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Hyperoctahedral group characters and a

type-BC analog of graph coloring

Mark A. Skandera

ABSTRACT We state combinatorial formulas for hyperoctahedral group (8,) character eval-
uations of the form x(agc(l)) where 556(1) € Z[®B,] is a type-BC Kazhdan—Lusztig basis
element, with w € B, corresponding to simultaneously smooth type-B and C Schubert vari-
eties. We also extend the definition of symmetric group codominance to elements of B, and
show that forNeach elemeni w € B, as above, there exists a BC-codominant element v € B,
satisfying x (CB¢(1)) = x(CBC(1)) for all B,,-characters x. Combinatorial structures and maps
appearing in these formulas are type-BC extensions of planar networks, unit interval orders,
indifference graphs, poset tableaux, and colorings. Using the ring of type-BC symmetric func-
tions, we introduce natural generating functions Y(@EC(D) for the above evaluations. These
provide a new type-BC analog of Stanley’s chromatic symmetric functions [Adv. Math. 111
(1995) pp. 166-194].

1. INTRODUCTION

Let W be a Coxeter group, H = H (W) its Hecke algebra, and 7 (H) the space of Hecke
algebra traces, linear functionals 0, : H — Z[q,q '] satisfying 6,(DD’) = 0,(D'D)
for all D,D’ € H. Included in T (H) are the H-characters, which encode much of
the structure of H in a condensed form. Since traces are linear, one might hope
to solve the following problem for particular bases D = {D,, |w € W} of H and

©={0"i=1,...,p} of T(H).

PrROBLEM 1.1. Find combinatorial formulas for each of the trace evaluations

(0)(D,,) |65 € ©, D,y € D}.

Unfortunately, trace evaluation is not always easy, even in type A, when W is the
symmetric group &,, with Hecke algebra H = H,,(q). (See e.g. [18, §1].) Type-A solu-
tions were given in [19, 39], using the induced sign character basis of 7 (H,(q)), and
bases consisting of products of simple elements of the (modified, signless) Kazhdan—
Lusztig basis {Cy(q) |w € &,,} of H,(g). It would be interesting to solve Problem 1.1
for other pairs of type-A bases as well, as these evaluations are related to facts and
conjectures concerning nonnegativity, graph coloring, and Hessenberg varieties. (See
e.g. [33, Lem. 1.1], [33, Conj. 2.1], [59, Conj. 4.9], [68, Conj.5.5].)

Partial type-A solutions to Problem 1.1 were given in [18, 62] for various bases of
T(H,(q)), and the subset

(1) {Cu(q) | w € &, avoids the patterns 3412 and 4231}
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of the Kazhdan—Lusztig basis of H,,(¢). By [61, Thm. 4.3], we have that for w avoiding
the patterns 3412 and 4231, there exists a planar network F' = F'(w) which serves as
a combinatorial interpretation for éw(q). By [18, Thm. 7.4], there also exist a poset
P = P(w) and graph G = G(w) such that evaluations 6,(C,,(q)) may be computed
combinatorially by

(1) filling Young diagrams with paths in F,

(2) filling Young diagrams with elements of P,

(3) coloring vertices of G,

(4) orienting edges of G,
while obeying certain rules in each case. (See also [9, 60, 64].) While (1) is only a
subset of the Kazhdan—Lusztig basis of H,(q), it is conjectured [4, Conj.1.9], [33,
Conj.3.1] that an even smaller subset

(2) {Cw(q)|w € &, is codominant, i.e. avoids the pattern 312}

explains trace evaluations at the entire Kazhdan—Lusztig basis. It is known [18,
Thm. 4.6] that for each element Cy(g) of (1) there exists an element C,(q) of (2)
with the property that P(w) = P(v) and therefore that 6, (Culq)) = Gq(év(q)) for all
traces 0, € T (Hp(q))-

One could also answer Problem 1.1 from the point of view of symmetric functions.
Let A, be the Z-module of homogeneous, degree-n symmetric functions. Since the
ranks of A, and 7 (H,(q)) are equal, it is possible to define a generating function
in A,, for evaluations of traces at any fixed element D € H,(q). Following [62, §2],
we use the induced sign character basis {€)} of T(Hy,(¢q)) and monomial symmetric
function basis {m} of A,, to define

Y,(D) = Zeé(D)m,\ €Z(g,q @A,
)

A certain pairing of six natural bases of 7 (H,(¢q)) and six natural bases of A,, then
guarantees that for each pair ({6}, {gx}), we have

Y,(D) = 63(D)gx.
A

Thus Y,(D) is in fact a generating function for the evaluation of all elements of
these six trace bases at D. (See e.g. [62, Prop.2.1].) Conveniently, the combinato-
rial computations mentioned above also guarantee that a certain chromatic (quasi-
)symmetric function Xg 4, defined in terms of the proper colorings of G [59], satisfies

Xa,q = Y, (Cy(q)) [18, Thm. 7.4]. Thus for w € &,, avoiding the patterns 3412 and
4231, the graph G essentially encodes all trace evaluations of the form 92‘ (Cw(q)) for
{02} one of the six natural bases of T(Hy(q)).

Some of the above results from [18, 61, 62] have type-BC analogs, i.e. extensions
to the hyperoctahedral group 9B,, and its Hecke algebra HE®(q). In Sections 2 — 4,
we present these algebras, their Kazhdan—Lusztig bases, and their trace spaces. In
Section 5, we define type-BC analogs of type-A planar networks, and use these to
graphically represent the subset

(3) {CB°(1) |w € B,, avoids the patterns 3412 and 4231}

of the Kazhdan-Lusztig basis of Z[B,]. In Section 6 we use immanants and total
nonnegativity to interpret trace evaluations at (3) in terms of paths in the type-BC
planar networks. In Sections 7 — 8, we define type-BC analogs Q(w) and I'(w) of the
type-A posets and graphs associated to planar networks. We define a type-BC analog
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of codominant permutations and show that the posets correspond bijectively to the
proper subset

(4) {55(:(1) |w € B,, BC-codominant}

of (3). We use the above networks, posets, and graphs in Section 9 to state and prove
our main results on the combinatorial computation of type-BC trace evaluations, and
in Section 10 to show that for each element CBC(1) of (3) there exists an element
CBC(1) of (4) with the property that Q(w) = Q(v) and therefore that §(CBC(1)) =
0(CBC(1)) for all traces 6 € T(B,,). Formulas in Section 9 lead to natural type-BC

analogs of type-A chromatic symmetric functions in Section 11. We finish in Section 12
with open problems concerning Hessenberg varieties.

2. THE SYMMETRIC AND HYPEROCTAHEDRAL GROUPS

The hyperoctahedral group B, is closely related to the symmetric groups on n and
2n letters. To describe these relationships, we will use subintervals of the set

[, n] :=={-n,...,n} ~ {0},
where we define @ = —a for all a € 77, n]. We call any subset [h,{] := {h,...,I1} ~ {0}
of [m,n] an dnterval, even if h < 0 < I. Let &, ;) denote the group of permutations
of letters in the interval [h,[]. The group 9B, is naturally related both to S(m,n) and
S, = Gy, To illustrate these relationships and prepare for our main results, we
will consider the groups’ presentations, conjugacy classes, Bruhat orders, and pattern-
avoidance definitions.

2.1. B,, AS A SUBGROUP OF &5 5. The 2nth symmetric group &5 ) is the Coxeter

group (see e.g. [15]) of type Az,,_1, with generators s,—, ..., s7, 50,51, .,Sn—1 and
relations
s?:e fori=n—-1,...,n—1,
8iS; = §j8; for |i — j| > 2,

sisjs; = s;8;8; for |i —j| = 1.

If an expression s;, - - - s;, for w € Gz 4 is as short as possible, then call it reduced
and call £ = {(w) the length of w. Define a (left) action of & ) on rearrangements
Wg - - WWy - - - Wy, of the word m---11---n by

s; swaps letters in positions 4,7+ 1 fori=1,...,n—1,
(5) s7 swaps letters in positions 7,7+ 1 fori=1,...,n—1,
so swaps letters in positions 1,1,
and define the one-line notation of w = s;, ---5;, € &z 4 to be
(6) W+ wpwy - Wy = 83, (siy (- (85, (- TL-m)) ).
For example, when n = 4, the element s7s0s; has one-line notation
s7(s0(s1(43211234))) = sq(s0(43212134)) = s7(43221134) = 43221134.

(By our definition, the right action of s; swaps the letters 4,4 + 1, wherever they are.)
It follows that w; ! is the index j satisfying w; = 4. It is known that ¢(w) equals the
number of inversions in w:
INV(wg - - - wywy - - - wy) == {(J,7) | > and j appears before ¢ in wy - - - wywy - - - wy, }.
Thus we have £(43221134) = iNnv(43221134) = |{(2,2), (2,1), (2,1)}| = 3.

For [a,b] C [h,] let S{Zé]] be the permutation in &y, ;) whose one-line notation has
the form ’

he-(a=1)-bb—-1)---(a+1Da-(b+1)---L
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When the interval [h,l] is clear from context, we will simply write s}, ;). Call such
an element a (type-A) reversal. Observe that the standard generators of &, are
all reversals: s = si_1 1), and for ¢« > 1 we have s; = s[;;11], 8§ = sfir1,1]- Also
observe that each trivial reversal s[, ) is equal to the identity element e, and that
two reversals 5[, 3], S[c,q commute if their intervals [a,b], [c,d] do not intersect. Let
B,, be the Coxeter group of type C, = B,,, i.e. the hyperoctahedral group. We may
view B,, as the subgroup of &5 ) generated by elements

t (also written sp) := so, s;=s;s7, fori=1,...,n—1,

which satisfy the relations
12
i

s,  =e fori=0,...,n—1,

/ / / /
tsltsl == SltSIt,

s;s; = s;s’i fori,j > 0and |i — j| > 2,
I R .. . L
s;sys; = sjsisy  ford,j > Tland |i —j|=1.

The one-line notation for elements of 95,, is inherited from that of & ;. For example,
when n = 4, the element ts) s, € B, has one-line notation

t(s) (s(A3211234))) = ts (42311324)) = ¢(42133124) = 42133124.

’-[ for w € 9B, is as short as possible, then call it reduced and

If an expression s; - --s;
call £ = {(w) the length of w. Let ¢;(w) be the number of occurrences of ¢ in any
(equivalently, every) reduced expression for w. Analogously, let £;(w) = £(w) — £(w)
be the number of occurrences of s/,...,s.,_;. It is easy to see that one-line notations
of elements of B,, are precisely the set of permutations wg - - - wiwy -+ w, € G7y
which satisfy w; = wj, i.e. each is completely determined by the n-letter subword
wy -+ - wy. Call these words the long and short one-line notations of w, respectively.

We can read ¢(w), £i(w), £s(w) from the short one-line notation of w by

Lw) =INV(wy - wp) + > wil,  G(w) = #{i > 0|w; <0},
i>0
w; <0
and l5(w) = L(w) — £(w). Thus we have £(3124) = |3] = 3, £;(3124) = 1, and
0,(3124) = 2.
Define type-BC reversals to be those elements of ®8,, having the forms

8(g,a] *= S[@a); for 1 <a <,

a,a

(7)

X
S(a,p) = S[Ba)S[ap], for 1 <a<b<n,
where the elements s, j are reversals in Gz p)-

2.2. CONJUGACY CLASSES, PARTITIONS, TABLEAUX, BIPARTITIONS, BITABLEAUX.
Conjugacy classes of &,, correspond to (integer) partitions of n, weakly decreasing
positive integer sequences A\ = (A1,..., \¢) satisfying Ay + -+ + A¢g = n. The £ = £())
components of a partition A are called its parts and we let the expressions |A| = n and
A F n denote that A is a partition of n. Sometimes we use the notation k** to denote
a sequence of ay copies of the letter k. Given A - n, we define the transpose partition
A= (\],.. .,)\—&1) by Al = #{j|)\; > i}. Thus n' = 1". We call X self-transpose if
A= X and we define the empty sequence @ to be the unique partition of the integer
0. Generalizing integer partitions of n are compositions o = (o, ..., a,) of n, which
are simply positive integer sequences summing to n. We let the notation o F n denote
that o is a composition of n. (See e.g. [66, §1.2].)

The conjugacy class of &,, corresponding to A F n is the set of all permutations
having cycle type A\. We write ctype(w) = A. Letting ax be the multiplicity of k in
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A, for k=1,...,n, we may express the cardinality of the A-conjugacy class of &,, as
n!/zy, where

(8) zy =1 n%aql- - anl.

Conjugacy classes of B,, correspond to integer bipartitions of n, pairs (A, u) of
integer partitions with |A|+|u| = n. We let (A, ) F n denote that (A, p) is a bipartition
of n. To explicitly describe the conjugacy classes of 93,,, we define the homomorphism

p:B, >6,
9) i sy, i=1,...,n—1,
t—e,

which replaces letters in the short one-line notation of v € B, by their absolute
values. For each element v € %B8,, and each cycle C = (¢1,...,ck = ¢o) of p(v) € &,,
define the signed cycle C = (é4,...,¢) of v by

N {Ci if ’U(Ci_l) = Cy,

C; =
’ C; if ’U(Cifl) =C.

Call C positive if it has an even number of negative letters, and negative otherwise.
The conjugacy class of B,, corresponding to (A, u) - n is precisely the set of elements
whose signed cycle type, the bipartition of positive cycle cardinalities and negative
cycle cardinalities, is equal to (A, u). We write sct(w) = (A, u). We may express the
cardinality of the (X, 1) conjugacy class of B, as 2"n!/(zy2,2¢MN+0),

To each integer partition A = (\1,...,\¢) F n we associate a Young diagram of
shape A, an arrangement of n boxes into ¢ left-justified rows with \; boxes in row
i. By the French convention, row 1 appears on the bottom. A Young diagram filled
with elements of a set S is called a tableau or more specifically an S-tableau. If S C Z
we also call it a Young tableau. Repeated elements are permitted. Given a bipartition
(A, ) F n, we define a Young bidiagram of shape (A, 1) to be an ordered pair of Young
diagrams of shapes A and u. We define bitableaur similarly.

