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A charge monomial basis of the

Garsia-Procesi ring

Mitsuki Hanada

ABSTRACT We construct a basis of the Garsia-Procesi ring using the catabolizability type of
standard Young tableaux and the charge statistic. This basis turns out to be equal to the de-
scent basis defined in [3]. Our new construction connects the combinatorics of the basis with
the well-known combinatorial formula for the modified Hall-Littlewood polynomials ﬁu [X;4],
due to Lascoux, which expresses the polynomials as a sum over standard tableaux that satisfy a
catabolizability condition. In addition, we prove that identifying a basis for the antisymmetric
part of R, with respect to a Young subgroup S is equivalent to finding pairs of standard
tableaux that satisfy conditions regarding catabolizability and descents. This gives an elemen-
tary proof of the fact that the graded Frobenius character of R, is given by the catabolizability
formula for H,[X; q].

1. INTRODUCTION

The polynomial ring C[x] = Cl[zy,...,z,] has a natural S,, action permuting the
variables. Taking the quotient of this polynomial ring by the ideal generated by .S,,-
invariant polynomials with no constant term defines the classical coinvariant ring:
Rin = Clx]/(e1(x), ..., en(x)),

where e4(x) is the dth elementary symmetric function. The coinvariant ring Ry~ is a
graded version of the regular representation of S,,. As a graded algebra with an S,
action, it is isomorphic to the cohomology ring of the complex flag variety JF,. There
are two well-known monomial bases of Ri», the Artin basis and the Garsia-Stanton
descent basis, both with elements indexed by permutations in S,,. In this paper, we
will focus on subsets of the latter basis.

Certain quotients R, of Ri~» correspond to CS,-modules that come from Springer
fibers. Given a partition p of n, the Springer fiber F,, C F,, is the set of flags that
are fixed by a unipotent matrix with Jordan type p. The cohomology ring H*(F,,) of
the Springer fiber has an S,, action which is compatible with that on H*(F,,) [12].

Though the definitions above can be extended to different Lie types, there are
certain nice properties when we consider Type A. In particular, the map H*(F,) —
H*(F,) is a surjection. From this, we have a concrete realization of H*(F,) as a
quotient of Ri» by an S, invariant ideal. The following presentation is due to De
Concini-Procesi [4] and Tanisaki [14]:

Ry, = Clx]/{ea(S) | S Cx,d > |S] = pnys) (1))
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where pg(u) is the number of boxes of the Young diagram of u that are not in the
first k columns. Garsia and Procesi [6] constructed a monomial basis of R, that is a
subset of the Artin monomials. In light of their work, we refer to R, as the Garsia-
Procesi ring indexed by p. The question of finding a subset of the Garsia-Stanton
descent monomials that is a monomial basis of R, was unresolved until recently,
when Carlsson and Chou gave a construction using shuffles of descent compositions
[3].

The graded Frobenius character (see Section 2.3 for definition) of the Garsia-Procesi
ring R, is given by the modified Hall-Littlewood polynomials H,[X;q] [7]. These
polynomials have a combinatorial formula due to Lascoux [8] and Butler [2]:

(1) FIM [X; q] — Z qcocharge(T)Sshapc(T) (X)
TeSYT,
ctype(T)>p

The sum is over standard Young tableaux of size n that satisfy a condition related
to an operation called catabolism (see Section 2.5 for definition). Catabolism, which
was defined by Lascoux [8], is an operation on tableaux, or words, that lowers the
cocharge value. Using catabolism, we can associate to each tableau T a partition
called its catabolizability type, denoted ctype(T'). The sum in Equation (1) is over all
standard tableaux T that have ctype(T') > u, where > denotes the dominance order
on partitions.

In this paper, we give a monomial basis of R,,, where the monomials are indexed by
standard tableaux that satisfy a catabolizability type condition. The set we construct
is the natural subset of the descent basis to consider in light of the combinatorial
formula (1) for the graded Frobenius series.

For any permutation w, we associate a word c(w) of the same length called the
charge word of w such that the sum of the entries of c(w) is charge(w). We refer to
the monomial x°(*) where the exponents are given by the charge word of w, as the
charge monomial corresponding to w.

THEOREM A. Let v be a partition of n. The set of charge monomials
{x) | w e S,, ctype(P(w)") & u}

is a monomial basis of R,. In fact, it coincides with the basis given by Carlsson—
Chou [3].

Our basis consists of charge monomials corresponding to certain permutations in
S,. We later see that the set of charge monomials for all permutations in 5, is equal
to the Garsia-Stanton descent basis of Ri». Thus our set of monomials is indeed a
subset of the descent basis.

Although our basis is equal to that of Carlsson—Chou, our construction of it is
different and provides the first direct connection between the structure of the Garsia-
Procesi ring and the catabolizability formula for the modified Hall-Littlewood poly-
nomial that gives its graded Frobenius character. It is immediate that our basis is of
the correct size in each dimension, a fact that was nontrivial from the construction of
Carlsson—-Chou. The construction of our basis is clearly compatible with the Hilbert
series of R,, that we compute from (1):

(2) Hilbg(R,) = > ¢ SYT(shape(T))|

TeSYT,,
ctype(T)>pn

where SYT()) denotes the set of standard Young tableaux of shape A.
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Furthermore, the relation between the charge monomial construction and the con-
struction of Carlsson—Chou gives insight to how catabolizability type behaves under
shuffling cocharge words (see Sections 2.4, 3 for definitions). In particular, we can
show that there is a lower bound on the catabolizability type of the permutation we
get from the shuffles.

THEOREM B. Let vV, u® ... u® w be permutations such that cc(w) is a shuffle of
ce(uM), ... cc(u). We have

ctype(w) &> ctype(u™) + ctype(u®) + - - + ctype(u®),

where ctype(uM) +ctype(u®) 4 - - -+ ctype(uD)) is the partition given by the partwise
sum of ctype(uM), ctype(u®), ..., ctype(u®).

Though it is easy to identify the ungraded Frobenius character of R, directly from
its structure, as exhibited in Garsia—Procesi [6], it is challenging to do the same
for the graded character. This often requires heavy geometric machinery ([4]) or
further combinatorial properties of the ring and character ([6]). However, our ba-
sis construction gives a way to easily identify the graded Frobenius character of R,
as the modified Hall-Littlewood polynomial H,[X;q] that only depends on (1) and
the ungraded Frobenius character. For any Young subgroup S, C S,,, we define N, =
Yoo s, sgn(o)o to be the antisymmetrizing element with respect to S,. The graded
Frobenius character Froby(R,,) is determined by Hilb(NyR,,) = (e, Frobq(R,,)) for
all Young subgroups S, where N, R,, is the antisymmetric part of R,, with respect to
S C Sp. We show that Hilbq (N, R,,) is easily determined using our basis construction
and the ungraded Frobenius character of R, by proving that the natural subset of
our basis enumerated by (e, Frobq(R,,)) has the property that applying N., yields a
basis for N, R,,.

PROPOSITION C. Let v be a partition of n and v = (y1,...,m) be a composition of n.
The set

{N,x“™) | w e S, ctype(P(w)")>p, Des(Q(w)) C {71,711 +2,-- -, v+ -+%-1}}

is a basis of NyR,, where the pair (P(w),Q(w)) is the pair of standard tableaux in
bijection with the permutation w via the Schensted correspondence and Des(Q(w)) is
the descent set of the tableau Q(w).

The following corollary is immediate from Proposition B and the catabolizability
formula (1).

COROLLARY D. For any partition u of n we have Frobq(R,) = ﬁfu[X; q].

The paper is organized as follows. In Section 2, we review the definitions and
combinatorial tools we will use throughout the paper, including the Schensted corre-
spondence, cocharge, and catabolism. In Section 3 we recall definitions regarding the
coinvariant ring and the Garsia-Procesi rings and their monomial bases, as well as
recall the construction of the Carlsson-Chou basis from [3]. In Section 4, we give the
construction of our set and prove that it agrees with the Carlsson—Chou basis, which
shows that our set is indeed a basis due to their results. In particular, we show that
our set of monomials is contained in their basis and then conclude they are the same
set since they have the same cardinality. In Section 5, we introduce an algorithm that
can be used to prove the other direction of containment, as well as other results about
catabolizability types. In Section 6, we use a result from the previous section to show
that this basis gives us a simple description of the Hilbert series of N, R,,. From this,
we show Frob,(R,,) = H,[X;q|.
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2. BACKGROUND

2.1. WORDS AND PARTITIONS. For any word w = wiws...w, we write rev(w) :=
WpWp_1 ... wp for the reverse word. A permutation w € S, is a word of length n
where each element in {1,...,n} appears exactly once.

The descent set of w € S, is defined to be Des(w) := {i | w; > w;11}. The statistic
magor index (maj) is defined to be maj(w) = _;cpes() ¢~ This statistic is Mahonian,
meaning that it is distributed in the following way:

> gm0 =

wES,

where [n],! = [1]4[2]4 - [n]y With [k], =1+ ¢+ +¢* L.

A partition X of n, denoted A b n, is given by A = (A1, Aa,..., ;) where Ay > A2 >
o2 A >0and A+ -+ = n. A composition v of n, denoted « |= n, is a sequence
(71,72 -+, ) where 4 >0 and 1 +y2 + -+ = n.

The Young diagram of a partition A\ - n is the partial grid of n boxes, where we
have \; squares in the ith row. We use French notation, meaning that the first part
corresponds to the bottom row. For example, the partition (3,1) corresponds to the

Young diagram

The transpose of a partition A, denoted \!, is the partition we get by switching the
rows and columns of its Young diagram.

There is a partial ordering on the set of all the partitions of size n called the
dominance ordering, denoted >, defined by

pBAN S pr g 2 A+ Ay forall B

It is well known that u> X < u! <AL If we move a box of A to a lower row so
that the resulting shape pu is a partition, we have p > . Dominance is the transitive
closure of moving boxes down.

A semistandard (Young) tableau of shape A is a filling of A with positive integers
such that the rows are weakly increasing from left to right and the columns are strictly
increasing from bottom to top. The weight of a semistandard tableau 7' is the tuple
(my, ma,...) where m; is the number of times i appears in T. We denote the shape
of T by shape(T).

A standard (Young) tableau is a semistandard tableau where each entry in
{1,2,...,n} appears in the filling exactly once: that is, it is a semistandard tableau
of weight (1™). For any partition A, we denote the set of standard Young tableaux of
shape A by SYT(A). We denote the set of standard Young tableaux of all shapes of
size n by SYT,,.

