z
O—»]_ 0—»]_ 1%1
1 1 1

—  za; Xo(2) + zafa;Xi(z) + 2X5(2).
One can also check them directly by using Example 4.9. A matrix form of (82) is
(83)
N N N 1 zkiko zaiky zay
(Xo(2), X1(2), X2(2), X3(2)) = (Xo(2), X1(2), X2(2)) aj1: 8 2182 zajay
a; z

The transposition of the matrix here reproduces the 4 x 3 matrix in [6, Eq.(73)]

under the conventional change (al,a;, k;,z) — (ai+1,a;r+1,ki+1,z). The matrix
(T'(2)ij)o<i<n—1,0<j<n for n = 4 is available in (101). The recursion relation of the
matrix product operators of the form (82) without a spectral parameter appeared

earlier in [24].
REMARK 4.13. The diagram (78) makes sense only for n > 2. We extend the definition
of Xo(2),...,Xn(2) ton =0,1 as follows:
n=1 Xoz) =1, Xi(z2)=z2,
(84) 0(2) 1(2)
n=0: Xo(z) =1

Then the recursion relation (82) also holds at n = 1. The n = 1 case agrees with [6,
Eq.(42)].

Several diagrammatic representations of the matrix product operators X, or X, (z)
were devised in earlier works [6, 24]. However, we find that the CTM representation
in (78) is the simplest and most systematic, offering a clear visualization of their
evaluation and providing clarity to Proposition 4.10. This advancement has been
made possible through the introduction of the strange five vertex model.

5. PROOF OF THE ZAMOLODCHIKOV—FADDEEV ALGEBRA RELATION
The aim of this section is to show the ZF algebra relation (15).
5.1. RLL = LLR RELATION. Recall that the bosonic Fock space F is defined in (50).

Set F = F®+1) For a sequence of non-negative integers m = (mg, ... ,mn),(5) we
write |m) = |mg)® - ® |my) € F. Set

(85) Fi=Q(t){|m) [me Dy,

(86) Dy ={m= (mg,...,mp) € (Zz0)" " | mog+ - +my, =1}.

Denote by e; € D;—; the ith standard basis vector. For 0 < o, 8 < n and a,b € Dy,
set

(87) L(Z)gvl; = 5:5 i: (as+1ttan (1—toe Z@(azﬁ))za(a>ﬁ)’
and define a linear operator
L(z): Fi®F —FiQF

(88) ey ®lay— Y L(z)2Bles) ®[b).

Be{0,...,n},beD;

(5)This m should not be confused with the multiplicity introduced in (6).
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The dependence on ¢ and [ has been suppressed in the notation. We also introduce
the components

L(z)8: Fi—F (O0<a,f<n)
(89) 2y — 3 L(2)22Ib) = L(2)257 " |a + eq — ep),
beD;

where the RHS is to be understood as 0 unless a + e, —eg € D;.

REMARK 5.1. Let Rxnvvio (z)f;’;g denote the elements of the R matrix given in the first
equation in [19, App.A] with m replaced with 1.9) According to [19, Eqs.(15),(16)],

its stochastic gauge is given by Skavmo (2)5*” 6 = ¢"Rxmmo(2) ’?7’2 withn =dg+---+

0k—1— (Bj+1+ -+ + Bn). Then one has

(90) (1 —¢*'2)Skano(q' =)ok = 60213 Pt e (1 - P 2= 0=,
The element (87) is obtained from (90) by reversing the indices as (o, 8) —» (n—a,n—
B), a = (an,...,a0), b — (bn,...,by) and setting ¢> — t. When [ = 1, it reduces

to the scalar multiple of (16) as L(z)e} = ( —t2)R(z )a,ﬁ' The operator L(z) is
“stochastic” in the sense that Zﬁ b (z)a o =1 — zt! is independent of & and a.

PROPOSITION 5.2 (RLL = LLR relation). For any a,b,i,j € {0,...,n}, the following
equality is valid:

(91) Z R(x/y){ " Ly)h L(z)% = 2 L(x ‘R(z/y)y"
al b= 4'=0

Proof. From Remark 5.1, one has the RLL = LLR relation Ryo(x/y)L13(x)Las(y) =

Las(y) L1s(z) Riz(z/y) in End(F1@F1@F) by setting (k,,m) — (1,1,1) and (z,y) —

(z/y,y) in the Yang-Baxter equation for the stochastic R’s in [19, Prop. 4]. The

relation (91) is a component of it corresponding to the transition |e;)® |e;) — |eq)®

lep) in the F; ® Fp part. O
Consider the constant part of (89):
g ) (a=9)
(92) L(0)3|m) = { ¢mesrtdma (1 — ¢m0)|\m + e, —es) (o < ),
0 (> p).