2.3. THE BRUHAT ORDER.

For any Coxeter group W, the Bruhat order on W is the poset defined by declaring
v <w w if some (equivalently, every) reduced expression for w contains a reduced
expression for v. Ehresmann [26] showed that the Bruhat order on &g, is isomorphic
to the (dual of the) componentwise order on tableaux {A(w)|w € & )} of shape
(2n,2n—1,...,1) defined by placing the increasing rearrangement of w; - - - w,, in row
i, for i =7, ...,n. For example, the type-A Bruhat order comparison 321123 <G
321321 may be verified by the componentwise inequality A(321123) > A(321321),

WV

Gl Dol Dol Bl NI w‘
ol nol| ol vol| ol '—\\‘

D[ ]| I I o
= = =W
R | e |

= = = W

3 | 1]2]3]

Proctor [55, Thm. 5BC] showed that the Bruhat order on 9,, is isomorphic to a similar
order on tableaux {B(w)|w € B,} of shape (n,n — 1,...,1) defined by placing
the increasing rearrangement of w;---w, in row ¢, for ¢ = 1,...,n. For example,
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the type-BC Bruhat order comparison 321123 <g, 123321 may be verified by the
componentwise inequality B(321123) > B(123321),

(T
3 Z |2
13\ 2

DOl B c,o‘
=

3]

It is not difficult to show that the Bruhat order on 93,, is an induced subposet of
the Bruhat order on &gz, y).

PROPOSITION 2.1. For v,w € B, C Gz n), we have v <, w if and only if v <g )
w.

Proof. Consider v,w € B,, C Sz . If we have v <g,, w, then there is a reduced B,-
expression s ---s; for v which is a subword of a reduced B,-expression s’ --- s/

ik J1 Jk
for w. Then the recipe
R 5754 1fz >0
t ifi=0

produces a reduced &z ,-expression for v which is a subword of a reduced Sim,n-
expression for w. Now suppose that v <g ,, w. By Ehresmann’s criterion, we have
the componentwise tableau inequality A(v) > A(w). But the upper n rows of these
tableaux give the inequality B(v) > B(w). This is precisely Proctor’s criterion for
( <%n w. O

n]

2.4. PATTERN AVOIDANCE.

Given a word w = u1 - - - ug in Sy, and a word y = y; - - - Yy, having k distinct letters,
we say that y matches the pattern u if the letters of y appear in the same relative
order as those of u; that is, if we have u; < u; if and only if y; < y; for all ¢, 5 € [k].
On the other hand, given a word w = ws . .. w,, having distinct letters, e.g. w € &,, or
w € B, we say that w avoids the pattern u if no subword of w matches the pattern w.
In B,,, a second notion of pattern avoidance involves signed letters and short one-line
notation. Let v = vy - - - v be the short one-line notation of an element of By, i.e. a
word in letters [k, k] with |vy|---|vx| € Gy. Let y = y;1 - - - yx be a word in [m, n] such
that |y1] - |yk| has no repeated letters. Say that y matches the signed pattern v if

(1) for i =1,...,k, the letters v; and y; have the same sign,

(2) for all 4,7, |v;| < |v,] if and only if |y;| < |y;]-
Say that w € B,, avoids the signed pattern v if no subword of the short one-line
notation of w matches the signed pattern v. (See [12, p.108].)

Many properties of elements of 98, can be expressed in terms of signed pattern
avoidance.

LEMMA 2.2. The element w € B,, avoids the signed patterns 12 and 21 Jif and only if
the set of negative letters in wy ---wy, is empty or forms an interval [b,1] for some
b>1.

Proof. If all letters in w; - - - w,, are positive, then the claim is true.

(=) Suppose therefore that the negative letters in this word do not form an interval
of the desired form. Then for some 7, j, we have w; < 1 and 1 < w; < |wj|. It follows
that w;w; matches the signed pattern 12 or w;w; matches the signed pattern 21.

(<) If some subword w;w,; with ¢ < j matches the signed pattern 12 or 21, then
clearly the negative letters in w; - - - w, do not form the desired interval. O

Avoidance of signed patterns can also imply the avoidance of ordinary patterns.
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LEMMA 2.3. If w € B,, avoids the signed patterns 12, 21, 21, 312, 312, then w avoids
the unsigned patterns 3412 and 4231.

Proof. First we claim that if w contains a subword cdab matching the unsigned pattern
3412, then it must contain a subword matching one of the five signed patterns. Suppose
that cdab or just dab is a subword of w; - - - wy. If b > 0 then dab matches the signed
pattern 312 or 312. If b < 0 then ab matches the signed pattern 21. Now suppose that
cd appears in wy - - - wy and ab in wy - - - wy,. If b < 0 then ab matches the signed pattern
21. If b > 0 then ¢ and d appear in w - - - w,, without b, contradicting Lemma 2.2. Now
suppose that cdab or just cda appears in wy - - - wy. Then badc or adc is a subword of
wy - - - Wy, matching the unsigned pattern 3412 or 412. By the first case, w; - - - w,, has
a subword matching one of the signed patterns 312, 312, 21.

Now we claim that if w contains a subword dbca matching the unsigned pattern
4231, then it must contain a subword matching one of the five signed patterns. Suppose
that dbca is a subword of wy - - - w,. If ¢ > 0 then dbc matches the signed pattern 312
or 312. If ¢ < 0 then bc matches the signed pattern 21. Now suppose that d appears
in wg---wy and bea in wy -+ - wy. If ¢ > 0 then d appears in wy - - - Wy, contradicting
Lemma 2.2. If ¢ < 0 then bc matches the signed pattern 21. Now suppose that db
appears in wy - wg and ca in wy -+ wy. If ¢ > 0 then d (< 0) appears in wy - - wy,
contradicting Lemma 2.2. If ¢ < 0 then b (> 0) appears in wy - - - wy,, also contradicting
Lemma 2.2. Finally, suppose that dbca or just dbc appears in wg---wy. Then acbd
or cbd is a subword of wy - - - w,,, matching the unsigned pattern 4231 or 423. By the
first and second cases above, w; - - - w, has a subword matching one of the five signed
patterns. [l

3. SCHUBERT VARIETIES AND HECKE ALGEBRAS

Our main results (Theorem 9.6 — Theorem 9.8) partially answer Problem 1.1 using
a linearly independent set in Z[B,,]. This set is best described in terms of a special
basis of the Hecke algebra H(®B,,) and smoothness of certain Schubert varieties.

3.1. SCHUBERT VARIETIES.

Let G be a complex connected semisimple algebraic group, choose a Borel subgroup
B of G, and consider the quotient G/B, called a flag variety. The action of B on G/B by
left multiplication partitions it into orbits often written BwB, which are parametrized
by elements w of the corresponding Weyl group W. The Zariski closure €2, of BuwB
in G/B is called the Schubert variety indexed by w. We have Q, D €, if and only if
v < w in the Bruhat order. (See e.g. [12, §4.7].) Standard choices of G are SL,,(C)
(type A), SO2,+1(C) (type B), and SP,(C) (type C). The corresponding Weyl groups
are &,, (type A), and B,, (types B and C).

Call the Schubert variety Q,, rationally smooth if its ordinary cohomology H*(£2,,)
and intersection cohomology IH*(€,,) coincide. (See [12, Ch. 6].) Call £, smooth if the
tangent space at every point has dimension equal to the dimension of the variety. It is
known that every smooth Schubert variety is rationally smooth. Let Q& (w € &,,), QB
QS (w € B,,) denote the type-A, B, and C Schubert varieties, respectively. Elements
w € &, for which Q4 is rationally smooth or smooth are characterized by pattern
avoidance [47].

PROPOSITION 3.1. For w € &,,, the Schubert variety 2 is smooth, equivalently ra-
tionally smooth, if and only if w avoids the patterns 3412 and 4231.

Smoothness and rational smoothness of type-B and C Schubert varieties are char-
acterized by more intricate pattern avoidance. The conditions on w € B, which imply
rational smoothness of QB are the same as those which imply rational smoothness of
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QS [11, Thm. 4.2]: w must avoid the twenty-five patterns listed in [12, Eq. (13.3.5)].
On the other hand, the conditions which imply smoothness of the two Schubert vari-
eties are different [12, Thm.8.3.17]: QB is smooth if and only if it is rationally smooth
and w avoids the additional pattern 3412; QS is smooth if and only if it is rationally
smooth and w avoids the additional pattern 4231.

We will be interested in those elements w € 9B,, for which QB and QS are simul-

taneously smooth. These are precisely the elements w € B, C &z ) for which QA s
smooth when G = SLy,,(C).

PROPOSITION 3.2. For w € B,,, the Schubert varieties Q8 and QS are simultaneously
smooth if and only if w avoids the patterns 3412 and 4231.

Proof. If QB and Q¢ are both smooth, then by the above discussion, w avoids the
patterns 3412 and 4231. Suppose that w avoids the patterns 3412 and 4231. It is
straightforward to check that each of the twenty-five patterns listed in [12, Eq. (13.3.5)]
contains 3412 and/or 4231. Thus w avoids these twenty-five patterns as well, and Q8
QS are both smooth. O

3.2. HECKE ALGEBRAS.

Given Coxeter group W with generator set S, define the Hecke algebra H(W') of W
to be the Z[q, ¢ ']-span of {T,, | w € W} with multiplicative unit T, and multiplication
defined by

T.T, — qTsw + (g — )Ty, %f sw <w w,
Tsw if sw >w w,

where s € S, w € W, and <y is the Bruhat order on W. This formula guarantees that

for w € W and any reduced expression s;, ---s;, for w, we have T, = T, T,

Call {T,, | w € W} the natural basis of H(W). It is easy to see that the specialization
of H(W) at ¢ = 1 is isomorphic to Z[W].

A second basis [41] of H is the (modified, signless) Kazhdan—Lusztig basis
{Cw(q) |w € W}, related to the natural basis by

éw(Q): Z Py (@) Ty,
v<ww

where {P, ,(q) |v,w € W} C Z[q] are the Kazhdan—Lusztig polynomials whose recur-
sive definition appears in [41]. Coefficients of these polynomials may be interpreted
in terms of intersection cohomology IH*(€,,) [42]. Specifically, when Q,, is rationally
smooth, all polynomials {P, .,,(¢)|v <s, w} are identically 1 [41, Thm. A.2]. Thus
we have the following.

PROPOSITION 3.3. For W equal to &, or B,, and w € W avoiding the patterns 3412
and 4231, the Kazhdan—Lusztig basis element Cy,(q) of H(W) satisfies

Culg)= > T,

v<ww

Proof. This follows from Propositions 3.1, 3.2. O

In Sections 4 — 12 we will find it convenient to define
H,(q) := H(S,), Hip(q) == H(Sppp), HE(q) == H(B,),

and to let {Cy(q)|w € &,} and {CB%(¢)|w € B,} denote the Kazhdan Lusztig
bases of H,,(q) and HEZ¢(q), respectively.
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4. TRACE SPACES

Given Coxeter group W and Hecke algebra H = H (W), let T(H) be the Z[q,q~!]-
module of H-traces, those linear functionals 6, : H — Z[q,q~'] satisfying 6,(DD’) =
04,(D'D) for all D, D' € H. This is the Z[q, qil] span of all H-characters. Let T (W) =
T(Z[W]) be the specialization of 7 (H) at ¢ = 1. That is, for each H-trace 6, € T(H
satisfying 0,(T,) = fuw(q) for all w € W, define the W-trace 0 = 6, € T(Z [ n]) by
O(w) = f,(1) for all w € W. (See e.g. [29].)

The ranks of T(H) and 7 (W) are both equal to the number of conjugacy classes
of W. We consider six bases of T(H,(q)) and 7(&,,), and eleven bases of T (HE(q))
and T (B,).

~—

4.1. THE TRACE SPACES T (H,(¢q)) AND T(6,,).

The rank of 7(H,(q)) equals the number of partitions of n. Three commonly
used bases consist of H,(q)-characters. These are the bases of irreducible characters
{xo| X F n}, induced trivial characters {n | A - n}, and induced sign characters
{ey | A F n}, where

(10) 77 = trlvqTH (q), trivy (Ts,) = q, e;‘ = sgang’;Egi, sgn, (Ts,) = —1,
and H)(q) is the Young subalgebra of H, (q) generated by

{Tsw s én 1} { Sy b>\1+>\2 - ’Tsnfxg }

All H,,(q)-characters in T (H,(g)) belong to spanN[q]{Xé‘ | A F n}. Three more non-
character bases of T (H,(q)) consist of traces called power sum traces {’(/};‘ |AF n},
monomial traces {¢; |\ - n}, and forgotten traces {~; | A n}, defined by

2= 2 XX e =Y KOG g = DK
Iz I I3

where x*(\) := x*(w) for any w € &,, with ctype(w) = A, and {K/\_L | A, uEn} are
the inverse Kostka numbers. (See [67, §7].) The specialization of the power sum trace
basis at ¢ = 1 is essentially an indicator basis for conjugacy classes of &,,,

(1) M w) = {zA if ctype(w) = A,

0 otherwise.