The reading word rw(T') of a tableau T is the word we get by concatenating the row
words, where each row is read from left to right, from top to bottom. The transpose
of a tableau T with shape A, denoted T?, is the filling of A\* we get by swapping the
rows and columns of 7T'.

2.2. SCHENSTED CORRESPONDENCE. The Schensted correspondence gives a bijection
from permutations w € S, to pairs (P(w),Q(w)) of standard Young tableau of size
n of the same shape. We say P(w) is the insertion tableau and Q(w) is the recording
tableau of w. We note that for any given standard tableau T' of shape A, the num-
ber of permutations w with P(w) = T is | SYT(shape(T'))|, since we have one such
permutation for each possible choice of Q(w).

We recall some properties of the Schensted correspondence that we will use in
following sections. For more details, see [13, Chapter 7]. For a standard Young tableau
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T, we define the descent set of T' to be Des(T) = {i | ¢ appears below ¢ + 1 in T'}.
Note that Des(T) = Des(rw(T) ).

ProposITION 2.1 ([13, Lemma 7.23.11]). For any w € S,, we have Des(w) =

Des(Q(w)).
PROPOSITION 2.2 ([13, Corollary Al1.2.11)). For any w € S,,, we have P(rev(w)) =

(P(w))".
2.3. SYMMETRIC FUNCTIONS. For more detailed references on symmetric functions
or the representation theory of the symmetric group, see [13, Chapter 7] or [10]. Let A
denote the ring of symmetric functions in variables X = (x1, s, ..., ). We follow Mac-
donald’s notation [10] for the monomial symmetric functions {my}, the elementary
symmetric functions {ey}, the complete (homogeneous) symmetric functions {hj},
and the Schur functions {sy}.

The Schur functions sy can be expanded in terms of the monomial symmetric

functions:
S\ — Z K,\,ym,y
v FIAl
where for any partition +, the coefficient K -, which we call the Kostka number,
counts the number of semistandard Young tableaux of shape A and weight . These
coefficients can also be expressed in terms of standard Young tableaux:

PROPOSITION 2.3. For two partitions A,y = (v1,7v2,--.,7) F n, we have
(3)  Kxy=H{T eSYT() | Des(T) C {vi,m1+72-- .+ +v-1}}

Proof. We know that K, = |SSYT(A,v)|, where SSYT(),~) denotes the set of
semistandard tableaux of shape A, weight . For any T € SSYT (), ), we can construct
a S € SYT()) by replacing all the 4 in T, from left to right, with (y; + -+ + -1 +
1),...,(v+---+7). By construction, we have that the only possible descents in .S are
in {vi,11+72,---,7+-..,7-1}. We can see that this is a bijection by checking that
we can reverse the construction and recover the original semistandard tableau. O

A symmetric function f is Schur-positive if all the coefficients in the Schur expan-
sion of f are nonnegative integers.

The Hall inner product is the inner product defined on A by the relation (my, hy) =
Ox~- We have (f, g) = (g, f) for any f, g € A. The Schur functions are an orthonormal
basis with respect to this inner product. The involution w on A is defined by wey = h.
This map w is an isometry: that is, we have (f,g) = (wf,wg) for any f,g € A. We
also have wsy = syt for any .

Recall that the irreducible representations of S, are indexed by partitions of size
n. The Frobenius characteristic map is a map F from (virtual) characters of S,, to
symmetric functions of degree n that takes the irreducible character indexed by A+ n
to the Schur function s). This map encodes the character of an S, representation
V into a Schur-positive symmetric function. The Frobenius character of V, denoted
Frob(V), is defined to be F(xv ), where xy is the character of V. We have Frob(V)) =
F(xv,) = sa, where Vj, is the irreducible S,, representation indexed by A.

For a graded vector space V = @4>0Va, the Hilbert series Hilbq (V) is

Hilbg (V) = ¢dim(Vy).
d>0
For a graded CS,,-module V' = &40V, the graded Frobenius character Frob, (V) is

Froby(V) = ¢* Frob(Va).
d>0
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For the Young subgroup S, = S,, x --- x S,, C S, corresponding to v = n,
we define Ny = 37 ¢ sgn(o)o to be the antisymmetrizer with respect to v. For
any CSy,-module V, the vector space N,V is the subspace of elements of V' that
are antisymmetric with respect to S,. Let & Tgw denote the induction of the sign
representation & of S, to S,. It is well known that Frob(€ ng) = e4. Using Frobenius
reciprocity (see [5, Chapter 3.3]), we get the following result:

PROPOSITION 2.4. For any CS,,-module V and Young subgroup S, C Sy, we have
dim(N,V) = (e, Frob(V)).
The analogous statement for graded modules holds as well:

PROPOSITION 2.5. For any graded CSy,-module V = @©g>0Vyq and Young subgroup
Sy C Sp, we have
Hilb, (N, V) = (e, Froby(V)).

2.4. COCHARGE AND CHARGE. The transformed Hall-Littlewood polynomials
H,[X;q] are defined to be

H,[X;q] = Z K u(q)sa

where K ,(q) is the g-Kostka polynomial (see [10, Chapter IIL.6] for definition).
There is a combinatorial formula for K ,,(¢) due to Lascoux-Schiitzenberger [9] using
a statistic defined on semistandard Young tableaux called charge:

Koulg) = Y g,
TESSYT(A, )
The sum is over all semistandard tableaux of shape A and weight u. In particular,
Ky ,(1) =K . )
The modified Hall-Littlewood polynomials H,[X;q] are defined by:

Hy[X;q) = ¢"W H,[X;47)
where n(u) = > (¢ — 1)u;. Then we can write

HuXq) = 3 Rap@)sa(X)
A

when f(k’u(q) = q”(”)[ﬁ,u(q_l) is the modified g-Kostka polynomial. The polynomial
K ,.(q) can be expressed by the statistic cocharge :

f(k,;t (q) — Z qcocharge(T)
TeSSYT (A, 1)

where for a semistandard tableau of weight p we have cocharge(T') = n(u)—charge(T).

We now define charge and cocharge on permutations. For w € S, we define
charge(w) = maj(rev(w™')) and cocharge(w) = (}) — charge(w). Explicitly, we can
compute cocharge of w by assigning labels to each letter in w. The cocharge word of
w (denoted cc(w)) is a word of length n that gives us the cocharge labelling of w,
which we define in the following way. We label 1 of w with 0. We proceed by reading
the numbers in increasing order: if we label ¢ with a k, then we label (i + 1) with a
k if it is to the right of i. We label (i + 1) with a (k + 1) if it is to the left of 4. The

statistic cocharge(w) is the sum of the letters in ce(w).

EXAMPLE 2.6. Let w =3 5 1 6 2 4 7. The corresponding cocharge word is
cc(w)=1 2 0 2 0 1 2, hence cocharge(w) =1+2+04+24+0+1+2=28.

We have the following classification of cocharge words of permutations.
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PROPOSITION 2.7. Let z be a word of nonnegative integers of length n containing a 0.
We have z = cc(w) for some w € Sy, if and only if for alli € {1,2,...,n}, (at least)
one of the following holds:

(1) There exists i’ > i such that z; = zy,

(2) There exists i’ < i such that z; + 1=z ,

(3) The entry z; is the maximal entry in z.

Proof. If z = cc(w), one of the three conditions will hold for any index 1 < i < n.
The first (resp. second) case corresponds to when w; + 1 appears to the right (resp.
left) of w;. The last case corresponds to when w; has the highest cocharge value in
the word.

If we have such z we can easily recover w € S, such that cc(w) = z. For any
nonnegative integer k, let ¢ denote the number of times k appears in z and {k; <
ke <+ <ke}:={i| 2z =k} From condition (2), if ¢;, > 0 but ¢;41 = 0 for some
nonnegative integer m, it follows that z consists of {0,1,...,m} and each of these
letters appears at least once.

We construct w so that for each k such that ¢; # 0, the subword wy, Co Wk, IS
the increasing sequence

(co+-Fex—1+1)(cot+ - +ep—1+2) (ot +ch1+ck)

The resulting word w is a permutation by construction. It is a simple exercise to
check that cc(w) = z. O

LEMMA 2.8. Let w € S, x be a positive integer, and 1 < k < n.

(i) Let x = cc(w); for some i. Then, any word z we can get by inserting x into
ce(w) is a cocharge word of length n + 1.

(ii) Consider m such that cc(w)y, is the largest, rightmost entry of cc(w). If x =
ce(w)y, + 1, any word we get by inserting x to the left of position m in cc(w)
is a cocharge word of length n + 1.

Proof. Both cases follow from Proposition 2.7. We know each entry in cc(w) satisfies
the condition in Proposition 2.7. We can also see that inserting a new letter into this
word does not affect whether preexisting entries satisfy conditions (1) or (2), since it
does not change the relative order of those entries within z. Hence it suffices to check
that the new letter z and the letters in cc(w) that only satisfied (3) still satisfy one of
the three conditions when looking at z. Consider m such that the letter cc(w),, only
satisfies (3). There is only one such letter: the largest, rightmost entry in cc(w).

For (i), if x = cc(w); for some 1, it follows that x < cc(w),y,, thus cc(w),, is still
the largest value in the word. Hence cc(w),, satisfies (1) (if z = cc(w),, and = was
inserted to the left of position m in ce(w)) or (3) (otherwise). We can also see that
clearly satisfies either (1) or (2).

For (ii), we know x = cc(w),, + 1. Hence cc(w),, satisfies (2) and x satisfies (3). O

We define the charge word c(w) of permutation w to be the following:

(4) c(w) = rev(ce(rev(w))).

We can see that ¢(w) can be computed by the same algorithm we use to compute
the cocharge word, except with left and right interchanged. The statistic charge(w)
is the sum of the letters in c(w).

Lascoux-Schiitzenberger [9] proved that charge is the unique statistic on words that
satisfies a set of properties, one of them being the following;:

THEOREM 2.9 (Lascoux-Schiitzenberger [9]). If w,w’ € S, are such that P(w) =
P(w'), then charge(w) = charge(w').
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Note that the original statement is for words with partition weight that are Knuth
equivalent; for our purposes, it suffices to consider permutations. From this, we can
define charge (resp. cocharge) on standard Young tableau T by defining it on words
and then extending the definition to tableaux by setting charge(T) = charge(rw(T"))
(resp. cocharge(T') = cocharge(rw(T))).

One observation we can make from Proposition 2.2 and (4) is the following:

PROPOSITION 2.10. If T' is a standard tableau, then charge(T) = cocharge(T").