In Proposition 5.2, replace (x,y) by (cz™!, cy~!) and take the limit ¢ — 0. The result
reads

(93) >0 Ry/o): ) LOYLO)G = Y LO) LO)] Rly/2)5".
a’,b'=0 i’,5'=0

We would like to reformulate (93) as a t-oscillator valued equation. On F, t-
oscillators k,at,a” act as (50). We let n + 1 copies of the t-oscillators act on F.
We distinguish them by putting a subscript as a} to signify which component it acts

on. Note that we label the components as 0,1,...,n from the left. Introduce further
the space without the 0 th component in F and the projection onto it as
(94) F= @ Q)M ®- -+ ® [ma),

(95) 1 F->F; Ime)y@mi)®@-®|my) — [mi)®@- - @ |my,).

(6)Indices 1,...,m+ 1 in [19] should also be replaced with 0,...,n
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Then by taking the image of (93) by ¢, we obtain

n

(96) >, Rly/a)i;" chLy = Z L L Ry /o)y,

a’,b'=0 157=0

where £2 € End(F) is given in terms of the t-oscillators a®, k; (i = 1,...,n) as
korr ke (a=p),
(97) L7 = qahazkgi-k, (a<p),
0 (a>p),

for 0 < o, < n with aj = 1 in the middle case. As mentioned in Remark 4.1,
the formula (97) can be interpreted as the “Holstein-Primakov representation” of the
L-operators. Analogous results in the “crystal” gauge as opposed to the stochastic
one adopted here have been obtained in [14] for A%l) and also Dgll)
quantized box-ball systems.

in the study of

5.2. RANK REDUCING RTT = TTR RELATION. Recall that T'(z),s is defined in (81)
for 0 < a <n—1and 0 < f < n. By direct comparison with (97), we obtain the
relation

(98) LD =T(2)aps1(a,) (27 k) P#™  (0<a<n—1,0<8<n),

where T(2)a,n+1 := T(2)a0. Operator ordering does not matter in (98) since T'(z);;
involves only at and k, with o = 1,...,n— 1. The relation (98) serves as the crucial
link between the RLL = LLR relation (Proposition 5.2) and the forthcoming rank-
reducing RTT = TTR relation (Proposition 5.4), a connection that has previously
gone unnoticed in the literature.

EXAMPLE 5.3. From (97), the LHS of (98) for n = 4 in the matrix form is given as
k1k2k3k4 a]k2k3k4 a§k3k4 agk4 aZ

(99) (/:/3) _ 0 koksky aJ{aEkgkél aJ{agk4 aJ{aZ
a/0<a<3,0<8<4 0 0 k3k4 a§a§k4 anraZ
0 0 0 ky anfaZ

Similarly, the RHS of (98) for n = 4 reads

T( )012_11(4 T( )022 1k4 (2)032_11{4 (2)0422_11{4 (2)003.4
(100) T(Z)UZ 1k4 ( )122’ 1k4 (2)13271k4 (2)142711(4 T(z)lOaZ
T(2)212 kg T(2)222 ' ky T(2)2327 'ky T(2)2427 ' ky T(2)208;
T(2)312 'ky T(2)3027 1 T(z) 27 ky T(2)3427tky T(2)30a,

They indeed coincide due to (81) with n = 4, which reads

1 zkikoks zaikoks zajks zag

a’ 0 zkoks zalayks zata,
(101) (T'(2)ap)o<a<s0<p<s = a“;“ 0 0 1zk§, za‘;*ag
a}' 0 0 0 z

The relation (96) depends on x and y only through the ratio y/z. However, switch-
ing to the description with T'(z)as via (98) appropriately reinstates a non-trivial
dependence on the spectral parameters, as we will demonstrate below.

PRrROPOSITION 5.4 (Rank-reducing RTT = TTR relation). For 0 < a,b < n and
0<i,5<n—1, we have

n—1 n

(102) > R/ T T (@) wa = Y, T(@)wT(y)s5 Ry/)55

a’b'=0 it,j'=
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Proof. In (96), substitute (98) with z taken as y,z,z,y for L}, L2 /3 ,Cj , Tespec-

a’’
tively. Restrict the range of 4, j to 0 < 4, j < n—1. Then from the Welght preservation,
one can also restrict the summation for a’,0' to 0 < a/, b < n — 1. Hence we get

n—1

D) R T () < a5 T s )
a’ b=

, NG % , N i’ b
= > 2T ()i (a,) KO ST (y) (@) KO F M R(y ),
i,5'=0

Sending the t-oscillators with subscript n to the right using the commutativity with
T(z)rs, we have

n—1
Z xéa”yéb"R(y/x)ﬁjb Ty p1T(2)ar ar1 A
a’\b'=0

n

Z o "y o ()i 1T (y)j.5 +IBR(y/x)y g

where
Svn 1,0 n San1,0(a#n (a0, 1,00 #n —\§ . 0(5'#n
A = (a,)% K’ (b# )( R0 4 (azn) B = (a}) L,Lkn( # )(an)mkn(]# )
Using the commutation relation k,a,, = t~'a k,,, we obtain
A — t—G(a:mb#") (a_)(sa,n‘i'(sbn ke(a;ﬁn)+9(b¢n)7

B = t—G(l #n,j 7n)( )5 It /nkfb(i’;&n)-&-e(j’;én).