For few traces 6, € T(Hy(q)) do we have cancellation-free formulas for all evaluations
of the form {6, ( w) |w € &,}. Two examples are the trivial and sign characters in
(10): for all w € &,, we have

XZ(Tw) = UZ(Tw) = ql(w)7 Xén (Tw) = €Z(Tw) = (_l)e(w)~

4.2. THE TRACE SPACES T (B,) AND T (HE(q)).
The rank of T(HE(g)) equals the number of bipartitions of n. Ten commonly used
bases can be constructed from pairs of type-A Hecke algebra trace bases, i.e. bases of

éo T(Hy(g)) ® T(Hoi(q)),

and from the Young subalgebra H ,?Sl_k(q) of HB¢(q) generated by

{TtaTS/la" Gk I}U{Ttm §k+17""T19;z,—1}’
where ty, = s}, - - - sits] - - - s} Specifically, given bases
(12) {GIANFEY S T(Hi(a),  {&)Iutn—k} CT(Hur(q),
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we define traces q(’\ € T(HE(q)), IAS T(HEC, (q)) by

46 (Tw) = ¢ (Tpw), 64 (Tw) = (1) (Ty),

where /l;, ¢ are defined as in Subsections 2.1 — 2.2. (When C(;\ and & are H,(q)-
characters, i.e. traces of matrix representations, the modifications qC;‘ and 6& cor-
respond to type-A matrix representations extended by the definitions T; — ¢ and
T — —1I, respectively.) Then we create a basis {(¢€))* | (A, u) F n} of T(HZ(q)) by
inducing

(13) (€O = (a¢; ® 3 T

k(@)

This construction of the irreducible characters

{000 (A ) n}

of HE(q) can be deduced from Hoefsmit [37, §2.2]. (See also [25], [29, §5.5].) One
then verifies that other trace bases are related to the irreducible character basis by
matrices described in [10, §3]. When the bases in (12) are type-A character bases, the
definition (13) gives a character basis of 7 (HE¢(g)). More examples are the induced
one-dimensional characters,

{m)y* | w) End, e [\ p) F n,
{lemy® | () -}, {(ee)g™ [ (A, p) b}

Five bases of T(HEC(g)) which do not consist of characters are formed from the
definition (13) and type-A power sum, monomial, and forgotten traces,

{0 [yt {(@0)" () Fnd, {(09)g" [ () Fnd,
{(yo) " |\ ) B, L) (A ) b n}.
An eleventh basis of T(HE(q)),
{3 () F ),
may be defined in terms of irreducible characters by
(14) =) 00 o)y ”
(e,B)Fn

where we define (xx)*?(\, i) := (xx)*?(w) for any w € 9B,, having signed cycle type
(A, ). (See e.g. [6].) The specialization of this basis at ¢ = 1 is essentially an indicator
basis for conjugacy classes of 9B,

2(N)+£ . _
P () — {zwz AIHODif set(w) = (A, ),

(15) .
0 otherwise.

Unsurprisingly, there are few traces 6, € T (HE(g)) for which we have cancellation-
free formulas for {6, (T%) |w € B, }. Four examples are the one-dimensional characters
constructed from (10) and (13): for all w € 9B,, we have

(002 (L) = () (L) = (ne) (L) = ¢,
(004" (T) = ()"(T,) = () (T) = g (1))
(O™ (L) = ()P (L) = (en){ ) (L) = (<1)/4 g
(00 () = ()7 (1) = ()P () = (<1,

where ¢, is defined as in Subsection 2.1.
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5. PLANAR NETWORKS

Several partial solutions to the type-A case of Problem 1.1 involve the subset

(16) {Cuw(q) | w € &, avoids the patterns 3412 and 4231}

of the Kazhdan—Lusztig basis of H,(q). The graphical representation of these ele-
ments by planar networks called type-A zig-zag networks [61, §3] allows for simple
combinatorial interpretation of certain trace evaluations [61, §5-10]. Moreover, the
subset

(17) {Cw(q)|w € &, avoids the pattern 312}

of (16) and its graphical representation by the subset of zig-zag networks called de-
scending star networks [61] captures much of the same information.

We will extend the above type-A results to types B and C by defining type-BC
zig-zag networks to graphically represent the subset

(18) {CB%(q)|w € B, avoids the patterns 3412 and 4231}

of the Kazhdan-Lusztig basis of H3¢(q), and type-BC descending star networks to
graphically represent the subset

(19) {CB¢(9) | w € &,, avoids the signed patterns 12, 21, 21, 312, 312}

of (18). These graphical representations facilitate simple combinatorial interpretation
of certain trace evaluations (Section 9), when we specialize at ¢ = 1.

5.1. TYPE-A PLANAR NETWORKS AND FACTORIZATION.

Define a type-A planar network with boundary vertices indexed by the interval [h, 1]
to be a directed, planar, acyclic multigraph which can be embedded in a disc so that
2|[h, ]| boundary vertices can be labeled clockwise as source h, . .., sourcel, sinkl, ...,
sink h. We will allow edges (z,y) to be marked by a positive integer multiplicity &
and will say that such an edge contributes k to the outdegree of x and to the indegree
of y. We will assume all sources to have indegree 0 and outdegree 1, and all sinks to
have indegree 1 and outdegree 0. Let FA([h,1]) denote the set of such networks.

For each subinterval [a, b] of [h, 1] we define a simple star network F[Zt’bl]] € FA([h, 1)
by

(1) Sources h, ..., lie on a vertical line to the left; sinks h, ..., lie on a vertical
line to the right. Both are labeled from bottom to top.

(2) An interior vertex lies between the sources and sinks.

(3) Fori = h,...,a—1land i =b+1,...,l, a directed edge begins at source i
and terminates at sink 1.

(4) For i = a,...,b, a directed edge begins at source ¢ and terminates at the
interior vertex, and another directed edge begins at the interior vertex and
terminates at sink <.

(5) All edges have multiplicity 1.

When the set of source and sink labels is clear, we omit the superscript [h,!] and
write Fi, p. For zero- and one-element subintervals we define the trivial network Fg =
Fipp) = -+ = Fjy) to have no interior vertex, and |[h, []| horizontal edges, each from
source i to sink i, for i = h,...,l. For example, the (infinite) set F”(]2,2]) contains
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seven simple star networks:

2 2 2 2 2 — 2 2><2 2 — 2 2 — 2 2 — 2
1 17 1><17 1 17 1 17 1><1’ 171, 1717
(20) 1 1 1 1 1 1 11— 1 1 1 T><T 11— 1
2 2 2— 2 2 2 2—2 2—2 2 2 2—32
F[E,Q] F[I,z] F[i,u F [1,2] F 1,1 F[E,I] Fg

where Fgy = F[i?] = F[T,T] = Fj11) = Fl2,2)- In figures, all edges in planar networks
should be understood to be oriented from left to right, with vertices at both ends
of all line segments, and additional vertices at the centers of the stars formed from
crossing line segments. Thus Fi1,2) above can be more completely drawn as

source 2 \ ® sink 2

source 1 @—> ® sink 1
source 1 ® sink 1

source 2 &—>® gink 2

For economy, we will omit edge orientations and vertices from drawings of planar
networks. When there is no danger of confusion, we will omit source and sink labels
as well.

Given networks E, F € FA([h,l]), in which all sources have outdegree 1 and all
sinks have indegree 1, define the concatenation F o F' of ¥ and F as follows. For
i=h,...,l,do

(1) remove sink ¢ of E and source ¢ of F,

(2) merge each edge (z,sink ¢) in F with each edge (source i,y) in F' to form a

single edge (z,y) in F o F.

Observe that for nonintersecting intervals [c1, d1], [c2, d2], the concatenations Fi., 4,10
Fie,,d4,) and Fle, 4,10 Fle, 4,1 are isomorphic as directed graphs. Observe also that some-
times in a concatenation FoF, there may exist vertices « in E, y in F with m(z,y) > 1
multiplicity-1 edges incident upon both. Define the condensed concatenation E e F
to be the subdigraph of E o F' obtained by removing, for all such pairs (z,y), all
but one of the m(z,y) edges incident upon both, and by marking this edge with the
multiplicity m(z,y). For example, in FA(]2,2]) we have the isomorphic graphs

(21)
X, X

Foqjobng = FgyeFnz = = = Fugjofpy =g eFgy),

X5 X

—
—

Nl =
[T
Nl =
[T

and the nonisomorphic graphs
(22)

1 1 1 1
Fgyolig ol = 7 Fgyefgelpy = @ ;

in which two pairs of edges are replaced by two single edges marked with multiplicity
2. We refer to all iterations of concatenations and condensed concatenations of simple
star networks as star networks. In fact, each element of F*([h,[]) is isomorphic to a
star network, so we may think of FA([h,[]) as a set of star networks.

LS|
ST
ST
ST
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Given planar network F € FA([h,l]), define its path matriv A = A(F) =
(@i)ijemn by
(23) a;; = # paths in F' from source 4 to sink j,

ignoring multiplicities. For instance, the star networks in (21) — (22) have path ma-
trices

U533 0371 431 A3 9 1100 5552 2221
G713 077 a1 G719 . 1100 5552 2221
azataiaz| (0011 [5552] |2221]
a27§ QQ,T a1 a2.2 0011 2221 1111

respectively.

DEFINITION 5.1. Define SA([h,1]) to be set of all type-A planar networks of the form
(24) F:F[cl,dl]."'.F[chdt]a

and call these type-A condensed star networks (with boundary vertices indexed by
[h,1]).

We will be interested in two subclasses of these, which we define as follows.
DEFINITION 5.2. Call a type-A condensed star network F (24) a type-A zig-zag net-
work if we have F = Fg or

(1) the intervals [c1,d1],...,[ct, di] are distinct and pairwise nonnesting,

(2) for all triples i < j < k satisfying [c;,d;| N [cj, d;] # @ and [¢;, d;] N [cr, di] #
&, we have ¢; < ¢; < ¢ (and d; < dj < dy) orc; > c¢; > ¢ (and d; > d; >
di).

Let S2([h,1]) denote the set of type-A zig-zag networks with boundary vertices
indexed by [h,].

DEFINITION 5.3. Call a type-A condensed star network F (24) a type-A descending
star network if we have F' = Fy or

(1) the intervals [c1,d1],...,[ct, di] are distinct and pairwise nonnesting,

(2) forall pairsi < j satisfying [c;, d;]N[c;, d;j] # @ we have ¢; > ¢; (and d; > d;).

Let SS([h,l]) denote the set of type-A descending star networks with boundary
vertices indexed by [h, []. Thus we have S5([h,1]) C S2([h,[]). To illustrate, let us fix
boundary vertices indexed by any interval of cardinality 4. Then we have 14 descending
star networks,

ORI AR A DG Z X X

and 8 more zig-zag networks which are not descending star networks,

@ R L RE XK

The result [18, Lem. 3.5] describes intersections of paths in a descending star net-
work.

LEMMA 5.4. Let m;,, m;, be paths in a descending star network F from sources i1 < ig
to sinks my, ms, respectively. Then the two paths intersect if and only if there exists
a path in F from iy to sink mo.

By [61, Thm. 3.5, Lem.5.3] and [18, Thm. 3.6, the sets S5([h,1]), S5 ([h,1]) are
related to pattern avoidance in &y, ).
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PROPOSITION 5.5. There is a natural bijection F + w(F) from S([h,1]) to 3412-
avoiding, 4231-avoiding permutations in &y, ), which restricts to a bijection from
SH([h,1]) to 312-avoiding permutations in Sy, .

To describe the bijection explicitly we define a relation < on the set of intervals
appearing in (24) by declaring
(27) [ci, di] =< [¢;,dj]
if i < j and [Ci,di] N [Cj,dj] N ([Ci+1adi+1] U---u [Cj_l,dj_l}) # &. The relation <
may be viewed as an acyclic directed graph on the intervals. The transitive, reflexive
closure of < is a partial order <. For F' € 87 ([h,[]), the directed graph is the Hasse
diagram of the partial order; for other F' € SA([h,[]) this is not the case. For example,
the networks F[2,5] L F[173] L F[4,6] o F[6,7] S Sé([l, 7]) and F[275] L F[LQ] L F[4,6] o F[2,5] S
SA([1,7)]) and their corresponding interval digraphs and posets are

7 7

6 6 (6, 7] [6, 7]

"\ (2) ° f |

4 4, [4,6]  [1,3]> [4,6]  [1,3]

3 ) 3 \/ \/

2 @) 2 [2,5] [275}

es)

6 6 2, 5] 2, 5]
“\e @/’ N N
4 4, [4,6] [1,2] > (4, 6] [1,2]
3 3 o7
2 2 (2, 5] 2,5]

The bijection F' +— w(F), stated in [61, §3], is given by the following algorithm.

ALGORITHM 5.6. Given F as in (24), do
(1) Initialize the sequence of reversals S := (Sic, dy]s -+ »S[cs,di])-
(2) For all pairs (i,7) with [c;,d;] < [¢;,d;] and |[c;, d;] N [¢j,d;]] > 1,
(a) Update S by inserting sic, a,)n[c,,d,] immediately after sic, 4,1
(3) Define w(F) to be the product of reversals in S, from left to right.

We call the final sequence of reversals a zig-zag factorization of w(F'). For example,
let F' be the first star network in (28). This zig-zag network F gives the reversal
sequence (S[2,5], 5[1,3] S[4.6]» S[6,7]) Which we update by inserting sz 5n[1,3] = S[2,3) after
S[2,5], and then s 5)n(4,6) = S[4,5 after spz 5 to obtain the permutation

w = w(F) = 512,5]5[4,5]9[2,3] 5[1,3] 5[4,6] S[6,7] = 3752146.

The inverse of the map F — w(F'), which we write

(29) w > Fy,

is a bit intricate and is given in [61, §3]. It turns out that the network F above
is F3752146- In (25), if we label sources and sinks 1,2,3,4 from bottom to top, the
descending star networks are

Fusor, Fsa21, Faa31, Fa241, F1as2, F3214, Fo3an, F2as, F1324, Fo134,

30
(30) F143, F1342, F2314, Fi234,
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respectively. In (26), the remaining zig-zag networks are

(31) Fyz12, Fa213, Fai32, Fi123, F3124, F1423, Fla23, F3142, Fo413-
The restriction of the map (29) to 312-avoiding elements of &, is in fact rather simple.