To each w € S,,, we associate a monomial x°(*"), where the exponents are given by
the charge word of w. We refer to this monomial as the charge monomial of w.

EXAMPLE 2.11. Consider w' =7 4 2 6 1 5 3. Note that w' = rev(w) from
Ezample 2.6. From (4) , we know c¢(w') =rev(cc(w)) =2 1 0 2 0 2 1. Thus the

. . . /
corresponding charge monomial is x¢(W') = 2roxirday.

2.5. CATABOLISM AND CATABOLIZABILITY. Let T be a standard tableau with
rw(T) = ww' where w' is the first row of T. Catabolism is defined to be
the operation that takes T' = P(ww’) to K(T) := P(w'w). It is known that
cocharge(K (T)) = cocharge(T) — (JA| — A1) where A = shape(T'). Repeated applica-
tions of catabolism eventually produce a one row tableau with zero cocharge.

We can see that applying catabolism to T is equivalent to sliding the first row of T'
to the right until it detaches from the higher rows, and then swapping the two pieces
and applying jeu-de-taquin (for a definition of jeu-de-taquin, see [13, Chapter 7.A1.2])
to the resulting skew shape until we get a partition shape tableau. This is illustrated
in the example below.

EXAMPLE 2.12. Consider the following tableau of shape X\ = (3,2,1):

T = 5

3[4]
We can see that rw(T) = 625134 where w = 625 and w’ = 134. Observe that

K(T) = P(w'w) = P(134625) = .

Alternatively, we can use jeu-de-taquin to see

3]6]
3]4] jeu-de—taquin ( )

Note that cc(T) =8 and cc(K(T)) =5=8— (6 — 3), where |\| =6, = 3.

=)

T =

H[\J@l

We use catabolism to define catabolizability type. For a standard tableau T, let
d(T) be the largest integer m such that the first row of T contains 1,2,...,m. The
catabolizability type of T (denoted ctype(T')) is given by the sequence

(5) ctype(T) = (d(T),d(K(T)) — d(T),...,d(K(T)) — d(K*"Y(T)),...).

EXAMPLE 2.13. Consider T = . Since d(T) = 3, we have ctype(T); = 3. The

= %lm‘
NEIE

3[7]

result of applying catabolism is

7]
K(T) = P(12376845) = [6]5 .
1[2[3[4[5]

d(K(T))—d(T) = 2. Repeating this process,

Since d(K(T)) = 5, we have ctype(T)s =
we can compute ctype(T) = (3,2,1,1,1).

We can think of ctype(T') as encoding the sequence of catabolisms we use to go
from T to the one row tableau. We have the following result regarding this sequence.
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ProOPOSITION 2.14 (Lascoux [8, Lemma 9.6]). For standard tableau T, the sequence
ctype(T) is a partition.

An alternative way to view ctype(T) is using m-catabolizability (see [11] for de-
tails). Let (m) denote the one row shape of length m. If (m) C shape(T') and the first
row of T' contains the smallest m letters in T', we define the m-catabolism of T to be
deleting the first m entries of the first row of 7" and then proceeding as we did for
standard catabolism, where we denote the resulting tableau Cat,,(T"). We say that T’
of size n is A-catabolizable for partition A = (A1, Ag,..., A;) F n if the first row of T
contains the smallest A\; many entries of T' and Caty, (T) is (A2, . .., A;)-catabolizable.
Catabolizability type of a tableau and A-catabolizability are related in the following
way.

PROPOSITION 2.15 (Shimozono-Weyman [11, Proposition 46]). A standard tableau T
is A\-catabolizable if and only if ctype(T) > A.

From this, we can compute ctype(T) by repeatedly applying maximal m-
catabolisms, where at each step we have

ctype(T'); = d(Caterype(r), . - - Caterype(r), (T))-
This simplifies our process, since at each step we are dealing with smaller tableaux.
[6]8]
EXAMPLE 2.16. Consider T =[4]5] - We know d(T) = 3 and can compute Cats(T):
1[2[3]7

[<]

8]
5] —  [6]8] ————— [6[8] = Cats(T).
2

3]7] 4 jeu-de-taquin

We see that ctype(T)2 = d(Cat3(T)) = 2. Repeating this process, we can compute
ctype(T) = (3,2,1,1,1), which is the same as what we get in Example 2.13.

In general, many things are unknown about catabolism and catabolizability, though
the operation of catabolism itself is very easy to compute. However, there is a con-
crete algorithm, due to Blasiak [1], called the catabolism insertion algorithm, which
computes the catabolizability type of a permutation w, where we define ctype(w) :=
ctype(P(w)).

ALGORITHM 2.17 (Blasiak [1, Algorithm 3.2]). We define a function f on pairs (x,v),
where x = ya is a word (a is the last letter of x) and v is a partition, to be

fla,v) = (y, v+ €at1) if v+ €qr1 is a partition,
7 ((a+1)y,v) otherwise.

where €q41 18 the composition (0,...,0,1,0,...) with 1 in the (a+1)th coordinate and
v+ €eqr1) is the component wise sum of the two compositions.

Let w be a permutation of length n with cocharge word cc(w). We apply f to
(ce(w), @) repeatedly until we get (&, 1), where p b n.

We introduce terminology regarding this algorithm. When we refer to the ith letter
of the input word, we also count the letters that we have deleted from the word. Hence
the input word is always of length n, but potentially with empty spots. At each step
of the algorithm, when the input is (ya, V), we say we read i if the letter a corresponds
to the ith letter in the original input word cc(w);.

PROPOSITION 2.18 (Blasiak [1]). When applying Algorithm 2.17 to (cc(w), @), the
resulting partition p is ctype(w).
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As a slight modification to the original algorithm introduced in [1], we record the
entries of cc(w) that correspond to the boxes in p as we build the partition. When
reading ¢ results in adding a box to the partition v, we fill the new box with ¢. This
gives us a standard filling (but not a SYT) of shape ctype(w), meaning {1,...,n}
appear exactly once. We denote this filling as T,. For the modified algorithm, the
final tuple is (&, T,,).

If the initial word z is not a cocharge word, this algorithm may not terminate. For
example: if z = 02, the second letter will never be deleted, since we cannot add a box
to the partition (1) in rows 2 or higher.

ExAaMPLE 2.19. Consider
w=634125
cc(w)=21100 1.

We will apply f to (cc(w), D) repeatedly until we get an empty word in the first
coordinate. In order to keep track of the indices, we do not rotate cc(w): instead,
we read the word from right to left. The position we are reading at each step of the
algorithm is underlined.

211001, o)
!
211002, @)
!
2110 2, [3)
!
211 2,[(H)

(2 2, BB
1

( 2, [3]2])
l

Ba

( . [32])

[1]6]
From this, we conclude Tg34105 = and ctype(634125) = (2,2, 2).
5[4

We now state some nice properties of the filling T;,.
LEMMA 2.20. If we add i to row r of T\, when reading i for the kth time, we have
k+ ce(w); =

Proof. Each time we read ¢ without adding it to T,,, we increase the ith letter of the
input word by 1. After reading through the word (k — 1) times without adding i to
the filling, the ith letter in the input word is cc(w); + (k —1). Since we add ¢ the next
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time we read the ith letter, we know we add it to the (cc(w); + (k — 1) + 1)th row,
where the last 1 is coming from the fact that f(z,v) = (y, v + €4+41)- O

We now look at subwords of cc(w) determined by the columns of T,. Consider
w € S, such that ctype(w) = p. For 1 < j <y and 1 <7 < g, let

{i|iisin row r’, column j of T}, 1 <7’/ <1} = {jy) < jg) << gimy,

We are numbering the entries in column j of T}, in increasing order, though that
order may not match the order in which they appear in the column.
We define the subword cc(w)U") of cc(w) to be

ce(w)Pr) = cc(w)jir) CC(U})].;T) . .cc(w)jy).

In this case, cc(w)") is the subword corresponding to the first  rows of column j in
T,. We write cc(w)W) = cc(w)U#i) when r is equal to the height of column j.

EXAMPLE 2.21. Using w = 634125 from Example 2.19, we can see that
ce(w) ) = ce(w); ce(w)s ce(w)s = 210.
We can also see that jf’) =1 but 1 is not in the first row of T,,.

PROPOSITION 2.22. For w € S,, such that ctype(w) = u, consider j,r such that
1<j<uandl <r< /1;-. Then cc(w)(j’r) = cc(o) for some o € S,.

Proof. We show this by induction on . When r = 1, we know cc(w)U:!) = 0, since for
any 7 that appears in the first row of T,, we must have cc(w); = 0. Hence the claim
holds.

Assume the claim holds for (r — 1). We know that we obtain cc(w)V"™) from
ce(w)U =1 by adding cc(w), into cc(w)@™=1) in the correct position, where a is
the entry in row r, column j of T;,. Let b denote the entry directly below a in Ty,.
Since b appears below a, we know that when we constructed T, using Algorithm 2.17
to cc(w) we first added b, and then a, to the filling. If we let k,, ky» denote the number
of times we read a,b before adding them to T;,, we must have k, < ko. If k, = ky,
then since we add b before a, we must have a < b, since cc(w);, must be to the right
of cc(w), in cc(w). We also have cc(w), = cc(w)p + 1 from Lemma 2.20 since a is one
row above b. If ky, < kg, then cc(w), = cc(w),.

From this, we know that if cc(w), is larger than every letter in cc(w)U"=b, we
have cc(w)q = cc(w)p + 1 where b > a is the entry directly below a in T, and cc(w)p
is the largest letter in cc(w)@r =1,

By Lemma 2.8, we conclude cc(w)(”) is a cocharge word by induction. (]

REMARK 2.23. The fact that cc(w)(j””) is a cocharge word is not obvious a priori, since
it is not true that any subword of a cocharge word is a cocharge word. For example,
consider w = 21, which has cc(w) = 10. Though 1 is a subword of cc(w), it is not a
cocharge word.