The t-oscillator parts of A and B are equal when R(y/x)z, ., # 0. Taking the coeffi-
cients of A and B acting on the nth component, we arrive at the following;:

n—1
> R/ Ty b T(@)ara
a’b'=0

8;10—0a 10—0p0+—0 0,j = (4 0,b#0 a—1,b—1
Z x);iT(y G0 Dy 510~ 0004 —0(1'20.4'=0) +6(a=0.b7 )R(y/w)i/fl,j/fl'

Note that we have decreased the indices a, b, %', 7' by 1. Additionally note that when
R(y/x);’f;, # 0, one has ;0 — 040 = —(d;70 — dpo). Hence, the coefficients in the RHS
can be expressed in terms of z = y/x (see (103) below). Thus, the proof is attributed
to the next lemma. O

LEMMA 5.5 (Quasi-periodicity of the R matrix). For a,b,i,j" € Z,1, the following
relation holds

(103) R(z);,z _ZéJlo 6”01579(2-/#0’]-,:0)+0(a=0’b#O)R(2)Z:11’2/__11,

where all indices of R(z) should be taken to be in {0, ... ,n} for the inequalities in (16).

Proof. This is immediately checked from (16) as

R(2)a110 =t ' R(2)%0, R(z)pat1 = tR(2)ma,
R(z)gH) = 27" R(2)2, R(2)0 1o = 2R(2)05
for0<a<<n-1. OJ
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5.3. PROOF OF THE ZAMOLODCHIKOV—FADDEEV ALGEBRA RELATION.

THEOREM b5.6. The set of operators {Xo(z),...,Xn(2)} defined by the CTM dia-
gram (78) for n = 2 and in Remark 4.13 for n = 0,1 satisfy the ZF algebra rela-
tion (15) with the structure function given by the R matriz in (16).

Proof. We prove (15) by induction on n. Substituting the recursion relation (82) into
it, we get

(104)

n—1 n n—1

M X)X (@) T(W)iT(2)s = Y. Ry/x)Ps > Xy(@)Xe ()T (2)y A T(Y)s.s-
i,j=0 ¥,6=0 ¥,8'=0

By means of the rank reducing RTT = TTR relation (102), the sum Z:,6=0 in the
RHS can be taken. The result reads

(105)
D X)X @) TW)iaT(@)s = Y, Xy@)Xe(y) Y, Ry/a) s TW)iaT (x);5.
i,j=0 ~!,8'=0 i,j=0

This follows from the ZF algebra relation with one lower rank:

n—1
Xi)X;(@) = D, Xy(2)Xs(y)R(y/z)) 5.
~',8'=0

Therefore the proof reduces to the n = 0 case, which is straightforward from Re-
mark 4.13. O

Up to convention, the matrix product formula (8) was first established in [24] by a
direct, albeit quite tedious, verification of the hat relation (11). The hat relation proof
was later simplified in [6] by introducing the Yang-Baxterizations X(z), ..., Xn(2)
and the ZF algebra, where Proposition 5.4 was also derived based on a few lemmas;
see [6, Eq.(36)]. Our proof, however, is the most intrinsic from the perspective of
quantum integrable systems, as it directly stems from the Yang—Baxter equation for
the stochastic R matrices, highlighted by the key connection (98).

6. CONCLUDING REMARKS

We have unveiled several new insights into the construction of the stationary states
in the multispecies ASEP by invoking the strange five vertex model. Let us conclude
the paper with two remarks.

(i) The strange five vertex model in this paper differs from [20, 21] (see Remark 4.2),
where the totally asymmetric simple exclusion process (TASEP) corresponding to ¢t =
0 was treated using CTMs and the tetrahedron equation. In particular the tetrahedron
equation leads to an elegant proof of the ZF algebra relation without going through
the inductive steps on the rank n [21, 18]. It remains an open question whether
such a superior variant of the quantum oscillator/CTM approach can be formulated
that smoothly interpolates TASEP and ASEP. Regarding this issue, an alternative
queueing construction, as discussed in [23, Sec.7], may offer valuable insights.

(ii) Stationary probabilities are connected to Macdonald polynomials, particularly
when an additional parameter ¢ and the weight variables are supplemented [6, 7, 9].
We have touched upon the implications of the parameter ¢ in relation to MLQs and
t-oscillators in this paper. However, a comprehensive treatment of their applications
requires further investigation.
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