Given word w = wy - - - w,, with distinct letters, say that w has a record at position j
if w; = max{wi,...,w;}.
ALGORITHM 5.7. Given w = wy - - - w, € &, avoiding the pattern 312, do

(1) Let w have records at positions 1 = j1,..., k.

(2) Deﬁne Fw = F[jkijk] ®---0 F[jhwjl]‘

The bijection F — w(F) is closely related to families of source-to-sink paths in
F, and also to Kazhdan-Lusztig basis elements of the Hecke algebra of &y, ;. Given
F € FA([h,1)), call a sequence m = (7, ..., ) of paths in F' a path family of type
w = wy,---wy if for ¢ = h,... [, path m; begins at source ¢ and ends at sink w;. Say
that a path family 7 covers F' if every edge of F' appears in at least one path of m,
and define the sets

II(F) = {m |7 covers F},
IL,(F) = {m € II(F) | type(r) = w}.

For example, the star network and path family

3 3 3 N\ 3
(33) F = F[1,3] OF[2’3] OF[]_’g] = 2 >@< 2 s ™= 2- . 2
1 1 1 Y

belong to FA([1,3]) and I, (F) C II(F), respectively. When F is a zig-zag network,
we may characterize w(F') in terms of II(F) as follows [61, Lem. 5.3].

(32)

PROPOSITION 5.8. For F € Sy ([h,1]), w(F) is the unique permutation of mazimum
length in {type(r) |m € II(F)} C & -

For all F € FA([h,1]), the set II(F) associates an element of Z[S, ;] to F: we say
that F' graphically represents

(34) S type(r)

mell(F)
as an element of Z[& y]. For example, the network F' in (33) can be covered by
72 different path families: 12 of each type w € &3. Thus it graphically represents
12Cy, s, (1) as an element of Z[S3).

Again for all F € FA([h,1]), the set II(F) also associates an element of Hy, j(q) to
F'. To describe this element explicitly, we first assume that F' is formed by some itera-
tion of ordinary or condensed concatenation of simple star networks Fic, 4,1, - - -, Fle,,d,]
with internal vertices z1,...,z;. Observe that the intersection of two source-to-sink
paths m;, m; in I’ must be a disjoint union of the above internal vertices of F' and
paths between these. We say that m; and m; meet at a central vertex zj, if both paths
contain zy, and enter it via different edges. Given a path family 7 covering F', define
a defect of T to be a triple (m;, w;, k) with

(1) i <j,

(2) m; and 7; meet at vertex zj, of F' after having crossed an odd number of times.
Let dfct(m) denote the number of defects of 7. (This definition from [19] generalizes
those of [14, 24].) We say that F' graphically represents

(35) > ¢ OIT e
rell(F)
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as an element of Hy, ;)(q). For example, the path family 7 in (33) satisfies dfct(7) = 3:
the defects are (my, 72, 2), (71,73, 3), (72, 73, 3). It is possible to show that the network
F in (33) graphically represents (1+¢)2(14 ¢+ ¢2)Cs, s, (q) as an element of Hs(q).

It is clear that if F" graphically represents D(q) € Hp, j(q) as an element of Hyy, (),
then it graphically represents D(1) as an element of Z[&, ;). It is possible to show that
all star networks graphically represent products of Kazhdan—Lusztig basis elements
(possibly divided by integers or polynomials in ¢). In particular, the result [14, Thm. 1]
shows that sometimes such a product consists of a single Kazhdan-Lusztig basis
element, and that the star network is a wiring diagram, i.e. all intervals [¢;, d;] satisfy
di=c¢; + 1.

PROPOSITION 5.9. Let 8¢, -+- 5S¢, be a reduced expression for w € &y, avoiding
the patterns 321, 56781234, 56718234, 46781235, 46718235. Then the star network
Fic, ci41)® - ® Fic, ¢, 1) graphically represents Cy,(q) as an element of Hyp j1(q).

The result [61, Lem. 5.3] shows that zig-zag networks give graphical representations
of other Kazhdan—-Lusztig basis elements.

PROPOSITION 5.10. For w € G ;) avoiding the patterns 3412 and 4231, the zig-zag
network I, graphically represents Cy,(q) as an element of Hy )(q)-

This fact has the following consequence.

COROLLARY 5.11. For v,w € &) with w avoiding the patterns 3412 and 4231, the
number of path families of type v covering Fy, is 1 if v <g, ,, w, and is 0 otherwise.

5.2. TYPE-BC PLANAR NETWORKS AND FACTORIZATION.
For fixed n, define type-BC simple star networks with boundary vertices indexed by
[T, n] to be the type-A star networks

(36) F[Ia,b] = F[a,b] L4 [E,E] = F[a,b} o F[E,B]’ 1 < a < b < n,

Fz o = Fla.a); 1<a<n,
which correspond naturally to the type-BC reversals (7). For example the seven type-
BC simple star networks Fg = Fy; ) = Fly o = F[3 5 and FY| 5, Fjy 51, F|, 5, Ffiyy,
F5 a0 F5 3,

[ V)
[ V)

3— 3 3—3 3><3 3 3 3—3 3—3 3 3
72— 2 2 2 2 2 2><2 72— 2 2 2

1—1 1 1 1 1 1 1 1
(37) _ ) _ 0 _ ) _ 0 7><73 _ 0 _ R
1—1 1><1 1—1 1 1 1 1 1 1 1 1
2— 2 2 2 §><§ 2><2 2— 2 2 2 2 2
3—3 3—3 3 3 3 3 3—3 3—3 3 3

/

! / /! /! ! !
correspond to the reversals sy, 2 Si2.3) S1L3p SEap 5@ SEa We refer to all
iterations of concatenations and condensed concatenations of type-BC simple star
networks as type-BC star networks, and let F2¢([71,n]) denote the set of these having
boundary vertices indexed by [7,n]. We will be interested in three subsets of these

formed by condensed concatenation of type-BC simple star networks.

DEFINITION 5.12. Define SB¢([@, n]) to be the set of all type-A condensed star networks
of the form

(38) F= F[/Cl7d1] e F[/Ctadt]

and call these type-BC condensed star networks (with boundary vertices indexed by
[, n]).
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DEFINITION 5.13. Call a type-BC condensed star network F (38) a type-BC zig-zag

network if the intervals [c1,d4], ..., [ct,d:] satisfy the conditions of Definition 5.2,
i.e. if the type-A star network F., q,) - ® Flc, 4, i a type-A zig-zag network with
boundary vertices indezed by [min{1,c1,...,c;},n]. Let SE¢([m,n]) denote the set of

type-BC zig-zag networks with boundary vertices labeled by [, n].

DEFINITION 5.14. Call a type-BC star network F (38) a type-BC descending star
network if the intervals [c1,d1), ..., [ct, di] satisfy the conditions of Definition 5.3, i.e.
if the type-A star network Fic, q,)® - ® Fl, 4, is a type-A descending star network
with boundary vertices indexed by [min{1,c1,...,c;},n]. Let SE¢([m, n]) denote the set
of type-BC descending star networks with boundary vertices labeled by [, n].

Thus we have SE([7,n]) € SE¢([m, n]) C S ([M,n]), and each zig-zag network of
type BCis F,, for some w € &5 ). By the symmetry of these networks, we necessarily
have w € B,,.

To illustrate, consider the set SE<([3,3]) of twenty-two type-BC zig-zag networks.
Fourteen of these are type-BC descending star networks

® - - — —
e = = X

(1) T ) >< ) )

@ — Yo
@ — %

® - = — —

Fios  Fiys  Faig  Fiso Fyis Fis Fy3y Fys1

Fs Fgﬁ Fﬁzs FT3§ F3ﬁ

X X X

8%

(39)

i

Fizs

and eight are not,
(40)

3 —

(2) : 2 2)
(1) b ) ) ) ) b 9

) i E

@) > f (2)
@ —

F§13 Fs19 F§12 F§31 Fzﬁz F§21 Fﬁz F:‘TQl

By Corollary 5.11 and the containment 95, C &z, we have that for all I, €
SBC([m,n]) and v € B,,, at most one path family 7 of type v covers F,,. For i > 0,
paths m; and m; in this family are necessarily mirror images of one another, and we
call 7; grounded if it intersects path ;. For example consider Fi1, in (40) and the
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path families 7 of type 123 and o of type 312 covering it,

R
v J
.
‘.
.

[SCTI TR R ORIV

-
’,
’,
-

(41) T =

RN <
\ v
. ’ .
.’. * *e
[SSTR TR B SRV

[SSTR TR B RV
YT T B CRNON)

LS

The path m; is grounded while w9 and 73 are not; the path o5 is grounded while o
and o3 are not.

By (36) the intervals appearing in the construction of the type-BC star network
G (38) are roughly half of those that appear in the type-A construction of the same
network. The subposet of < induced by these intervals satisfies the following.

PROPOSITION 5.15. For Fy, , e+ F, 1 a type-BC zig-zag network, there is at
most one interval [a;,b;] satisfying a; < 0, b; = @;. Furthermore, this interval is
mazximal or minimal (or both) in the poset < on {la1,b1],...,[as, b}

Proof. Condition (1) of Definition 5.2 requires that the intervals [a1,b1], ..., [at, bt]
be distinct and form a nonnesting set. Thus at most one of these intervals satisfies
b; = @;. Let [a;,@;] be such an interval (a; < 0) and suppose that it is neither maximal
nor minimal in the partial order <. Then there are indices i,k with ¢ < j < k and
la;, bi] N [aj,a;] # @, [ak, bi] N [a;,a;] # @. By Condition (2) of Definition 5.2, we
must have a; < a; < ap or a; > a; > ap. But this implies that a; < 0 or ax < 0,
and therefore that [a;,@;] is properly contained in [a;,@;] or [ak, @], contradicting
Condition (1). O

As a consequence, the cardinalities of SE¢([m,n]) and SE¢([m, n]) are related to
their type-A analogs, with the second cardinality equal to a Catalan number.

THEOREM 5.16. For all n we have
(1) [85°([, n))| = S5([1,n +1])],

(2) [SEC([m, )| = SH([L,n + 1) = 7z ()

Proof. (1) Define a map Y : SE¢([m,n]) — SZ([1,n + 1]) by Y(F, ) =

F[max{ai+1,1},bi+1] and
T(Fly )@ ® Floypy) = TE, ) @ @ T(E, 4,)
so that all positive endpoints of intervals increase by one and all negative endpoints
are replaced by 1. To see that Y is well defined, recall that by Proposition 5.15 at
most one of the intervals [a;, b;] satisfies a; < 0. Thus the conditions of Definition 5.2
are satisfied and Y (F) belongs to S([1,n + 1]). Furthermore, for F' € SE¢([m,n]),
the inequalities a; > --- > a; imply that we have a1 +1 > --- > max{a; + 1,1} and
Y(F) € SA([1,n + 1]). To see that Y is bijective, observe that we have
lai,b] C [1,n] <= [a; +1,b; +1] C [2,n + 1],
ai:bi € [l,n] < a1+1:bz+1€ [2,Tl+1],
[bi,b;] C [m,n] < [1,b; +1] C[1,n+1].

Finally, by [18, Thm. 3.6] we have |S5([1,n])| = #_1(27?) O

In Theorems 5.18 — 5.19 we will characterize S5¢([m, n]) and SE¢([7, n]) as subsets
of {F, € S2([m,n])|w € B, } defined by w avoiding certain patterns. In order to do
so, we decompose certain elements of 9B,, into pairs (u,v) € By X &,,_k, and certain
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zig-zag networks in SE€([m, n]) into pairs of components in SE€([k, k]) x SH([1,n—k]).
Define the map

42 ©: B X G i) = By

( ) <U7U)|—>U@U:wﬁ--.wTw1...wn

by

U; if i € [E, k],

w; =< v, +k ifi>k,

v, +k ifi<k.
For example, the elements v = 1 € B, v = 231 € G3 give u G v = 24311342 € By.
Observe that to make sense of the more general expression u®vM @---Gv®) | we must
interpret it as (- (u @ vM) @ v@) @ --- @ vP~D) @ ov®) with u € By, v € S5
for some k, j1,...,Jp. We will say that any element w € ®8,, which can be written
as w = u P v is &-decomposable. Equivalently, w € B,, is &-decomposable if there is
some index k such that

{Jw1l, ..., |wg|} = [1, &, {wit1,.. ., wp} =k + 1,n].
We define a similar map
(43) @ : SBC([k, k]) x SA([1,n — k]) — SBC([@, n])
(E,F)—» E®F
as follows.

(1) Create F'+ € SA([k +1,n]) by adding k to the indices of all sources and sinks
of F.

(2) Create F~ € S*([n, k + 1]) by drawing F'* upside-down and by multiplying
each source and sink index by —1.

(3) Vertically arrange the sources and sinks of these networks and F in order

(m,...,n), so that we have F'* above E above F'~.
For example, to construct the network F[,T I © (Fi2,3 ® I1,2]), we place F’T 1 between

two copies of F[a 3] ® F]; o), one upside-down, to obtain

4
3
2

N W

1 1
o= _X
(1,1] 1 1’

FL @(F[ZS].F[LQ]) = = F[/T,l]

T o Fiy 59 F) -

F[273] L] F[]_’Q] = 2

YR K

=l bl el

= w
= [ V) w
Wl bl =

LEMMA 5.17. For elements u € By, v € &,,_y, and zig-zag networks F,, € SE€([k, k]),
F, € 87([1,n — k]), we have the following.

(1) F, ® F, € S8%([m, n)) is a zig-zag network satisfying w(F, ® F,) = u @ v.
(2) If F, and F, are descending star networks, then so is F, @ F,.