3. COINVARIANT RING AND GARSIA-PROCESI RING

The coinvariant ring Ry is defined to be Rin = C[x]/I, where I is the ideal gener-
ated by S,, invariant polynomials with zero constant term. More specifically, we can
write I = (e1(x),...,en(x)). It is clear that Ry~ is a CS,-module under the action
permuting the variables. It is well-known that this is a graded version of the regular
representation of S,: in particular, dim(R1») = n!. As a graded algebra with S,, ac-
tion, it is isomorphic to H*(F,), where JF,, is the complete flag variety for GL,. In
particular, we have Hilbg (R1n) = [n]4!.
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In Type A, we have that H*(F,,), the cohomology ring of the Springer fiber indexed
by p b n, is a quotient of H*(F,). These cohomology rings also have an S,, action:
we have the following concrete presentation of these CS,,-modules as quotients of
Ry~ due to De Concini-Procesi [4] and Tanisaki [14]. Consider the transpose partition
pt=(ph = ph > > pl >0), where we pad the end of the partition with 0’s until
we have a tuple of length n. Let py(u) := pf, + -+ pl,_, . Note that py(u) is the
number of boxes of the Young diagram of p that are not in the first n — k& columns.
Given a subset S C x, we define e4(S) to be the dth elementary symmetric function
in the set of variables S. The Tanisaki ideal I, is defined to be

Iy ={ea(S) | S Cx,d > |S] = pu—ys)(1))-
The Garsia-Procesi ring R,, is the quotient R,, = C[x]/I,,. As a graded CS,,-module, it
is isomorphic to H*(F,,). The graded Frobenius character of R,, is the modified Hall-

Littlewood polynomial ,,[x;q]. Using the combinatorial formula (1) for H,[x; q], we
compute Hilby(R,,):

Hﬂbq(Ru) = Z qCOChargC(T)dim(v(shapc(T)))
TeSYT
ctype(T)>p
— Z qcocharge(T) ‘ SYT(Shape(T))|

TeSYT
ctype(T)>p

(6) _ Z qcocharge(w) )

TeSYT
ctype(P(w))>p

When p = 17, we have I1» = {e1(X), ..., e,(X)), hence the Garsia-Procesi ring indexed
by 1™ is the full coinvariant ring Ri».

3.1. MONOMIAL BASES OF Ri» AND GENERALIZATIONS TO I,,. We recall two mono-

mial bases of the coinvariant ring, both of which are indexed by permutations in
Sh.
The Artin basis is given by the following set of monomials:

{fG’(X) = H Lo, | (s Sn} = {a’jtlllajga .. .l‘?ln

1'<j,0'ri>0'j

a; < Z}

From the second description of the Artin monomials, we can easily see that
> D) — (14 q)(1 4 g+ ) (L gt g+ g™ ) = [
weSy
The Garsia-Stanton descent basis is given by the following set of monomials:

(g0 = [ #wru | we S}

LW > Wi 1

Let D,, = {a : x* = g, (x) for some w € S,,} denote the set of exponents of monomi-
als in the descent basis. We refer to these words as descent words.

LEMMA 3.1. We have D,, = {c(w) | w € S, }.

Proof. For any o € S, the charge monomial is

x(7) = H L(o=1)j01 " " L(o=)p-

ji(e™1);<(e7 )41

Thus x°(7) = g,,(x) where w = rev(c—"). O
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The descent order on monomials is defined by:

sort(a) = sort(f),

a B
(7) X" Sdes X7 & {sort(a) = sort(f) and o < 3,

where sort(«) reorders the vector « into a partition and < is the lexicographic ordering
on words.

The descent monomials correspond to the permutation statistic maj. That is, we
have deg(gw(x)) = maj(w). Since this statistic is Mahonian, we have:

Z gdealow () — Z g™ =[], L.

wESy weSy

Thus, either basis gives a combinatorial explanation of Hilbq(R1n) = [n]4!.

Since R,, is a quotient of Ry~, the natural question to ask if whether there exists a
subset of the Artin monomials or the descent monomials which is a monomial basis
of R,. Garsia-Procesi [6] constructed a monomial basis of R, which is a subset of
the Artin basis of Ri». However, this basis does not give an analogous combinatorial
explanation of the expression (6).

The problem of finding a subset of the descent basis that gives a monomial basis
of R, was recently solved by Carlsson-Chou [3]. We now review the construction of
the Carlsson—Chou descent basis. For two words z(), 2(2) of length 1,l5 we define
Sh(z(, 2(2)) to be the collection of all words u of length (I; + I5) such that z(*) and
22) are two disjoint subwords of u. We construct such u by interleaving z(!) and
2. An element u of Sh(z(), 2()) is a shuffle of z() and 2(?). We can extend this
definition and let Sh(z(,...,2®) denote the set of all shuffles of 21, ... 2(). We
also define the set of reverse shuffles of 21, ... 2z denoted Sh'(z(l)7 ey z(l)), to be
equal to Sh(rev(z(M), ... rev(z(")).

The Carlsson—Chou descent basis of the Garsia-Procesi ring is defined as follows.
For p= (p1,...,m) F n, define D,, to be

(8) D,= U Sh(zW,... )
(z(),...,2(1)

where (z(1), ..., 2()) ranges over all I-tuples in D, x --- x D,,.

THEOREM 3.2 (Carlsson-Chou [3]). The set xP» = {x* | a € D,} is a monomial
basis of R:.

ExaMPLE 3.3. Consider i = (3,1). Note that
D5 = {012,011, 101,001, 010,000},
D, = {0}.
Then we have
Ds; = {0012, 0102, 0120, 0011, 0101, 1001, 1010, 0110, 0001, 0010, 0100, 0000}.
The corresponding set of monomials is
{x323, 2023, 2923, T3w4, ToT4, T1T4, T1T3, ToTs, T4, T3, Ta, 1}

REMARK 3.4. Carlsson—Chou show that their basis is a subset of the Garsia-Stanton
descent basis. However, it is not obvious how to see directly for which w € S,, we have
guw(x) € xPr without computing D,,. It is also not obvious that |D,| = dim(R,.),
since multiple shuffles can correspond to the same descent word. For example, 0101 €
Sh(101,0) and 0101 € Sh(011,0) both correspond to the same element in D,,.
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4. CHARGE MONOMIAL BASIS OF THE (GARSIA-PROCESI RING

We now define sets of charge monomials that are monomial bases of Garsia-Procesi
rings. Our construction involves charge words of permutations whose insertion
tableaux satisfy a catabolizability condition.

DEFINITION 4.1. The set C,, is defined to be

9) Cu = {c(w) | w € Sy, ctype(P(w)") > pu}.
From Lemma 3.1, we know C,, C D,,.

THEOREM A. The set
(10) xO = {x* | @ €C,}

is a monomial basis of R,,. In fact, it coincides with the basis xPut given by Carlsson—

Chou [3], i.e. C;, = Dy

Before we prove Theorem A, we point out the connections between this basis and
the Hilbert series Hilbg(R,,). Using combinatorial formula (1) for the modified Hall-
Littlewood polynomials and Proposition 2.10 gives us the following expression for

HM[X§Q]-

(11) ﬁu [Xa q] = Z qcharge(T) Sshape(T‘) (X)
TeSYT,
ctype(T*)>pu

From this, we can see that the classification of insertion tableaux that appears in
(9) is the natural one to consider when looking at subsets of descent monomials. In
fact, it is evident from our construction that the degrees of the monomials in our set
match what we expect from Hilby(R,,). Rephrasing (6) for H [X; q] using Proposition
2.10, we have

(12) Hilbq(R,,) = 3 geharse(w)
weSy
ctype(P(w))>p

It is also apparent that |C,| = dim(R,), which was not obvious from the definition
of D,:. Furthermore, it is clear that our set has the correct number of monomials of
each degree to be a basis of R, by construction. That is, for any nonnegative d, we
have

{w € S,, ctype(P(w))" > u, charge(w) = d}| = dim((R,)a),

where (R,,)q is the degree d component of R,,. This construction also gives us a direct

way to determine for which w € S, we have g,(x) € x%. In particular, we have
c _ -1 t

guw(x) € X% for w = rev(oc~!) where ctype(P(0)") > p.

EXAMPLE 4.2. Consider p = (2,1,1). There are five standard tableauz S such that

ctype(S?) > (2,1,1) = p. We list them, along with all words w such that P(w) = S
and their charge monomials:
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S {w | P(w) = S} {z°) | P(w) = S}
{2134’ 2314’ 2341} {1’3.'11421, 1‘2.'11421, m2$§}
{2143, 2413} (w324, w24}

i {4213; 42317 2431} {371.'174, xr1x3, 372.’173}
]3]

2 {3214, 8241, 8421} {24, x3, T2}

1[4]

4

% {4521} {1}

1

Note that all charge monomials for words with the same insertion tableau S have
degree equal to charge(S). The resulting set of charge monomials is
{wsa], woa], xox3, 3wy, Taw4, T1T4, T1T3, ToT3, T4, T3, T2, 1},
which is the same as in Fxample 3.3.
Now we will prove Theorem A by showing C,, = D,+, which implies that our set
is a basis of R, by the work of Carlsson—Chou. Since we know that D,: is a basis
of R, and that C, has the correct cardinality to be a basis, it suflices to show that

C. C D,:. We first make the following observation, which is a corollary of Lemma 3.1
using (4):

COROLLARY 4.3. D,, = {rev(cc(w)) | w € S, }.

To show that C,, C D, we translate the problem into one about cocharge words
to make use of Algorithm 2.17. We first consider the case where ctype(w) = p.

PROPOSITION 4.4. Let v be a partition of n of length | and w be a permutation of
n with ctype(w) = p. Then cc(w) € Sh'(zM), ... 21) for some (2(V),...,21) ¢

D#i XH.XDH?'

Proof. We obtain a filling T, of shape ctype(w) = u by applying Algorithm 2.17
to cc(w). Tt is clear that cc(w) € Sh(ce(w)™), ce(w)@, ... cc(w)?V), where cc(w))
is the subword of cc(w) corresponding to column j in T,,. We know cc(W)U) has
length g, which is the height of column j. Thus, from Proposition 2.22, we know
ce(w)Y) = cc(o) for o € Syt - By Corollary 4.3, this implies rev(ce(w))) € Dy O

EXAMPLE 4.5. Recall that in Example 2.19, we showed that for w =6 3 41 2 5, with
ce(w)=211001, we have ctype(w) = (2,2,2). and that the filling T,, of (2,2,2) is

[1]6]
13]2].
From this, we construct two subwords of lengths 3 respectively:
ce(w)M) = ce(w); ce(w)s ce(w)s = 210

ce(w)® = ce(w)g ce(w)y ce(w)g = 101

We can see that cc(w)M) = cc(321) = rev(c(123)) and cc(w)® = cc(213) =
rev(c(213)). Thus cc(w) € Sh'(c(123),¢(213)) , where (¢c(123),¢(213)) € Dz 3).