Proof. (1) To see that F, @ F, belongs to SE¢([m,n]), write
Fu == F[/

c1,d1

jo 0 Fi a4y Fo=Fla b0 Fla,p,-
By the definition (43) of the map & we have

Fu®Fy = F a0 @ Flopa) ® Flayvronrn ® @ Flagiop, -
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It is easy to see that the set {[a1+k, b1+k], ..., [ar+k, b.+k|} satisfies the conditions of
Definition 5.2, and since each interval [¢;, d;] is disjoint from each interval [a;+k, b;+k],
the union {[c1,d1], ..., [ct, de], [a1 +K, b1 +Ek], . . ., [ar+k, b+ K]} satisfies the conditions

of Definition 5.2 as well.

Now let w = w(F, & F,) € B,, and let y = u P v € B,,. To see that w = y, recall
by Proposition 5.8 that w is the permutation in & ,) which maximizes INV(z) over
all z € Gz, for which there is a path family of type z covering Iy, @ F,. By the
disconnectedness of F,, ® F,, we have

{wg,...,we} = [k, k], {wigr,...,wn} = [k+1,n], {wz, .. wizz =,k + 1]

Since w(F,) = u, it is clear that w has as many inversions as possible among entries

k,...,k when wg - wy = ug - - ug. Similarly, w has as many inversions as possible
among entries k+1,...,n when wg1 - - - w, matches the pattern vy - - - v,,_, i.e. when
Wiys = v;+k fori=1,...,n—k. In this case, we also have wg - - - WG = Wn *+* W1

Thus we have w = u @ v.
(2) The fact that F, @ F, belongs to SE¢([m, n]) follows immediately from Defini-
tion 5.14. O

Now we may characterize SE¢([m, n]) and SE€([7, n]) in terms of pattern avoidance.

THEOREM 5.18. Elements of SE¢([m,n]) correspond bijectively to 3412-avoiding, 4231-
avoiding elements of B,,. Specifically we have

(44) Sz ([, n]) = {Fu € S7([.n]) |w € B}

Proof. (C) Consider F' € SE([m,n]) C SH([m,n]). By [61, §3], F has the form F,
for some w € &z, avoiding the patterns 3412 and 4231, and factors as in (38) and
Definition 5.2. By Proposition 5.15, at most one of the intervals [¢;, d;] appearing in
(38) satisfies ¢; = d;. If such an interval exists, then we may assume that it appears
first or last. Thus we may factor F' as

F[/Co,do] * (F[Iclvdl] * F[/dT,a]) ¢ (F[/Ctadt] ¢ F[/dT,CTJ) * F[,Ct+1»dt+1]’

with one or both of the intervals [cg, do] and [cry1,dry1] satisfying ¢; = d;, and at
most one of these satisfying ¢; = d;. Algorithm 5.6 then gives a reversal factorization
of w. This factorization consists of the subsequence of reversals

(45) (s[co,du]v Sle1,dia]s S[dil,a]a ooy Ser,di]s S[E’a] ) s[dt+1’m])a

and more pairs of reversals

(46) Sles,dilnle;,di)s  Sid; wn[d; 5]

inserted between these. Since the only intervals appearing in (45)) — (46)) which can
contain both positive and negative integers are [co, do], [ct+1, dt+1], we may reorder the
sequence of reversals to place each pair s, ; and 55,a) consecutively. Thus w equals

Ctq1,de41]0 and

a product of type-BC reversals of the forms s, 4., SEa,b] = Sla.b]Spap S
belongs to B,,.

(D) We claim that for each element w € 9B,, avoiding the patterns 3412 and 4231,
we have F,, € S5¢([m, n]). This is true when n = 1 because S2([1,1]) = {Fg, Fgqh=
SEC([1, 1]). Now suppose that the statement is true for w € By, ..., B, and consider
w € B,.

If w is é-decomposable then we can write w = u @ v for u € By, v € 6, _, and
1 < k < n. Then by induction we have F, € SE¢([k,k]) and F, € SH([1,n — k]). By
Lemma 5.17 the network F,, € S2([m,n]) satisfies F,, = F, ® F, € S§([m, n)).

If w is not @-decomposable, then we may apply [61, Obs.3.3] to find a zig-zag
factorization of w (as in the paragraph following (28)) and to obtain an expression
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(24) for F,, which satisfies the conditions of Definition 5.2. In particular, we compare
the lengths ¢, m of the longest decreasing prefixes of w and w™! respectively,

Wy > - > Waigd, (w Hm > > (w ez

If £ = m, then w = 5[z ) and F,, is the type-BC zig-zag network Fiz ). If £ < m, then
w has a type-A zig-zag factorization beginning with

S[n,n—L+1]S[n—m,n—L0+1]S[n—m, k]|

for some k > n — m, and the interval [7,n — ¢ + 1] is <-minimal. By the B,-skew-
symmetry of w, it also has a type-A zig-zag factorization beginning with

S[n—t+1,n)S[n—0+1,n—m]S[k,n—m]>
and the interval [n — £ + 1,n] is also <-minimal. In other words, we can write w =
Stn—rt1,mw’ for some w’ € B, satisfying w; =i fori =n,....,n—m+1Ln—-m+
1,...,n,ie.

w/:uh"'w;—m@l"'m'
It follows that we have I, = F,_,. ) ® Fyy. By induction Fy is a type-BC zig-zag
network, and so is F,. O

THEOREM 5.19. Elements of SBC([m,n]) correspond bijectively to elements of B,
avoiding the signed patterns 12, 21, 21, 312, 312. Specifically we have

(47)  SE([m,n]) =
{F, € 85([m,n]) |w € B, avoids the signed patterns 12, 21, 21, 312, 312}.

Proof. First we observe that by Lemma 2.3, avoidance of the signed patterns 12, 21,
21, 312, 312 implies avoidance of the unsigned patterns 3412 and 4231. Thus the
right-hand side of (47) includes one zig-zag network F,, for every element w € B,
avoiding the five signed patterns. Next, consider the subset of S5¢([m, n]) consisting
of networks F,, factoring as

(48) Fieran ® - Flopa
with ¢; > --- > ¢; > 0. By Proposition 5.5, these networks are precisely
{F, € 85([m,n])|u € By, u; - - - u,, nonnegative and avoiding the pattern 312}.

Therefore we may prove the proposition by proving (47), restricting our attention on
the right-hand-side to networks F,, with u € B,, having at least one negative letter
in the subword u; - --u,, and on the left-hand-side to networks F,, € SB¢([m,n])
factoring as (48) with ¢; > --- > ¢; = d;. Such networks F, correspond bijectively to
networks F,, € SA([ct,n]) factoring as

(49) Fv = F[C1,d1] e---0 F[Ct,dt]’

with v and w satisfying

g vgup = dy -+ 21, V5 Up = W1 W,
{wy,...,w,y={1,...,dp,d¢ +1,...,n}.

C) Consider F,, € SB([m,n]) c SH([m,n]) factoring as (48) with ¢; > --- >
+ = d;. Since the related network F, (49) belongs to S§([ct,n]), the element v =
Ve, * VTV "+ U € G, ) avoids the ordinary pattern 312. Thus vy -+ v, = wy -+ wy
avoids the signed patterns 312 and 312. By [61, Obs.3.2] we have that 1---d; is a
subword of wy - - -wy. Thus ws - - -w, contains a negative letter and also avoids the

signed patterns 12, 21, 21.

(50)
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(D) Consider F,, on the right-hand side of (47) with wy - --w,, containing a neg-
ative letter. By (44) we have F,, € SZ¢([m, n]). By Proposition 5.15, there exists a
factorization (48) of F, in which exactly one interval [c;, d;] satisfies ¢; = d;, and this
interval must be maximal or minimal (or both) in the partial order <.

Assume that this interval is minimal and that ¢ = 1. By [61, Obs. 3.2] we have

(51) Wg=> Wy > wy > e > W,

with wy > 0 > wy since w € B,. If some positive letter j < d; does not appear in these
positions, then w; - - - w, contains either the subword wg,j which matches the pattern
21, or the subword wy, 7 which matches the pattern 21. This contradicts our choice of
F,,. Thus the 2d; letters in these positions must be d; > --->1>1 > --- > d;, and
the interval [d;, d;] is both minimal and maximal. It follows that we have w = S (dr.d,) DU
for some u € &g, 11,,)- Since w avoids the signed pattern 312, we have that u avoids
the ordinary pattern 312, F,, belongs to Sj([1,n—d;]), and F,, = F['d— 0] ® F,, belongs
to SBC([m,n)).

Now assume that the interval [c;, d;] = [d;, d;] in the factorization (48) of F,, is max-
imal with i = ¢. Define F,, € 87 ([ct,n]) as in (49). We claim that v, -+ v7v1 -+ v, €
Se,,n) avoids the ordinary pattern 312. To obtain a contradiction, assume that some
subword vj, vj,v;, matches the ordinary pattern 312. Suppose first that j; > 1. Then
wj, w;,w;, matches one of the signed patterns 312, 312, 321, 132 and this contra-
dicts the containment of Fy, on the right-hand side of (47). Now suppose that j; <1
and jo > 1. Then the letter vj, is positive by (50), and letters 1,...,7;, appear in
V1 Up = w1 -+ - Wy. Since w avoids the signed pattern 21, it is impossible for letters
Vj,Vj, in vy - - - vy, to complete the ordinary pattern 312. Now suppose that j; < jo < 1.

Since v;, and v, are both positive, all of the letters v;, +1,...,v;, — 1 appear be-
tween these two letters, none can complete the pattern 312. Thus no subword of
Ve, * VU1 + - - v, matches the pattern 312, and F,, belongs to S5¢([m, n]). O

It is easy to see that the list of signed patterns in Theorem 5.19 cannot be shortened.
For w € B, C &[5y, failure to avoid the signed pattern 12 or 21 implies failure to
avoid the ordinary pattern 3412 or 4231, which implies that F,, is not a type-BC
zig-zag network. Furthermore, inspection of F5, (F5,4 with highest and lowest edges
removed), F312, and Fi12 in (40) shows that these are not type-BC descending star
networks.

Since any element w € B,, avoiding the patterns 3412 and 4231 can be viewed as
a permutation in &, and any zig-zag network in SEC([m,n]) can be viewed as a
zig-zag network in 87 ([7, n]), the bijection F + w(F) guaranteed by Theorems 5.18 —
5.19 can be realized by Algorithm 5.6. The inverse w +— F, of the map can be realized
as in [61, §3], or as follows in the special case that w avoids the signed patterns 12,
21, 21, 312, 312.

ALGORITHM 5.20. Given w € B,, avoiding the signed patterns 12, 21, 21, 312, 312,
do
(1) Set
|h] -+ 1wy -+ wy  if wy...w, contains negative letters h---1,
v =
w1 - W if wy - - w, contains no negative letters.

(2) Apply Algorithm 5.7 to v to obtain Fi., 4, - ® Fi, 4,-
(3) Set F, = F[’Cl’dl] o -0 F[’Ct’dt].

Theorems 5.18 and 5.19 suggest defining type-BC analogs of path fami-
lies and graphical representation (34), (35). Given F € FB¢([m,n]), and 7 =
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(T, ..., 1,1, ..., Ty) covering F', call 7 a BC-path family if for each factor F[’a B of
F and each index i € [1,n], there exist indices j, k, such that paths 7; and 7; enter
F[’a p Via sources j, j and exit F[’a p) Via sinks k, k, respectively. In other words, 5
must be a reflection of ;. For F € FBC([@, n]) and u € B, define the sets
I1B¢(F) = {x | 7 a BC-path family covering F},

I (F) = {m € I°(F) | type(r) = u}.
For example, the two path families in (41) belong to IIB¢(F,7,) with 7 € IIE¢(F,q,),

(52)

o€ HE’% (F575)- On the other hand, the path family
2 v 2

(53) L
Teo o o1
5/\/\5

is not a BC-path family, even though it has type e € B,.
The set TTB¢(F) associates elements of Z[B,,] and HEZ¢(q) to F. Specifically, we say
that F' graphically represents

(54) > type(r)

T€EIIBC(F)
as an element of Z[B,]. To describe the corresponding element of HE®(q) we first
extend the definition of type-A defects from Subsection 5.1 (and [14, 19, 24]). Assume
that F is formed by some iteration of ordinary or condensed concatenatation of simple

star networksf['cl’dl], A F[’Ct’dt]. Each factor F[’Ck’dk} contributes a single internal

vertex if ¢, = d, and two such vertices otherwise. Given a BC-path family 7 covering
F, define a type-BC defect of 7 to be a triple (m;, 7;, k) with
(1) lil <4,
(2) m; and 7; meet at one of the internal vertices of F[’ ey after having crossed
an odd number of times.
(The first condition prevents the double-counting of path meetings which occur in
pairs when |i| # |j|.) Let dfct®C(m) denote the number of type-BC defects of 7. For
example, consider the star network and path family
2 2
1

—

(55) F[Ié,z] © F[/T,l] © F[/L?] ° F[%J] -

[T

1
2
The defects of 7 are (my,m1,2), (m1,m2,3), (m1,m2,4), (75,m2,4), and we have
dfctBC (m) = 4. We say that F' graphically represents
BC
(56) Z qdfCt (W)Ttype(fr)
melIBC(F)

as an element of HZ(q). Specializing at ¢ = 1, we see that if F' graphically represents
D(q) as an element of HEC(q), then it graphically represents D(1) as an element of
Z[B).

In the special case that F = F,, € S5¢([m,n]), it graphically represents a Kazhdan-—
Lusztig basis element.

THEOREM 5.21. For w € B, avoiding the patterns 3412 and 4231, the zig-zag network
F,, represents CB¢(q) as an element of HE(q).
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Proof. By [61, Lem. 5.3], we have that for all u € &5, there exists exactly one path
family of type u covering F), if u <g ,, w and no such path family otherwise. In
particular, this is true for u € B,, C &z ). But by Proposition 2.1 we have u <g, w
if and only if u <g;,; w. Since w avoids the patterns 3412 and 4231, the network
F,, belongs to SE€([m,n]), and every path family = € TIB¢(F,) satisfies dfct(m) = 0.
Thus the sum (56) becomes

> T,

UL s, W
which by (3.3) is CB(g). O

COROLLARY 5.22. For v,w € B,, with w avoiding the patterns 3412 and 4231, the
number of BC-path families of type v covering F,, is 1 if v <@, w, and is 0 otherwise.

6. IMMANANTS AND TOTAL NONNEGATIVITY

In order to use Section 5 to produce partial solutions to Problem 1.1 for the subsets
(16) — (19) of the Kazhdan-Lusztig bases, we rely heavily upon methods borrowed
from the study of total nonnegativity and upon trace generating functions in a ring
Z[x] where X = (X; ;)i je[n,n] 15 viewed as the 2n x 2n matrix

Xan o Xg1 Xm0 Xan
X=— +++ X+ X+ cee X
(57) X = 1n 1,1 1,1 1,n
X1, Xy T XL Xin
[Xnm = X, T Xn,1 7 Xnyn

For subsets I, J C [, n] we define the submatrix x; j := (xi,j)ier,jes- To economize
notation, we abbreviate

(58) [n] :==[1,n].

Thus X[, denotes the submatrix of positively indexed entries of x. Given polyno-
mial p(x) € Z[x], and 2n x 2n matrix A = (a; ;) jem,n), We define p(A4) to be the
expression obtained by evaluating p(x) at x; ; = a; j, for all 4,5 € [@,n].

6.1. TYPE-A IMMANANTS.

For certain 0 € T(&,,) and for all w € &,, avoiding the patterns 3412 and 4231,
combinatorial formulas for 9(5w(1)) depend upon generating functions which are
polynomials in entries of the submatrix xj,) ) of x. Following Littlewood [51] and

Stanley [65], we define the (type-A) 6-immanant to be

(59) Immf" (X[n),[n]) = Z (W)X, Ky, € Z[X1,1,X1,25- -+, Xn,n)-

weG,
When 6 is an induced one-dimensional character n** or €* with A = (Aq,...,\) F
n, we may neatly express its corresponding immanant in terms of permanents or
determinants, and ordered set partitions of type \, i.e. sequences (Jy, ..., J,) of subsets

of [n] with

(1) J1W---WJ,. = [n],
(2) |i| =X fori=1,...,r.
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In particular, we have the Littlewood—Merris—Watkins identities [51, 53],

Immg" (x[an}) = Z det(xy, 7,) - -det(x7,.5.),

(J1,--sdr)
(60) .
T () o) = Y per(xs,.) - -per(xy, ),
(J1sondi)
where the sums are over ordered set partitions (Ji,...,J;) of [n] of type A. (See [45,
Thm. 2.1] for a g-analog.) We also have
(61) Immgf (X[n),[n]) = 2a Z X1 Xnwy, s

w
ctype(w)=A

where z), is defined as in (8). (See [31] for work on Immfﬁ (X[n],n])-)

Immanants and trace evaluations of the form 6(C, (1)) are connected by the fol-
lowing identity [18, Eqn. (3.5)].

THEOREM 6.1. Fiz w € G, avoiding the patterns 3412 and 4231 with corresponding
zig-zag network Fy, having path matric A = A(w). Then for any linear functional
0 :C[6,] = C we have

(62) 0(Cy(1)) = Imm§" (A),
where Immy™ (A) should be interpreted as Tmmg ™ (X[n),[n]) evaluated at X; j = a; ;.

Thus each combinatorial interpretation of Imm§ " (A) yields a combinatorial inter-
pretation of 6(Cy(1)). To produce such combinatorial interpretations, we appeal to
methods of total nonnegativity, namely, Lindstrom’s Lemma [40, 50] and some simple

extensions.

PROPOSITION 6.2. Fizw € &, avoiding the patterns 3412 and 4231 with corresponding
zig-zag network F,, having path matriz A = A(w). We have

(63) ImmS"(A) = det(A) = #{n € U (Fy)|71,..., 7, pairwise nonintersecting },

(64) Immyr (A) = per(A) = #11(F,),
(65) Immgﬁ (A) =n-#{r €Il (Fy) |u € &,,ctype(u) = n}.

Proposition 6.2 implies simple interpretations of ImmS" (4), Imm%" (4),
Immf;% (A) as well, for A - n arbitrary. We will return to these in Subsection 9.1. For

g-analogs, see [18].

6.2. TYPE-BC IMMANANTS. To create a generating function for 8 € T(8,,), we define
the (type-BC) O-immanant to be

(66) Immp " (x) := Z 0(w)X7,we* XT,0- X101 Xnw, € Z[X].
weB,

This is a special case of the wreath product immanant defined in [63, Eqns. (26)—
(27)], and generalizes the Littlewood — Stanley immanant (59). When 6 is an induced
character of the form (¢ ® 6§)T§lx%n7m for symmetric group characters ¢, £, as in
(13)) with ¢ = 1, then we may neatly express its corresponding immanant in terms
of type-A immanants and n x n matrices xT = (xj,'j)i,je[n], X~ = (X, j)i,jen) defined
in terms of the 2n x 2n matrix x (57) by

+ v - N - N e — o~
(67) Xig = XigXi5 TR X Xig = XigXy — X 5% e
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For I,J C [n], we let leJ := (x7)7,7 and x; ; := (x7)7,s denote the I, J submatrices
of these. For example,

b o [RXTT T X XD XaXTg T X g Xy, |
2T [ xoaXg 1 Xy 7X5 ) XoaX57 + %o 7%5
By [63, Thm. 3.1] we have for bipartitions (A, 1) F n with |A| = k that
Gn _
(68) Imm(éE N ZImm X[ PImm = (X g ng 1)

where the sum is over all m-element subsets I of [n]. More generally we have the
following formula, which is a type-BC analog of [70, Prop. 2.4].

LEMMA 6.3. Given symmetric group traces ( € T(6y), £ € T(Sn—k), and hyperocta-
hedral group trace 0 € T (B,,) satisfying 0 = (¢ ® &) g:, , we have

k”

(69) Imme Z Imm X[ I Imm§ (% [:L]\I’[n]\l).

IU
Proof. Expand ¢, £ in the induced sign character bases of T(6y), T (S,—k) as
¢= Za,\e)‘, &= Z b€
ARk pEn—k

Then we have

9—(2(1)\6 ®6Zb“e )T%k . Zaxb e ® 0et) Za,\b ee

AFE puFn—k Ak Ak
pukEn—k pFn—k

and the left-hand side of (69) is

Z aAbuImmg(B;:)Ayu (x).
Ak
pEn—k

But by (68), this is
Zcub Zlmm ;) Imm S+ (x [_n]\l,[n]\l)

Ak IC[n)

G z S ol (cf ) Y budmmnS gy )
IC[n ] Ak pkn—k
1=
which is the right-hand side of (69). O

Evaluating the immanants (66) at path matrices of type-BC zig-zag networks
{Fy |w € B, avoids the patterns 3412 and 4231}

gives the following type-BC analog of (62) which allows us to use type-BC immanants
to compute trace evaluations of the form §(CE¢(1)).

THEOREM 6.4. Let w € *B,, avoid the patterns 3412 and 4231, and let zig-zag network
Fy, have path matriz A. Then for any linear functional 0 : B,, — C we have

(70) 6(Cc(1)) = Immy™" (A),

Proof. The right-hand side of (70) is

(71) Z% O(v)am,p_ - - - (7 @101+~ -
ve'by,
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Since F,, is a type-BC zig-zag network of order 2n, it is also a type-A zig-zag network of
order 2n. By [61, Lem. 5.3], the product az - a7 4y @10, * G, 15 1 when v <g .,
w and is 0 otherwise. Thus by Proposition 2.1 it is 1 when v <g,, w and is 0 otherwise,
and the sum (71) is

3 o) = e( 3 u) — 0(CBC(1)). 0

VB, W VB, W

Thus each combinatorial interpretation of Imm;B" (A) yields a combinatorial inter-

pretation of A(CBC(1)). Taking the special cases of Lemma 6.3 corresponding to ¢, &
equal to triv, sgn, or ¥™ and evaluating &,-immanants at A* and A~, we have the
following type-BC analogs of the sets of path families appearing in Proposition 6.2.

PRrROPOSITION 6.5. Fiz w € B,, avoiding the patterns 3412 and 4231, let F,, €
SBC([m,n]) have path matriz A, and define A*, A~ as in (67). We have

(72) per(AT) = HI1BC (Fw),

(73)
per(A7) = #{r € IBS(F,,) | 7, 7; may share a vertex only if i,5 <0 ori,j > 0}

_ {#HBC<Fw> if £(w) = 0

0 otherwise,

det(AT) = #{r € IBY(F,) | m;, m; may share a vertex only if —1 <1i,j < 1}
(74) _ {24(“’) if we {e, t},

0 otherwise,

det(A™) = #{r € IP<(F,) | m;, w; are vertea-disjoint for all i # j}

(75) :{1 ifw=e,

0 otherwise,

(76)  Inm$(AY) = n- #{r € I(F,) |u € By, ctype(io(w)) = n},

™)
. (A):{”‘#{WGHEC( ) € By ctypelp(u) = n}, if fu(w) =

0 otherwise.

Proof. Define ¢y, {5, ¢ as in Subsections 2.1 — 2.2. Observe that for v € &,, we have

+ + _ - - BC
10,7 Oy, = Z Onum 0Lus Oluy " Oy, = Z ‘Hu (Fw)‘a

ueB, ueB,
e(u)=v p(u)=v
— E K _ E 4 BC
a’l,vl.“ nwn ¢ u) 7"'a1,uTa1,u1"'an,un = (_1) 7:(u)|1_[u (FIU)|
u€EB, u€B,
p(u)=v p(u)=v
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Thus we have

(78)
per(AT) = > [MEC(F,),  per(A7) = > (=DM IEY(F,)],
ueEB, ueB,
det(AT) = Y (~1)FMMEC(F,)],  det(A™) = Y (~1)™IEY(F,)],
uEB, u€B,
Immyr (AY) = Y nIES(F,)],  Imm@r(A7) = Y (~1)“Mn[IE(F,)|.

ueEB, ucB,

ctype(p(u))=n ctype(p(u))=n

By Corollary 5.22 the cardinality [TIE¢(F,)| is 1 if u <, w and is 0 otherwise.

The interpretations (72), (76) follow from the subtraction-free expressions for
per(A*) and Immyr (A1) in (78).

Now consider the interpretations (73), (77). If £;(w) = 0, then all elements v <q, w
also satisfy ¢;(u) = 0. Thus the expressions for per(A~) and Immgﬁ’ (A7) in (78) are
subtraction-free and have the claimed interpretations. Furthermore, since there is no
path in F,, from source 1 to sink 1 (or source 1 to sink 1), in any path family 7
covering F,, paths m; and 7; cannot intersect unless 4,7 < 0 or ¢, j > 0. On the other
hand if ¢;(w) # 0, then F, has a factorization of the form (36) which begins or ends
with Ff; ;) for some k. If the factorization begins with Ff ;;, define an involution on
I1BC(F,) by 7 + m’ where 7’ is obtained from 7 by swapping paths 7 and 77 after
they touch at the central vertex of Fif ;. This map satisfies

ctype(p(type(n'))) = ctype(p(type(n))),  type(n’) =t - type(n).

Thus the two families contribute to the expressions for det(A~) and Immﬁf} (A7) in
(78), specifically contributing

(71)€t(type(ﬂ)) + (,1)€t(type(ﬂ))+1 =0

to each. If the factorization of F, ends with F[%,k], form 7’ from 7 by swapping the
final portions (from the central vertex of F[%’k] to the end) of paths terminating at
sinks 1, 1. Then we have type(n’) = type(n) - t and again the two families together
contribute 0 to per(A~) and to Immyn (A7).

Now consider the interpretation (74). If £,(w) = 0, then we have w € {e, t} and the
third sum in (78) is subtraction-free. It has two terms equal to 1 if w = ¢, and one such
term if w = e. On the other hand, if £;(w) # 0, then F, has a factorization of the form
(36) which contains at least one factor of the form Ffj, ;. with 1 < k1 < k2 <n and
with [k1, k2] maximal or minimal with respect to <. If [k1, k2] is minimal, define an
involution on TIB¢(F,,) by 7 — 7/ where 7’ is obtained from 7 by swapping paths 7,
and 7y, 11 (and Ty and wm) after they intersect at the central vertices of F[’k L
Then we have type(r’) = s, - type(r) and the two families together contribute

(_1)€s(type(ﬂ)) + (_1>€s(type(ﬂ))i1 =0

to det(AT). If [k1, k2] is maximal, then form 7’ from 7 by swapping the final portions
(from the central vertices of Ff}, ;.1 to the end) of the paths terminating at sinks &1,
k1 +1 (and ki, k1 +1). Then we have type(r’) = type(n) - 53, and the two families
together contribute 0 to det(A™).

Finally consider the interpretation (75). Repeating either of the above arguments
with ¢(w) in place of £;(w) or £s(w), we see that any network F,, with w # e leads
to a bijection in which all pairs of paths families contribute 0. The only path families
which are counted by det(A™) are those of type e covering the network F. O
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It would be interesting to define an appropriate noncommutative ring in the vari-
ables (57) to extend the above results for 9B,-characters to analogous results for
HEC(q)-characters.

PROBLEM 6.6. State and prove g-analogs of Lemma 6.3 — Proposition 6.5.

7. UNIT INTERVAL ORDERS

More partial solutions to Problem 1.1 for the subsets (16) — (19) of the Kazhdan—
Lusztig bases employ posets called unit interval orders, those posets for which no
induced four-element subposet is isomorphic to a disjoint union of two two-element
chains (2 + 2) or of a three-element chain and a single element (3 4 1).