We rephrase Proposition 4.4 to match the language of Theorem A using (4):
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COROLLARY 4.6. For any w € S,, such that ctype(P(w)") = p, we have c(w) € D,:.
Proof. From (4) we know

ce(w) € SH' (21, ..., 20) & c(rev(w)) = rev(cc(w)) € Sh(z™, ..., z0).
We also have ctype(rev(w)) = ctype(P(w)!) using Theorem 2.2. O

Note that Corollary 4.6 only considers permutations w with ctype(P(w))") = . To
prove the inclusion C,, C D,,+, we extend this argument to consider ctype(P(w))*) > p.

Proof of Theorem A. We know |C,,| = |D,,|, since |C,| = dim(R,) and D, is a basis
of R,,. Hence to show equality of the two sets, we will show C,, C D,,+. From Corollary
4.6, it suffices to consider w € S,, where ctype(P(w)?) t> u. First, consider w € S,
such that ctype(P(w)*) = A>u where A and p differ by moving one box in the Young
diagram. Assume that we construct p from A by taking the last box in some column
jo2 of A and moving it to the top of column j;, where j; < jo.

Since ctype(P(w)") = ctype(rev(w)), we consider the filling Tyey(w) of A that we
get from Algorithm 2.17. Let a be the entry in the last box of column j,. Take the
box containing a and append it into the end of column j;.

By assumption, we know the resulting shape is p. Denote the resulting filling of

shape p by 7w )- We claim that each subword of cc(rev(w)) that corresponds to a

rev(w
column of Tr(éi, )(w) is still a valid cocharge word. The only columns we need to consider
are columns j; and j,. Since the only modification to column j, is taking off the last
entry we added, we see that the resulting word is still a valid cocharge word from
Proposition 2.22.

Since j1 < j2 and Tiey(w) is partition shape, there exists an entry b in column
J1 which is in the same row as a in Tiey(y)- Since ji < j2, we know we first added
b, and then a, to the filling Ticy(w). If we let kg, ky denote the number of times we
read a,b before adding them to T,,, we must have k, < k,. Thus, we know that
ce(rev(w)), < ce(rev(w))y from Lemma 2.20.

Thus adding a to cc(rev(w))¥1) does not introduce a new cocharge value to this
word since cc(rev(w))p is in cc(rev(w))U1). From case (i) of Lemma 2.8, we conclude
the resulting word is a cocharge word of a permutation.

If ctype(rev(w)) > p differ by moving multiple boxes, we repeat this process until
we get a filling of p where each of the columns correspond to valid cocharge words. It
is clear that cc(rev(w)) is a shuffle of these cocharge words. Hence c¢(w) € D,:. From
this, we have C,, = D,;:. Since xPut is a basis of R,,, we conclude that our set xCe is
a basis as well. O

EXAMPLE 4.7. We use the same w,T,, as in Ezample 4.5. For p = (2,2,1,1) <
ctype(w), we can create a new filling T! of shape u by moving the last box in column
2 of Ty, to the end of column 1. This gives us

The two new subwords coming from the columns of T} are
ce(w)y ce(w)s ce(w)s ce(w)g = 2101 and cc(w)z cc(w)4 cc = 10,
both of which are still cocharge words.

REMARK 4.8. Note that [3, Algorithm 1] gives a way to take a descent word a € D, and
recover an ordered set partition (Ay]...|A;) of n such that |A;| = p; and ala, € D,,,.
That is: the ordered set partition identifies a canonical way to see a as a shuffle of
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descent words. This algorithm does not necessarily agree with our construction of
a canonical decomposition of the charge word cc(w) outlined in Proposition 2.22.
For example: if we consider 01011 € C3 21 = D32, the Carlsson-Chou construction
decomposes this into 01011, while our construction decomposes it into 01011.

5. PROPERTIES OF CATABOLIZABILITY TYPE

Theorem A says that two conditions, one involving catabolizability type and the other
involving shuffles, are equivalent. In particular, we get the following corollary.

COROLLARY 5.1. Let u™ u® ... u® be permutations where u'9) is of length ,ué.
Then we have

Sh(cc(u), ..., ce(u)) C {cc(w) | w € S,, ctype(w) > u}.

Proof. This follows from rephrasing the relation D, C C, by reversing the words and
using Proposition 2.2 and (4). O

However, we can show the following stronger result using properties of Algorithm
2.17.

THEOREM B. Let u™ u® ... u® w be permutations and assume that cc(w) €
Sh(cc(uM), ..., cc(u®)). We have

ctype(w) > ctype(u(l)) + ctype(u(Z)) + -+ ctype(u(l)),

where ctype(u™) +ctype(u®) +- - - +ctype(uV)) is the partition given by the partwise
sum of ctype(uM), ctype(u®), ..., ctype(u®).

We can see that Corollary 5.1 follows from Theorem 5. For any u € S,,, we know
ctype(u) > (1)™, since (1)™ is the unique smallest partition of size n with respect to
dominance order. Hence, for permutations v, 42, ... u® w where v e S, and

J

ce(w) € Sh(cc(uM), ..., cc(u®)), we have
ctype(w) & ctype(ul?) +ctype(u®) + - -+ ctype(u®) & (1) 4 (1)#2 4+ 4+ (1) = p,

Hence Theorem 5 gives an improved lower bound for the catabolizability type of a
shuffle.

We prove Theorem 5 by introducing a new modification of Algorithm 2.17 that
keeps track of the difference between ctype(w) and ctype(u(?))+ - - -+ ctype(u™)). We
first construct our inputs for the algorithm. We restrict to the case where [ = 2, but
the same arguments generalize to larger . Let ©), u() w be permutations such that
cc(w) € Sh(ce(uM), ce(u®)). If we specify a shuffle of cc(u()) and cc(u®) that is
equal to cc(w), we have that each letter in cc(w) corresponds uniquely to a letter in
cc(uM) or ce(u?). Fix such a shuffle.

We can create fillings T'7,), T, of shapes ctype(u?), ctype(u(?) using Algorithm
2.17. Similar to the modification we described in Section 2.5, we fill the boxes as we
add them to the partition. However, we now fill the box with tuples (k,4). Consider
the box we add to T'{,, when reading the letter ctype(u(l))m for the kth time. There
exists an 4 such that ctype(u),, corresponds to cc(w), ;41 in the fixed shuffle. We
fill the box with the tuple (k,1).

Note that the convention for the index we put in the box is different from what
we used in Section 4. The (n — i + 1) will be useful when we define a total ordering
on these entries. We are abusing notation here, since the fillings depend on how we
shuffle the two cocharge words to get cc(w), not just w.
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(3:4)
(2,9)
(1,2)|(1,6)
i = |(2,5) y Tiiay = .
(1,1)((1,3)
1,10
(1,7)|(1,8)
FIGURE 1.

(3,4)
(2,9)
(Tu(1) -l-Tu(z))w =1(2,5)

1,10)(1,2)|(1,6)

(1,7)(1,8)|(1,1)|(1,8)

FIGURE 2.

EXAMPLE 5.2. Letw =5 9 1 2 6 7 10 3 8 4. Then
cc(lw)y=1 2 0 01 1 20 1 0e€Sh(120012,1010),

where we have colored the entries to denote the shuffle we chose. The resulting fillings
Ty, T,y are depicted in Figure 1.

From Lemma 2.20, we know if (k,4) appears in row r of T,,1), T,,2y we must have
k + cc(w)p—iy1 = r. Furthermore, since the second coordinate of an entry records
which letter in cc(w) created that box, for each i € {1,...,n}, there exists a unique
k such that (k,i) appears in T',) or T,,. This (k,4) appears exactly once.

We combine 77, T, to get a filling of shape ctype(u™) + ctype(u(?), denoted
(T,1y + T,y»)™, by taking the row-wise sum of the two diagrams.

EXAMPLE 5.3. We combine the two diagrams we get from Example 5.2 to get a filling
of (2+2,14+2,1,1,1), depicted in Figure 2.

The lexicographic ordering (<) on tuples (a,b) € Z2 is defined by:

a<c or
a=cb<d.

(a,b) < (¢, d) & {

The lexicographic ordering of the tuples keeps track of the order in which we read the
entries in Algorithm 2.17. That is: if (k1,41) < (ke,d2), then we read cc(w)y—q,+1 for
the kith time before we read cc(w)y,—i,+1 for the koth time.

Let T}, 2 be the filling obtained by rearranging the entries within the rows of
(T,» + Ty2))™ so that the entries within the rows are increasing from left to right
with respect to <. We have the following result:

LEMMA 5.4. The filling Tyt fu@ satisfies the following conditions:
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(i) Each i € {1,2,...,n} appears in the second coordinate of an entry exactly
once
(ii) The entries in each row and column are increasing with respect to the lexico-
graphic ordering on tuples,
(iii) For any entry (k,i) in rowr of Tl (), we have k+ cc(w)p—ip1 =1

Proof. The conditions (i) and (iii) hold by construction. It suffices to show the entries
within each columns are increasing.

Let (k,7) be the entry in the row 7, column j of T30 4 2> Where r > 2. We know
(k,4) is the jth smallest entry in row r, since we reordered within the rows so that
the entries were increasing. For each entry in row r of T;‘fl)+u(2), there is an entry
in row r — 1 that appeared directly below it in T7%,) or 1", . Since T7',), T, were
constructed through the Algorithm 2.17, we know that their columns are increasing
with respect to the lexicographic ordering.

Thus for each entry (k’,4’) in row r such that (k¥',4') < (k,1), there is an entry in
the row (r — 1) that was directly below (k',4’) in T'%,, or T',) which is smaller than
(K',1").

Therefore, if (k,¢) is the jth smallest entry in row r, there are at least j many
things in row (r — 1) that are smaller than (k,¢). Hence (k, %) is larger than the entry
directly below it. O

EXAMPLE 5.5. Continuing with our example, we have

(3,4)
(2,9)

Ty 4u@ =|(25)

(1,2)|(1,6)(1,10

(1,1)|(1,3)|(1,7)[(1,8)

The entries are increasing within each row and column.

We now define the notion of row insertion when dealing with these fillings. This is
a modification of the classical row insertion used in RSK, except we also check the
column increasing condition when inserting and we may modify more than one entry
in the row, by sliding part of the row over to the right by one.

ALGORITHM 5.6. (Modified Row Insertion) Consider a filling T of a two row partition
shape, where each entry is a tuple in ZQ>0 and the rows and columns are increasing
with respect to the lexicographic ordering.