In type A, a map w — P(w) from 3412-avoiding, 4231-avoiding permutations in &,
to unit interval orders facilitates combinatorial interpretations of trace evaluations [18,
§4-10]. The restriction of this map to 312-avoiding permutations is bijective. In types
B and C, we define an analogous map w — Q(w) from 3412-avoiding, 4231-avoiding
elements of B, to posets we call type-BC unit interval orders. The restriction of this
map to elements avoiding the signed patterns 12, 21, 21, 312, 312 is bijective. These
graphical representations facilitate combinatorial interpretation of trace evaluations
(Section 9) when we specialize at ¢ = 1.

7.1. TYPE-A UNIT INTERVAL ORDERS. Fix w € &, (h € {m,1}) avoiding the
patterns 3412 and 4231, and let F, be the planar network corresponding to w by the
bijection following (29), i.e. in [61, §3]. Given path family = = (mp,...,m,) covering
F,,, we define a partial order P(m) on these paths by declaring 7; <p(,) 7; if

(1) i < j as integers,

(2) m; does not intersect ;.
For every zig-zag network F,, there is a unique path family of type e which covers
F,,. If 7 is this path family, we define

(79) P(w) := P(m),

and we label the elements of P(w) by h, ...,n rather than by 7, ..., m,. For example,
consider the descending star networks (25) in SA([1,4]), labeled Fysa1,. .., Fiasq as in
(30). The unit interval orders P(4321),..., P(1234) are

(80)

respectively. The map w — P(w) is a surjection from 3412-avoiding, 4231-avoiding
permutations in &, ,,) to unit interval orders on |[h,n]| elements. Furthermore, we
have the following [18, Thm. 4.4].

N W

THEOREM 7.1. The restriction of the map w — P(w) to the subset of 312-avoiding
permutations in Sy, ) s a bijection.

One may construct P(w) directly from w as follows.

ALGORITHM 7.2. Given w = wp, - - - wy, € &y, ) avoiding the pattern 312, do

(1) Define the word my, -+ - my, by m; = max{wp,...,w;}.
(2) Fori=h,...,n definei <p(y) j if and only if j > m;.
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The labels which paths in F,, assign to poset elements are redundant in the sense
that they are determined up to automorphism by the structure of the poset. Specifi-
cally, for each poset element y define

(81) Bly) =#{r € Plz <py} —#{z € P|z 2p y}.
It is easy to see that the labels of P(w) inherited from the zig-zag network F,, satisfy
i < j (as integers) if 5(¢) < B(j). The inverse of Algorithm 7.2 is the following,.

ALGORITHM 7.3. Given unlabeled unit interval order P on |[h,n]| elements, do
(1) For ally € P, compute B(y) :=#{x € Plz <py} —#{z€ P|z>p y}.
(2) Label the poset elements by [h,n] so that we have 3(h) < --- < B(n).
(3) Define w = wp, ---wy, by wj = max({i € [h,n]|i $p j} ~{wn,...,wj—1}).

Observe that the path families of type e covering the zig-zag networks (26), which
are not descending star networks and which have the form F,, for w containing the
pattern 312, form posets isomorphic to posets 2, 4, 3, 7, 13, 12, 7, 7, respectively,
in (80). It is straightforward to show that the poset labeling inherited from 7 (79)
guarantees that for some indices ¢, j, the minimal and maximal elements of P(w) are
given by intervals [h,4] and [j, n], respectively. Furthermore we have the following.
(See e.g. [28, p.33], [72, §8.2].)

PROPOSITION 7.4. Fix w € &, ) avoiding the patterns 3412 and 4231 and define
P = P(w).
(1) Ifi, j are incomparable in P with i < j in Z, then [i,j] is an antichain in P.
(2) Ifi <p j then all elements h, ..., i are less than all elements j,...,n in P.

7.2. TYPE-BC UNIT INTERVAL ORDERS. For each element w € B,, C &7, avoiding
the patterns 3412 and 4231, the zig-zag network F,, and poset P(w) are defined as in
Subsections 5.1, 7.1. For example, the fourteen posets corresponding to the descending
star networks in SB¢([3, 3]) (39) are

(82)
3
2 3 3 2 3 3 2 3 3 3
1 2 1 2 1 2 2 2
— 1 — 1 1
- 1 R - T - + 1 ! 1 T
1 5 2 T 1 2 1 5 5
3 3 3 3 32 3 3 3 3 3
3
3 2 11 2 3
e 6 6 o o o

3 3
12 3 1 2 3 1 2 3
i D e e
3 2 1 3 2 1 d 4 3 2 1
3 3
respectively. Observe that the path families of type e covering the zig-zag networks
(40) which are not descending star networks form posets isomorphic to posets 5, 7, 8,
8, 8, 10, 12, 13, respectively in (82).
The conditions preceding (52), which define BC-path families, guarantee that each
such poset P(w) is self-dual with antiautomorphism i + 4. Thus it belongs to the

class of type-C posets defined in [20, Defn. 10]. Since P(w) is a unit interval order, we
also have the following.

PROPOSITION 7.5. Fiz w € B,, avoiding the patterns 3412 and 4231 and define P =
P(w). Let 7 be the unique path family of type e covering F,,, and let i + 1 be the
smallest element of [1,n] such that w11 is not grounded. Then we have

Algebraic Combinatorics, Vol. 8 #6 (2025) 1680



Hyperoctahedral group characters and graph coloring

(1) ifi > 0 then [i,i] is an antichain in P,
(2) m,...,1+1 are less than 1,...,n in P,
(3) m,...,1 are less than i+ 1,...,n in P.

Proof. (1) Since m; and 7; intersect in F,,, elements ¢ and ¢ are incomparable in P.
By Proposition 7.4, [7,4] is an antichain in P.

(2),(3) Suppose that ¢ + 1 is incomparable to 1 in P. By symmetry, 1 is incompara-
ble to i+1 as well. Then T and m; intersect, as do 7y and ;1. Factor Fy, as in (38)
and suppose that paths w7, 7 meet in F, ['C o]’ By the definition of BC-path family,
paths m;1, 77 meet there as well. If ¢, > 1 then 77, 71 cross twice, contradicting the
uniqueness of 7 of type e covering F,,. Thus we have that ¢; = dj. But then T
mi+1 meet as well, contradicting the assumption that these paths are not grounded.
We conclude that 7 +1 <p 1 and 1 <p i + 1. Now Proposition 7.4 gives the desired

results. 0

The self-duality i — i of P(w) and [27, Lem. 1.1] show that P(w) is a signed poset as
defined in [27, 56]. By Proposition 7.5 the information in P(w) can be recorded by the
subposet induced by elements [1,n], if we circle elements corresponding to grounded
paths of 7. (This is not true of signed posets in general.) Call this decorated poset
Q(w), and in general, define a type-BC unit interval order to be a unit interval order
decorated by circling a (possibly empty) subset of minimal elements, declared to be
grounded, with the property that if element i is grounded and j is not, then §(i) <
B(j), where 3 is the function defined in Algorithm 7.3. We define an isomorphism
of type-BC unit interval orders to be a poset isomorphism which respects circled
elements. For example, the 3-element type-BC unit interval orders @Q(w) corresponding
to the 6-element unit interval orders P(w) in (82) are

3 3 3 2 3 3 2 3 3 3
{ AV AN L

1 2 1 1 2 1 1 1
3

3
2 3 1 2 3 1 2 3 1 2 3
coe ®eo @ O®e ©OO
@A@c;

1 2

[

—

If we remove labels from the map w — Q(w), we obtain a surjection from 3412-
avoiding, 4231-avoiding elements of *B,, to type-BC unit interval orders. The restriction
of this map to the subset of B,, avoiding the signed patterns 12, 21, 21, 312, 312 is a
bijection. Equivalently, we have the following.

PROPOSITION 7.6. The map F,, — Q(w) from SE([m,n]) to type-BC unit interval
orders is bijective.

Proof. To see that the map is injective, consider F, # F,, in SB¢([m,n]). By [18,
Thm. 4.4] we have P(v) # P(w), since for each fixed unit interval order P on 2n
elements, the set {F,, € SE([n,n])| P(w) = P} contains exactly one type-BC de-
scending star network: the rearrangement F[’au buy]® F[Iaut by of (38) satisfying
Uy, > -+ > ay, (and by, > -+ > by, ). Now let P'(v), P'(w) be the subposets of
P(v) and P(w) induced by elements {1,...,n}. If P'(v) # P’'(w) then we clearly have
Q(v) # Q(w). Suppose therefore that P'(v) = P'(w). Since P(v) # P(w), there must
be two indices ¢ # j such that elements 1,...,i of P/(v) are grounded, and elements
1,...,j of P'(w) are grounded. Again we have Q(v) # Q(w).

To see that the map is surjective, consider a type-BC unit interval order @ on n
elements with elements labeled as in Algorithm 7.9 and with a subset {1,...,i} of
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minimal elements circled, for some i. Let F, € SA([1,n]), u € &, be the descending
star network corresponding to ) viewed as an ordinary poset, ignoring circles, and
write Fy, = Flq, p,] @ ® Flg, 5, as in Definition 5.3. Now construct F[’a1 ] ®

i, b oF[% i in SBC([m, n]) and call this F, for w € B,,. It is easy to see that we have

F,— Q,ie Q=Q(w). O
The bijection w — Q(w), which we have defined to be the composition

(84) w— Fy, — P(w) = Q(w)

of the three maps described in [61, §3], (79), and before (83), can also be described
by the following algorithm.

ALGORITHM 7.7. Given w € B,, avoiding the signed patterns 12, 21, 21, 312, 312, do
(1) Let b be the least positive letter in {wy,...wp,n+ 1}.

(2) Define the word my ---my, by m; = max{b—1,wq,...,w;}.
(3) Forj=1,...,n—1, define j <q, m; +1,...,n.
(4) Forj=1,...,n, if w; <0 then circle element |w,]|.

PROPOSITION 7.8. For w € B,, avoiding the signed patterns 12, 21, 21, 312, 312, the
composition (84) agrees with Algorithm 7.7.

Proof. Computing Q(w) via the composition (84), we let F,, be the descending star
network given by (29), i.e. [61, §3]. To construct P(w), let

7= (Tmy ..., T, Ty, Tn), o= (om,...,00,01,...,0n)

be the unique path families of types e and w covering F,,, and for j = 1,...,n—1
find the elements k € P satisfying j <p k. First we claim that for * maximizing
{w; |7 € [, j]}, we have that

(85) JLP .o, Wi

By the definition of P(w) we have j £p 7, ..., j, and by the pigeonhole principle, we
have w;= > j (as integers). Since the path o;« from source i* to sink w;- intersects
the path m; from source j to sink j, we have a path from source j to sink w;-. This
path in turn intersects all paths 7j41,...,7w,., and we have paths from source j
to all sinks 7 + 1,...,w;~. Since the subnetwork of F' covered by paths 71,..., 7,
is isomorphic to a type-A descending star network, we may apply Lemma 5.4 to
conclude that m; intersects m;11,...,my,.. Thus we obtain the remaining inequalities
j€pji+1,... w in (85).

Now we claim that

(86) Jj<pwp+1,...,n.

Consider the paths 7 for k£ > w;«. Again by Lemma 5.4, paths 7 and 7; do not
intersect, since there is no path in F,, from source j to sink k. Thus we have j <p k

as in (86).

Now we define b to be the least positive letter in {wy,...,w,,n+ 1}, and we claim
that
(87) wi» = max{b—1,wi,...,w;}.

By Lemma 2.2, the set of positive letters in w; - - - w, is empty or forms the inter-
val [b,n]. If this set is empty, then avoidance of the signed pattern 21 implies that
wy - wy, = 1---m. Thus we have w;» = max{n,...,1,1,...,5} =n, b=n+1, and
the right-hand-side of (87) is n. Suppose therefore that the positive letters are [b, n].
Then the positive letters [1,b — 1] appear in wy - - - wy. This allows us to write

wi = max{w; |1 < j} = max({ws, ..., wytU{wi,...,w;}) = max{b—1,w,...,w;}.

Algebraic Combinatorics, Vol. 8 #6 (2025) 1682



Hyperoctahedral group characters and graph coloring

The subposet of P(w) induced by [1,n], which will become Q(w), now agrees with
steps (1) — (3) of Algorithm 7.7. To complete the construction of Q(w) by (84), we
circle grounded elements of P(w), if there are any. If no path of 7 is grounded, then
we do nothing. In this case, no path of o has a source and sink with different signs, all
letters in wy - - - w, are positive, and nothing is done in step (4) of Algorithm 7.7. On
the other hand, if some 2k paths of 7w are grounded, then by Proposition 7.5, these
paths are (7g,..., 7, m1,...,m), and we circle elements 1,...,k of P(w) to form
Q(w) by (84). In this case, F|, ;= F[/E ] is the last factor in the expression (38) for
F,, and the letters 1,...,k appear in w; - --w,. Thus in step (4) of Algorithm 7.7,
elements 1,..., k are circled. O

Like Algorithm 5.6, Algorithm 7.7 is invertible even if labels of the poset @) are not
given.

ALGORITHM 7.9. Given unlabeled type-BC unit interval order Q with p circled ele-
ments, do
(1) For ally € Q, compute B(y) = #{z € Q |z <q y} — #{z € Q|2 ¢ y}.
(2) Label the poset elements by [1,n] so that we have B(1) < --- < B(n), and so
that circled elements form the interval [1,p].
(3) Define the word ay---ap, =1---D(p+1)---n.
(4) Define w =wy -+ wy, by w; = max({a; |7 $¢g 7} ~ {w1,...,w;_1}).

To see that Algorithm 7.9 inverts Algorithm 7.7, we consider a close relationship
between certain descending star networks of types A and BC.