Let (a,b) € Z% . We insert (a,b) into the second row of this partition by doing the
following. We first find the leftmost (¢, d) in the second row that satisfies:

(13) (a,b) < (¢, d),
(14) (a,b) = (e, f)

when (e, f) denotes the entry directly below (¢, d). If no such (c,d) exists, we say (a,b)
pops out of this row and we are done.

If such (c,d) exists, replace (c,d) with (a,b). The resulting filling is still increasing
in the rows and columns. The only place where we could have a contradiction is
directly to the left of (a,b), but this cannot happen since (c,d) is the leftmost entry
that satisfies (13) and (14).
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We now repeat the steps above to insert (c,d) into the same row. We continue until
an entry pops out or we insert into the last box of the row.

If we insert into the last box of the row, replacing (g,h), we finish our insertion
process by appending (g, h) to the end of the second row if the resulting filling has
increasing columns and is still a partition shape. This only happens if the second row
was strictly shorter than the first. In this case, nothing pops out. Otherwise, (g,h)
pops out and the insertion is complete.

Note that once we successfully insert (a,b), the entry (c, d) gets inserted to the direct
right of (a,b) or it pops out. From this, we can see that this process is equivalent to
determining where we can put (a,b) and then moving the entries larger than it to the
right by one until we find a contradiction with the bottom row or we reach the end of
the row.

We illustrate this through the following examples. The first one results in an entry
popping out.

EXAMPLE 5.7. We insert (a,b) = (2,6) into the second row of the following partition:

(2,4)|(3,2)[(3,3)|(4:1)

(1,1)((2,5)|(2,7)|(3,8)|(5,2)

Since (3,2) is the leftmost entry satisfying (13) and (14), we replace (3,2) with (2,6):

(3,2)
(24)((2:6)|(3,3)| (4, 1)

(1,1)[(2,5)(2,7)|(3,8)|(5,2)

Now we repeat: we replace (3,3) with (3,2):

(3,3)
(2:4)((2,6)|(3,2)|(4,1)

(1,1)|(2,5)((2,7)|(3,8)|(5,2)

However, we cannot replace (4,1) with (3,3) since (3,8) £ (3,3). Hence (3,3) pops
out of this insertion and we are done.

We also give an example of when nothing pops out of the insertion process.

EXAMPLE 5.8. We insert (a,b) = (2,6) into the second row of the following partition:

(2,4)|(3,2)

(1,1)[(2,5)|(3,1)

Since (3,2) is the leftmost entry satisfying (13) and (14), we replace (3,2) with (2,6):
(3,2)

(2,4)|(2,6)

(1,1)|(2,5)|(5,1)
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Now, we can append (3,2) to the end of row 2 while maintaining the column increasing
condition. Adding a box to the second row does not change the fact that the shape is
a two row partition. Hence we insert (3,2) into the empty spot.

(2:4)((2,6)|(3,2)
(1,1)((2,5)|(3,1)

Note that nothing pops out at the end of this insertion.
We make the following observation.

LEMMA 5.9. If we insert (a,b) into row 2 of T and (x,y) pops out, we have (a,b) =
(z,y).

Proof. If we are unable to insert (a,b), then (x,y) = (a,b). Otherwise, the insertion
replaces larger entries with smaller ones. O

We can extend this definition of row insertion to any partition shape tableau T'
filled with tuples in ZQ>0 where the rows and columns are increasing. For any row
r>1of T and (a,b) € Z2,, we define T <, (a,b) to be the result of inserting (a, b)
into row r of T'. Unlike RSK, we only modify row r; we do not continue inserting into
higher rows. It is a simple check to see that the resulting filling T+, (a,b) is still
increasing in the rows and columns.

LEMMA 5.10. Consider partition shape tableau T filled with tuples in ZQ>0 where the
entries within the rows and columns are increasing. Consider two tuples (a,b) =<
(a’, V). Let T +, (a,b) denote the tableau we get by inserting (a,b) into row r of T,
where r is not the top row.

(1) Assume (z,y) pops out when we insert (a,b) into row r of T. If (¢',y") pops
out when we insert (a',b') into row (r+1) of T <, (a,b), then (x,y) < (¢, y').

(2) If nothing pops out when we insert (a,b) into row r of T, then nothing pops
out when we insert (a’,b') into row (r + 1) of T <+ (a,b).

Proof. (1) Note that if (z,y) = (a,b), the claim follows immediately. Otherwise, let

(p,q) denote the entry in row (r + 1) directly above (z,y) in T. Note that the entry

(p, q) may not exist: in that case, assume (p, ¢) to be the empty box at the end of row

(r+1). Let (g, h) denote the entry in row (r + 1) directly above (a,b) in T +, (a,b).
We can see that rows 7,7 + 1 of T look like the following:

We can visualize T <, (a,b) in the following way. First, we move the shaded
boxes in row 7, which are the boxes from the one directly below (g, k) up to (but not
including) (z,y), over one to the right. Then we put (a,b) directly below (g, h) which
pops out (z,y).

Rows r,7 + 1 of T' <, (a, b) look like the following:

T <, (a,b) :
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Now, we insert (a’,b") = (a,b) into row (r + 1) of T < (a,b). Let (2/,y’) be the
entry that pops out of this insertion, if such entry exists. To show (z,y) < (z/,y'), we
use the fact that (z,y) = (p,q). It suffices to show (p,q) = (z/,y').

We proceed by cases. First, note that if (p,q) < (a/,’), the claim automatically
holds since (a’,b') < (2/,y') (with potential equality).

The second case we consider is when (g,h) = (a/,0') < (p,q). In this case, we
can always insert (a’,b’) between (g,h) and (p,q). Consider (g1,h1) = (g2, h2) that
appear consecutively in row r of T' <, (a,b) such that (g,h) < (g1,h1) = (a/,') =
(g2, h2) = (p,q). This is equivalent to saying that in T' <, (a, b), we have the following
configuration:

T < (a,b) :

Since we know that all the shaded entries in row 7 were shifted 1 to the right when
inserting (a, b) into row r of T.we know that the entry (s1,¢;) that appears directly
below (g2, ha) was originally below (g1, h1) in T. Thus (s1,t1) < (g1,h1) = (a/,0) =
(g2, h2), which means we can replace (go, ho) with (a’,d").

We can also move all the entries from (go, o) up to (but not including) (p, ¢) over
to the right by one, because this is just equivalent to realigning rows r and (r + 1)
of T +, (a,b) to how they were in T. In particular, we can place (gz, h2) on top of
(82,12), since we know (s2,t2) = (ge, ha). The result of continuing the insertion up to
(p, q) is the following configuration:

(p,q)

At this point, either we are able to continue by inserting (p, ¢) into row (r 4+ 1), or
(p, q) pops out. From this, we know the smallest possible thing that could pop out is
(p,q)- Thus (p,q) < (2',y).

Now, we consider the case where (a’,b’) < (g, h). We know (a’,b') can be inserted
in some spot to the left of (g, h) by just checking (13): the column condition follows
automatically since (a,b) =< (a’,b'), thus (a’,V’) is larger than any entry to the left of
(a,b) in row 7. Let (¢, d) be the leftmost entry in row (r+1) such that (a/,0’) < (¢, d).

(cd)| ... [(gh)| - |(p,9)

T < (a,b) :

We replace (c,d) with (a/,b’). Now, any entry between (c,d) and (g,h) (which
correspond to the boxes colored yellow), must also be larger than (a,b), so we can
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keep inserting until we have replaced (g, k). This gives us the following configuration:

(g, h)

(a’, 01| ... | (2 9)

The next step is to insert (g, h) into row (r +1): we can see that this is exactly the
second case we considered. Thus, from the argument above, we know the insertion
process will continue until we reach (p,q) and the claim holds.

(2) The same argument holds: if such (x,y) does not exist, then (p,q) does not
exist. Thus the two cases we consider are (a’,b’) < (g,h) and (g,h) < (a’,b’), which
correspond to the first two cases in the previous argument. We can keep inserting into
row (r + 1) until we add a box at the end of row (r + 1), which we know we can do
since row r of T <, (a,b) is one longer than row r of T O

Now, we use this new notion of insertion to define a modification of Algorithm 2.17
that keeps track of the difference between ctype(w) and ctype(u™)+- - - +ctype(u®).
The input (cc(w), @, Ty, ) depends on the shuffle of ce(uM), ..., cc(u®) that is
equal to cc(w) that we fix. r17“hr011ghout this algorithm, we can think of the filling T in
the third coordinate of our tuple as keeping track of the “lower bounds” of insertion:
that is, if we read a certain entry in 7', we must add a box there. However, we may
add boxes earlier, which is when we perform the chains of insertions. The final result
in the third coordinate will be a tableau T, with shape(T,,) = ctype(w).

We include an example of this algorithm in the Appendix.

ALGORITHM 5.11. The input is (cc(w), &, .S), where S is a filling of a partition shape
that satisfies the conditions (i) — (iii) in Lemma 5.4. For example, we can take S to
be Tqilél),..‘,u(l)'

As we did for Algorithm 2.17, we apply the function f repeatedly to the first two
coordinates until we get (&, ctype(w)) in the first two coordinates. We modify the shape
of the filling in the last coordinate whenever we add a box to the second coordinate,
so that the new shape is larger in dominance order.

At each step, we say we read (k, i) if we read the letter corresponding to cc(w)n—;t1
for the kth time. After each step of the algorithm, we get a triple (z,v,T) where z is
a word, v is some partition, and T is a tableau of partition shape.

Consider the step when we read (k, ), with input (z,v,T), which results in adding
a box to row r of v. Let (Z,v+¢€,) be the new first and second coordinate of our tuple.

By condition (i), we know there exists a (m,i) that appears in T. If k = m, we do
not modify the filling T and the new tuple we consider is (Z,v + €.,T). Note that by
condition (iii), we know that (k, 1) appears in row r of T (To see an example, see (21)
in the appendiz).

However, if (m,i) is in row r' where 7 < 1/, we will create a new tableau T of
partition shape in the following way. We first look at T, where * denotes the box
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containing (m,1):

row r’ *

Tow T

[]

Delete the box in T containing (m,i) as well as the ones directly above it in T.
This results in deleting entries {(m,i), (m1,41),...,(ms,is)}, where (my,is) denotes
the entry that was t boxes above (m,i) and s is the total number of boxes that appear
above (m, i) in T. The resulting diagram looks like this:

[

[T 1]
|

row r’ removed entries: {(m, ), (m1,11), (ma,i2), (M3,i3)}

TOW T

[]

Note that since the entries are increasing within the columns of T, we have

(15) (m,z) j (mhil) j T j (m57is)

The rows and columns are still increasing with respect to the lexicographic ordering if
we ignore the empty spaces in the column that contained {(m, 1), (my,41), ..., (Ms,is)}.

We will create a new partition shape filling of n boxes by inserting the entries we
removed back into this filling.

Let d = v" —r. We first insert (m — d,i) = (k,i) into row r using Algorithm 5.6.
Note that we use (m—d, i), rather than (m, i), to maintain condition (iii). This change
does not change the fact that the entries in the filling satisfy condition (i).

If an entry pops out, we denote that entry by (xo, yo). Now, we continue this process,
inserting (my—d, i1) into row r+1. If some entry (x1,y1) pops out, we know (zg, yo) =
(z1,y1) from Lemma 5.10 (1) since (m —d,i) < (my —d,i1).

In this way, we insert (my — d,i1,),...,(ms —d,is) into rows r+1,...,r+s.

(mg—d,iz)—

(mo—d,ig)—

(mq—d,ip)—

(m—d,i)—

[]

If we insert into a row with a gap in the middle, we ensure that we maintain the
empty spot by skipping over it in the insertion process. That is: we never insert in the
empty spot in the middle of the row.

By Lemma 5.10 (2) and (15), we know that once we have an insertion where
nothing pops out, we will never have anything pop out for the later insertions as well.
Let j < s be the index such that inserting (m; —d,i;) is the last insertion where some
entry (z;,y;) pops out. The elements that pop out at each step have the following
relation:

(16) (kvl) = (Io,yo) = (‘Tlayl) = = (Ijvyj)7

where either j = s or nothing popped out when inserting (m;11 — d,i;41) into row
r+7+1
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For example, if we assume j = 2 in our example, we get:

[T 1]

—(z2,y2)
—(z1,91)
—(z0,v0)
[ ]

Once we have inserted up to (ms — d,is), we still have an empty column where
(m, 1) used to be and above.

Since the insertion algorithm replaces entries with smaller ones, we know that the
entry below the empty space in row v’ must still be smaller than (m, ). If there exists
an entry (xo,yo) that popped out of row r, we have the following inequalities using

(16):
(17) (k+d,i)=(m,i) 2 (zo+d,y0) 2 (x1+d,y1) X+ =2 (z; +d,y)).

Thus we can fill the empty column with the entries (xo+d,yo), (x1+d,y1), (x;+d,y;)
and preserve the column increasing condition for all the columns.

o

* where x = (19,%0),© = (21,¥1),° = (T2, Y2)-

L]

Now that we have put all the entries back into the filling, we rearrange the entries
within rows v’ and above so that the entries within the rows are increasing and we
have a partition shape with no gaps. Let the resulting diagram be T. We can use the
same argument used in the proof of Lemma 5.4(i) to show that the T is increasing
within the rows and columns, since the filling we had before rearranging within the
rows was column strict. Using this, we know that T still satisfies conditions (i)~ (iii).
In this case, the new tuple we consider is (Z,v + e,«,T).

We proceed by reading the next letter in Z. We continue this process until the first
coordinate of our tuple is the empty word.

Algorithm 5.11 satisfies the following properties. When we are reading an entry
(k, i), we say that smaller than (k,) in the lexicographic order has already been read.

LEMMA 5.12. Assume we apply Algorithm 5.11 with initial input (cc(w), d,S). Each
intermediate tuple (z,v,T) must satisfy the following conditions:
(a) As partitions, we have shape(T') > shape(S), where S is the filling in the
original input.
(b) A tuple (k,i) that appears in T has already been read if and only if it is
contained in the subdiagram of T of shape v.
(c) A tuple (k,i) that appears in T has not been read if and only if the letter
corresponding to cc(w)p—;+1 has not been deleted from the input word.

Proof. Note that by assumption, we have that T satisfies the conditions (i)—(iii). We
proceed by induction. Note that the statement is true for the initial filling S before
we read (1,1). We proceed by cases.

Assume we read (k,7) but cannot add a box to v. By (iii), we know that there
exists a tuple (m,7) € T . By induction, we know that (m, i) cannot have been read
yet by (c), since it corresponds to an entry that has not been deleted from the input
word. Thus m > k. Furthermore, if m = k, we would have that the box below (k,) in
T must be contained in the subdiagram of shape v by (b) and (ii), since it must have
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already been read. However, this would imply that we would be able to add a box to
the diagram v, which is a contradiction. Thus k < m. Since this does not affect any
of the conditions, we have that (a)—(c¢) are true for this tuple.

Now we consider the case where reading (k, ) results in adding a box to row r of v
but does not change the filling T'. This does not affect condition (a). In this case, we
know (k, i) appears in row r of T'. Since we assume that T satisfied conditions (a)—(c)
before we read T, we know that (k,4) is the smallest entry in row r of T that is not
contained in the subdiagram of shape v. This implies that the box in T containing
(k,1) is exactly the new box in v + €., thus (b) and (c) hold as well.

Finally, we consider the case where reading (k,) results in creating a new filling
T.

In this case, we know that (m, ) appears in row 1’ > r of T'. This means we delete
(m, i) (and all the entries above it) and then insert (k, ¢) into row r. Note that from (b)
on T, we know that none of the entries we delete can be contained in the subdiagram
of T of shape v, since all the entries we delete are larger than (m,1).

Let (z,y) be the smallest, unread entry in row r of T. From condition (c) and the
fact that reading (k,) results in adding a box to row r of v, it follows that the box
under (x,y) must be contained in the subdiagram of shape v. Thus the entry below
(z,y) has already been read. Furthermore, since (k,%) is the smallest unread entry,
we have that (k,7) < (z,y). Thus inserting (k,¢) into row r results in replacing (z,y)
with (k, 7). Note that this box in T is in the same position as the new box we add to
v.

Note that from equations (15), we know the insertion process only involves entries
that are larger than (k,7), thus the entries in the subdiagram of shape v are fixed.
Furthermore, we can see that when we rearrange the rows after the insertion so that
the final shape is partition, we do not touch any of the entries in the subdiagram of
shape v + ¢,. Hence condition (b), (c) hold.

Finally, we can see this insertion process corresponds to moving entries in T to
lower rows. Thus we have condition (1).

O

COROLLARY 5.13. When applying Algorithm to (cc(w), D, S), we have that the final
output is of the form (&, ctype(w), T,,) where shape(T,,) = ctype(w).
Proof. We know that the final tuple (&, ctype(w),Ty,) must satisfy Lemma 5.12 (a)

—(¢). By (c), we know that all the entries in T, must be read. Then, by condition (2),
we have ctype(w) = shape(Ty,). O

Theorem 5 immediately follows from this algorithm.

Proof of Theorem 5. We apply Algorithm 5.11 to the initial input

(CC(’[U)7®7T;121) ,,,,, u(l))'

From Lemma 5.12, at any point in the algorithm, where the tuple is of the form
(z,v,T), we have

ctype(u™) + - - + ctype(u)) = shape(T%,, @) < shape(T).

From Corollary 5.13, it follows that ctype(u™) + --- + ctype(u®) < shape(T,,) =
ctype(w). O

We can also use this modified algorithm to prove the following statement about
how certain modifications to permutations raise the catabolizability type.

PRrROPOSITION 5.14. Consider w € S,, and index i such that w; +1 < wiq1. If © =
W .. Wi Wj - . . Wy, we have ctype(w) > ctype(w).
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Proof. We know cc(w); < cc(w)it1, since they differ by more than one. This swap
does not change the cocharge label of any of the letters. Thus cc(w) is the word we
get by swapping cc(w); and cc(w);4+1 in ce(w).

Let T, be the filling of ctype(w) we get from Algorithm 2.17, where we fill a box
with tuple (k,) if we add the box when reading the letter cc(w),—;+1 for the kth
time. There exist unique ki, ks such that (ki,n — i+ 1), (ka,n — ¢) appear in Ty,.
Replace these two tuples with (k1,n — 7), (ka,n — i 4+ 1) to account for the swapping
of ce(w); and cc(w);41. Denote the resulting filling by T/%.

The filling T/? satisfies the conditions (1), (3) in Lemma 5.4 by construction. We
can check that it satisfies (2) as well. Note that the only case where swapping the
second coordinates changes the relative order on the elements in T]UD isif k1 = k. In
this case, the potential issue occurs if (k1,n — i), (ka,n — i + 1) appear in the same
row or column of Ty,. However, this never happens. Since cc(w); # cc(w);41, if the
two appeared in the same row we would have ky > ko from Lemma 2.20. If k; = ks,
then (k1,n —4) appears in a higher row than (ks,n — ¢+ 1). Since we add (k1,n — 1)
to Ty, before we add (ke,n — i + 1), it is impossible that these two tuples appear in
the same column of T,,. Hence T¥ satisfies (2).

Now, we apply Algorithm 5.11 to the initial input (cc(w)),@,T2). Since
shape(T?) = ctype(w) and the resulting tuple is (&, ctype(), Tz) with shape(Ty) =
ctype(w), it follows that ctype(w) &> ctype(w). O

6. ANTISYMMETRIC PART

In the work of Garsia—Procesi [6, Section 3], the ungraded Frobenius character of R,

is identified to be the complete homogeneous symmetric function h, directly from

the structure of R,. However, they require further properties of R, as well as the

modified Hall-Littlewood polynomials, to identify the graded Frobenius character.
In this section, we use properties of our charge monomial basis

{x() | ctype(P(w)") > u}

to give a direct, elementary proof of the fact that Frobq(R,) = H,[X;q] that only
depends on the well-known combinatorial formula (1) and the ungraded character.
We do this by showing that for any composition v = (v1,...,%) [ n, we have

Hilb(NyR,) = (ey, H,[X;q]), where N, is the antisymmetrizer with respect to the
Young subgroup S, = 5,, x -+ xS, C Sy:

N, = Z sgn(o)o.

o€S,

Recall that we have the following formula for H u[X; q] for p = n, using Proposition
2.10:

(18) Ij[,u [Xa Q] = Z qcharge(S) Sshape(S‘) .
SeSYT
ctype(S")>u

We apply w to both terms. Since {my},{hy} are dual with respect to the inner
product, we get

(ey, H[X:q)) = (hy, wH[X:q)) = (m,) wH,[X:q),

where (m.) wH,[X; q] denotes the coefficient of m., in the monomial symmetric func-
tion expansion of wH,[X; q]. We compute wH,[X; q] using wsy = s+ for any partition
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A and the combinatorial formula (18):

WH,LL [X, Q] = Z tharge(S)Sshape(S)-
SeSYT
ctype(S")>pu

From the above, we can see

<€’Y7 ‘E[}J«[X; Q]> = Z qcharge(S) (<m’7> Sshapc(S))

SESYT
ctype(S*)>pu

charge(S
= E q ge( )Kshape(S),'y-
SeSYT
ctype(S*)>pu

Furthermore, we can rewrite expression (3) into a statement about permutations:
Kshapc(S),’y = |{’LU € Sﬂ | P(U)) = Su DGS(U)) - {71771 +’727 s M1 +---+ 7l71}}|~

Combining these observations, we have the following equality:

(19) (e, Hu[X;q]) = Z geharee(w),

weESy,
ctype(P(w)")>u
Des(w)C{y1,71+72,--;71++vi-1}

From this, proving Froby(R,) = H,[X;q] is equivalent to showing that for any
v [= n, the Hilbert series Hilb(N,R),) is equal to the right hand expression of (19).
We show this by proving that the natural subset of charge monomials to expect from
Equation (19) give a basis of N, R, by antisymmetrization.

Using the ungraded character of R, given by h,, along with Proposition 2.5, we
can make the following observation:

LemMA 6.1. The dimension of NyR,, is
|{’LU S S’na ctype(P(w)t) > ,U/,DeS(Q(’U})) C {71)71 + Y2,---5MN + - +’Yl—1}|}-

Proof. Since the ungraded Frobenius character of R, is h,, we know that
dim(NyR,) = (e, h,). Using the fact that H,[X;1] = h,, we have:

dim(Ny Ry,) = (ey, hu) = <ewgu[X3 1)) = Z L
weSy,
Des)C (oo e et}
We now use this fact to determine a basis of N, R,,.
PrOPOSITION C. Let uFn and v = (y1,...,v) En. The set

Sn, ctype(P(w)") & p

20 N C(’UJ) w 6 K )

(20) { v Des(Q(w)) C {1,711 +72,-- s+ + 71}
is a basis of Ny R,,.

Proof. We first show that the terms in (20) are nonzero. Consider w € S,, such that
ctype(rev(w)) > p, and Des(w) C {y1,71 +72,...,71 + -+ Y-1}. We divide w into
blocks of size v1, 72, ..., where the entries within each block are strictly increasing.
This implies that no two entries in the same block have the same charge value. Note
that S, permutes indices within the blocks, thus each monomial term of Nyxc(w) is
distinct. Hence Nyxc(“’) # 0. From Lemma 6.1, this shows that our set has the correct
cardinality to be a basis of N, R,,.
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Now, we show that (20) spans N,R,. The set {N,x“ | a € C,} spans NyR,
since {x* | & € C,,} is a basis of R,,. Consider w € S,, such that ctype(rev(w)) > pu,
NA,J:C(“}) # 0 but w does not have the correct descent set. We will show that Nyxc(w) =
N, x¢Eort2 (W) for some sort., (w) € Sy, with the correct descent set and catabolizability
type.

If we divide c¢(w) into blocks of size 1, 7o, . . . ,1, the entries within a block all have
distinct charge labels since vic(w) # 0. From this, we can rearrange the entries in
w so that they are strictly increasing within the blocks without changing the charge
labels of the respective entries. That is: if w; > w;41 with c(w); # c(w);+1, we know
w; # (w41 + 1), hence we can swap w; and w;41 without changing the respective
charge labels. We can repeat this until we sort w so that it is increasing within
the blocks. Let sort,(w) be the resulting permutation. We see that Des(sort. (w)) C
{71,711 +7,...,71+--v-1}. By Proposition 5.14, we know ctype(rev(sort,(w))) &>
ctype(rev(w)) &> g, hence N,x¢(or% () ig in (20). O

Using the construction of our basis, we can translate questions about the structure
of R,, into questions about conditions on tableaux. In this case, choosing the elements
that are a basis of N, R, is equivalent to looking at pairs of standard tableaux (P, Q) of
the same shape with conditions on both P and ). We illustrate this with an example:

EXAMPLE 6.2. Consider 1 = (2,1,1) and v = (2,2). All standard tableauzr P that
satisfy ctype(P?) > u are listed below:

We also list all standard tableaux @ such that Des(Q) C {2}:

e B
1234’124 1(2

Thus the pairs (P, Q) of standard tableauz of the same shape that satisfy ctype(P')> u
= j . j -
and Des(Q) = {71} are the pairs (, ) and (, ) These pairs corre

sponds to the words 2314,2413, which give us the charge monomials xox%, xox4. From
this, we know the basis of NyR,, is given by the polynomials

2 2 2 2
{zoxi — 2125 — 2w + X105, Toky — T1T4 — T2X3 + T1T3 ).

The following corollary is immediate from Proposition C.

COROLLARY 6.3. For any partition p of n we have Froby(R,) = H,[X;q].

Proof. The graded Frobenius character of a CS,-module V is uniquely determined
by the values (e, Froby(V)) for all v F n. From Proposition C, we have

Hilb(N, R,,) = 3 gereree()
weS,
ctype(P(w)*)>pu
Des(w)C{v1,714+v2,..,m1++n-1}

which is equal to (e, Frobg(R,,)) by Equation (19). Thus Froby(R,) = H,[X;q]. O

REMARK 6.4. Note that to avoid circular reasoning, we must ensure that we can show
(10) is a basis of R,, without using the fact that Frob,(R,) = H,[X;q]. Using the
fact that C, C D,+ and that xPut is linearly independent in R, [3, Corollary 3.14],
we have that (10) is linearly independent in R,,. Furthermore, using the ungraded

character, we have

dim(R,) = (hi»,Frob(R,)) = (hin, hy) = (hin, H,[X;1]) = |Cu.
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Thus we can show our set is a basis using only the ungraded character of R,,.

Carlsson-Chou [3] have a similar result on the antisymmetric component with re-
spect to a certain Young subgroup. We define Sh., (resp. Shfy) to be the set of all per-
mutations such that {1,2,...,v1},{nn+1,....,v1+7} ... {m+-+v-1+1,...,n}
appear in increasing (resp. decreasing) order.

THEOREM 6.5 (Theorem 3.8.2, Carlsson-Chou [3]). The set {N,go(x) | go(x) =
x* fora € D,,0 € Shfy} is a basis of NyR,:.

Similar to what we do above, they use their result to show that Froby(R,) = H,,
by deriving a combinatorial formula for (m.,) wH,, using parking functions and shuffle
combinatorics which matches their description of the basis.

In contrast to their result, ours arises naturally from the catabolizability formula
(1) for H,,. Our proof of the result is also independent of theirs: we do not relate their
classification to ours when we show Proposition C, though they use a similar argument
to show that their basis is linearly independent. However, it is easy to see that the
two sets coincide by using xz¢(*) = Grev(w-1)(X) to show that the two conditions are
equivalent:

Des(w) C {y1,7 +72,-- s+ +-1} ©w ' €Sh, & rev(w™) € Sh’, .

APPENDIX

EXAMPLE OF ALGORITHM 5.11. Letw=3 9 1 2 6 7 10 3 8 4.

Then cc(w) =1 2 0 0 1 1 2 0 1 0 € Sh(120012,1010), where we have
colored the entries to denote how the two words are shuffled.

The initial input when applying Algorithm 5.11 is given by:

(3:4)

(2,9)

1200112010 2, |25

(1,2)|(1,6)(1,10

(1,1){(1,3)|(1,7)](1,8)

We can see that the first three steps of algorithm correspond to adding boxes
(1,1),(1,2),(1,3) to the partition in the second coordinate. We do not modify the
filling in the last coordinate. The resulting triple we get is:

(3,4)

(2,9)

(21) 1200112fff,EIj, 2.5)

(1,2)(1,6)((1,10)

(1,1)((1,3)|(1,7)|(1,8)

The entries have been read up to this point are exactly those in the shape v = H:]
These boxes are shaded.
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At the fourth step (which corresponds to reading 2), we can see that we will add
a box to the partition in the second coordinate. However, we can see that (3,4) is in
the fifth row. Thus, we delete (3,4) and insert (1,4) into the third row of our filling:

(2,9) (2,9)
(14) = |25 (1,4)[(2,5)
=
(1,2)|(1,6)|(1,10) (1,2)|(1,6)|(1,10)

(1,1)(1,3)|(1,7)](1,8) (1,1)(1,3)](1,7)](1,8)

The resulting triple after the fourth step is:

(279)

(1,4)|(2,5)
120011 _ @j
(1,2) (1,6)|(1,10)

(1,1)[(1,3)](1,7)](1,8)

At the fifth step (corresponding to reading 1), we add a box to the partition in
the second coordinate, as well as modify the filling in the third coordinate by deleting
(2,5) and inserting (1,5) into the second row:

(2,9) (2,9)
(1,4) (1,4)
=
(1,5) = |@2)]@.6)|1,10) (1,2)[(1,5)(1,10) — (1,6).

(1,1 ](1,3) [ (1,7)](1,8) (1,1 (1,3) [ (1,7) (1,8)

We see that (1,6) pops out of the second row. We then place (2,6) into the empty
spot in the third row, where (2,5) was.

(2,9) (2,9)
(26) = a9 (1,4)|(2,6)
=
(1,2)| (1,5)[(1,10) (1,2)| (1,5)[(1,10)
(1,1)(1,3)|(1,7)](1,8) (1,1)(1,3)](1,7)](1,8)
The resulting triple is
(279)

(1,4)| (2.6)
12001 _ _ @3
(1,2)|(1,5)|(1,10)

(1,1)((1,3)[(1,7)](1,8)

At the next step, we cannot add anything to the second row. So we add one to the
element in the word without changing either of the shapes:
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(2,9)

(1,4)| (2.6)
12002 _ _ @3
(1,2)|(1,5)|(1,10)

(1,1 (1,3) [ (1,7)] (1,8)

The next two steps just add boxes to the first row of the partition in the second
coordinate without changing the filling. We get

(2,9)

] (1,4)[(2,6)

[] (1,2)](1,5)|(1,10)

(1,1)|(1,3)|(1,7)](1,8)

At the next step, we delete (2,9) and insert (1,9) into the third row of the filling
to get:

(1,4)((1,9)](2,6)

12 __ _, o [@2es o

(1,1)|(1,3)[(1,7)](1,8)

Now, we can continue to cycle through the word and add boxes to the partition
until we get

(1,4)](1,9) | (2,6)

fffffff -, . la2)|@s) 110

(1,1)](1,3)](1,7)](1,8)
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