LEMMA 7.10. Fiz w € B,, avoiding the signed patterns 12, 21, 21, 312, 312 with p > 0

negative letters (1,...,D) appearing in wy - - - wy,, and type-BC descending star network
_ !/ ! /
Fuo = Fe, ¢ Flepa, 0 Flpp

with factors defined as in (36). Define u € Sy to be the 312-avoiding permutation
corresponding to the type-A descending star network

F, = F[Cl,dﬂ ¢ F[Ct—ladt—l] i F[ﬁp}’

with factors defined as in (§5.1). Then the one-line notation of u is p-+- 21wy - - - wy,
and the subposet Py ) of P(u) induced by [1,n] satisfies Py ) = Q(w) (as undecorated
posets).

Proof. Let n’ = (nf,... 7%, ..., m,) and 7 = (75, ..., 77,71, ..., 7y) be the unique
path families of type e covering F,, and F,, respectively. By Definition 5.14 and
Proposition 5.15 we have ¢; > --- > ¢;_1 > 1. Thus for 1 < i < j < n we have that
m; intersects 7; if and only if 7] intersects 7. It follows that Py ,,) = Q(w).

Now let o/ = (U’W...,U’T,U’l, ...,on)and o = (05,...,07,01,...,05) be the unique
path families of types w and u covering F, and F,,, respectively. Both families have the
property that any two paths which intersect must cross. Thus paths o, . .., o, which
intersect only at the central vertex of Fij ), have sinks p,..., 1, respectively. Thus
up---up = p---1. Also, paths o1,...,0, pass through the same stars as o{,...,0,,

respectively, and have the same sinks. Thus uq - - -4, = wy - - - Wy,. O
PROPOSITION 7.11. Algorithm 7.9 inverts Algorithm 7.7.

Proof. Fix w € B,,. If no negative letters appear in w; - - - w,, then we may interpret
this word as an element of &,,. The applications of Algorithms 7.2 and 7.7 to w agree
and produce the poset P(w) = Q(w). Since this poset has no circled elements, the
applications of Algorithms 7.3 and 7.9 to it agree, producing w since Algorithm 7.3
inverts Algorithm 7.2. It follows that Algorithm 7.9 inverts Algorithm 7.7 as well.
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Now suppose that p > 0 negative letters appear in wy - - - w,, and define
U=Upe o UTUL Uy =P 21wy wy € Gy

By Lemma 7.10, u avoids the ordinary pattern 312. Define P ,, to be the subposet
of P(u) induced by elements [1,n]. Applying Algorithm 7.3 to P(u), we obtain u. It
follows that for j = 1,...,n, we have

uj = wj = max({i € [p,n]|i Fpw) i} ~{up, ..., uj-_1})
=max({i € [, 1] U[p+ 1,n]|i #p) 7} ~{w1,...,wj_1}).
Since [p, p] € P(u) is an antichain of minimal elements, each pair (i,5) € [p, 1] x [1, n]
satisfies i % p(y j if and only if i # Py, J- Thus we may rewrite (88) as
wi = max({i € @vﬂ ﬁ ?épu,n] jrulielp+1,n]li }P[l,n] g ~Aw, .. 7wj*1})'
On the other hand, applying Algorithm 7.9 to Q(w), we obtain a word v - - - v, sat-
isfying
v; = max({i € @,T] |E %Q(w) j} U {Z € [er 1,7’L] |Z }Q(w) ]} N {’Ul, oo ,’Uj_l}).

By Lemma 7.10, we have Pj; ) = Q(w), and therefore vy ---v, = wy -+ w,. Again,
Algorithm 7.9 inverts Algorithm 7.7. d

(83)

8. INDIFFERENCE GRAPHS

More partial solutions to Problem 1.1 for the subsets (16) — (19) of the Kazhdan—
Lusztig bases employ graphs called indifference graphs, those graphs whose vertices
correspond to elements of a unit interval order P and whose edges correspond to
unordered pairs {i,j} of poset elements which are incomparable, i.e. i £p j and
J&p i

In type A, we have a map w — G(w), from 3412-avoiding, 4231-avoiding permu-
tations in &,, to indifference graphs whose colorings and edge orientations facilitate
simple combinatorial interpretations of trace evaluations [18, §5-10]. In types B and C,
we define an analogous map w — G(w) from 3412-avoiding, 4231-avoiding elements
of B,, to objects which we call type-BC indifference graphs. These graphical repre-
sentations facilitate simple combinatorial interpretation of certain trace evaluations
(Section 9), when we specialize at ¢ = 1.

8.1. TYPE-ANDIFFERENCE GRAPHS, COLORING, AND ORIENTATION.

Given any poset P, we define its incomparability graph inc(P) to be the graph
whose vertices are the elements of P and whose edges are the pairs of incomparable
elements of P. When P = P(w) is a unit interval order, write G(w) = inc(P) and call
this an indifference graph. It is possible to have P(w) % P(v) and G(w) = G(v). For
example, the incomparability graphs of the fourteen unit interval orders (80) are the
nine nonisomorphic indifference graphs
(89)

G e e

In Section 9 we will combinatorially evaluate certain traces at Kazhdan-Lusztig basis
elements Cy, (1) € Z[S,,] with w avoiding the patterns 3412 and 4231 by coloring the
vertices of G(w) or by orienting the edges of G(w).

Given any graph G = (V, E) call a map «: V — N~ {0} a proper coloring of G if
{a,b} € E implies that x(a) # k(b). More specifically, say that a proper coloring has

type a = (o, ..., ) E n if i vertices have color k for k = 1,...,r. If G = inc(P)
then a proper coloring of inc(P) of type A F n corresponds to a sequence of pairwise
disjoint chains in P having weakly decreasing cardinalities (A1,..., A.).
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Call a directed graph O = (V, E') an orientation of G = (V, E) if O is obtained from
G by replacing each undirected edge {a, b} € E with exactly one of the directed edges
(a,b) or (b,a). Call O acyclic if it has no directed cycles. Acyclic orientations of G(w)

correspond to sequences (vp, ..., v,) of elements of P(w) satisfying v; % p(.) vit1 for
i=nh,...,n—1. We call these P(w)-descent-free sequences. (See [9, §4] and references
there.)

PROPOSITION 8.1. For w € &y, ), acyclic orientations of G(w) correspond bijectively
to P(w)-descent-free sequences of elements of P(w).

Specifically, this bijection from acyclic orientations to P(w)-descent-free sequences
is given by the following algorithm.

ALGORITHM 8.2. Given w € &, g1 and an acyclic orientation O of G(w), do
(1) Set O(h) = 0.
(2) Fori=h,...,l,
a) Let g be the least integer appearing as a vertex in O(t) and having indegree
Let j be the | ; ] in O(i) and having ind
0.
(b) Setv; =3j.
(¢) Form O(i + 1) by removing vertex j and its incident edges from O(%).
(3) Output the sequence (vp, . ..,v;).

The inverse of Algorithm 8.2 is very simple.

ALGORITHM 8.3. Given w € &y, undirected graph G(w) with vertices labeled
{h,...,1}, and P(w)-descent-free sequence v = (vp,...,v;), do
(1) Orient each edge {a,b} of G(w) as (a,d) if a appears before b in v, and as
(b,a) otherwise.

8.2. TYPE-BCNDIFFERENCE GRAPHS, COLORING, AND ORIENTATION.

Given a type-BC unit interval order @, define its incomparability graph inc(Q) to
be the decorated graph whose vertices are the elements of (), maintaining circles, and
whose edges are the pairs of incomparable elements of Q). For w € 9B,, avoiding the
patterns 3412 and 4231, write I'(w) = inc(Q(w)) and call I'(w) a type-BC indifference
graph. We define an isomorphism of type-BC indifference graphs to be a graph iso-
morphism which respects circled elements. Again, it is possible to have Q(w) 2 Q(v)
and I'(w) 2 T'(v). For instance, the fourteen (labeled) type-BC indifference graphs on
three elements are

90
(2)§§3§333332333
DR S N BN TSP T I O RISl
i 1r 1 1r 1 1r 1 1r 1 1r 1 1 1 1

with the third and fourth graphs being isomorphic.

Analogous to type-A indifference graphs, type-BC indifference graphs have colorings
and edge orientations which facilitate the evaluation of certain type-BC traces at
Kazhdan-Lusztig basis elements CB¢(1) € Z[%B,] when w avoids the patterns 3412
and 4231. Given a type-BC indifference graph T' = (V, E), define a marked BC-coloring

k= (k1,k2): V= (Z~{0}) x {0,1}

of T to be an assignment of a nonzero color k1(b) and possibly a star (if ko(b) = 1)
to each vertex b € V, with the properties that

(1) for vertex b grounded we have k1 (b) > 0,
(2) for vertex b not grounded we have k2(b) = 0.
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Say that x has type (A, ) = (A1, .., Am), (1, - ) if

(1) A; vertices have color i, for i =1,...,m,
(2) p; vertices have color 4, for i = 1,...,k,

and that « is properif {a, b} € E implies that x1(a) # x1(b). As before, monochromatic
sets of I'(w) correspond to chains in @(w); now each such chain contains at most one
grounded element. Thus a proper BC-coloring of T' of type (A, ) may be represented
by a pair (U,V) of Q-tableaux in which column ¢ of U (i = 1,...,m) contains the
color-i chain of ) with at most one grounded element marked with a star, and column
iof V (i=1,...,k) contains the color-i chain of Q with no grounded elements.

Define a marked acyclic orientation of a type-BC indifference graph to be a directed
graph O on the same vertices, with some subset of grounded vertices marked by
stars, in which each undirected edge {a, b} is replaced with one of the directed edges
(a,b) or (b,a). For example, the type-BC unit interval order Q@ = @Q(143652), its
incomparability graph inc(Q), a marked acyclic orientation of inc(Q), and a marked
coloring of inc(Q) of type ((2,1,1),(2)) are

5 6 5 6 i<\ﬁ
4 4 4
(91) , : % E 6]
Y Y Il
1 1 1

To connect acyclic orientations of I'(w) to Q(w)-descent-free sequences as in Proposi-
tion 8.1, we define marked Q(w)-descent-free sequences to be those Q(w)-descent-free
sequences in which some subset of grounded elements is marked.

PROPOSITION 8.4. Marked acyclic orientations of I'(w) correspond to marked Q(w)-
descent-free sequences of elements of Q(w).

Proof. The correspondence is given by Algorithms 8.2 — 8.3, modified so that marked
graph vertices correspond to marked poset elements. 0

For example, the Q-descent-free sequence corresponding to the acyclic orientation
in (91) is (3,2%1,4,6,5).

We remark that other authors have defined BC-analogs of graphs [35, 56], have
associated these to posets generalizing type-BC unit interval orders [21, 56], and have
studied their colorings [46, 76]. However, it is not clear that such graphs and colorings
are closely related to ours. In particular, the other authors’ graphs have edges describ-
ing comparability of poset elements rather than incomparability, and their colorings
include restrictions on pairs of vertices whose colors can share an absolute value,
whereas ours do not.

9. COMBINATORIAL TRACE EVALUATIONS: PATH TABLEAUX, POSET
TABLEAUX, AND ACYCLIC ORIENTATIONS

Our main results, Theorem 9.6 — Theorem 9.8, combinatorially interpret trace evalua-
tions O(CBE(1)) for certain 6 € T(B,,) and all w € B,, avoiding the patterns 3412 and
4231. Analogous to known type-A results, our new type-BC evaluations use the type-
BC unit interval orders and their incomparability graphs defined in Subsections 7.2,
8.2.
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9.1. TYPE-A TRACE EVALUATIONS.

To state these interpretations, we fill (French) Young diagrams with paths and we
call the resulting structures path tableauz. If the paths are a family = = (7y,...,m,)
which covers F),, we will more specifically call the path tableau an F,-tableau, or a
m-tableau. If ™ has type v € &,,, then we also say that each m-tableau has type v. Since
7 can be viewed as the poset Q(m) defined in Subsection 7.1, m-tableaux are special
cases of Gessel and Viennot’s poset tableauz [30], Young diagrams filled with elements
of a poset. Thus if 7 is the unique family of type e covering F,,, then a P(w)-tableau
is a P(w)-tableau. For any tableau U, let U; be the ith row of U, and let U, ; be the
jth entry in row 4. Let U(mw, A) denote the set of all m-tableaux of shape A, and let
U(Fy, \) denote the set of all Fy,-tableaux of shape A, i.e. containing all path families
covering Fy,,

(92) UF,, )= U Um,N).
TEIl(Fy)

If 7 is the unique path family of type e covering F,, then define U(P(w),\) :=
U(m, \). For example, consider Fb341, the seventh zig-zag network in (26), and let 7 =
(m1, w2, 73, m4) be the unique path family of type e covering Fbss;. Then P(2341) =
Q(m) is the seventh unit interval order in (80). Labeling each element m; of P(2341)
by ¢ and forming a few P(2341)-tableaux, we have

(93)
P(2341):31/I47 s=2 . T=2 , U=1 :
1 2 12|3\ 13|4\ 43|2\
V:7 , W:? , le, Wiy = 4.
4 1|2 1 4|2\

The tableaux S, T, U, V, W all belong to U (P(2341), 31).

Several properties which path-tableaux may possess can be defined for poset
tableaux. Let P be any labeled poset and let U be a P-tableau. Call an entry U; ; a
record in U if it is greater in P than U;1,...,U; j—1. Call a record U; ; nontrivial if
j > 1. Call arow of U left anchored (right anchored) if its leftmost (rightmost) element
is less in Z than all other elements in the row. Call elements (a,b) a P-inversion
in U if the elements are incomparable in P with a < b in Z and b appearing in an
earlier column than a. Let INVp(U) denote the number of P-inversions in U. Call
elements (U; j,U; j+1) a P-descent in U if U; ; >p U; j+1. Let desp(U) denote the
number of P-descents in U. Define sort(U) to be the tableau obtained from U by
sorting entries in each row so that labels increase to the right. Define a P-excedance
in U to be a position (¢, j) such that U; ; >p sort(U), ;. Let excp(U) be the number
of P-excedances in U.

Call a P-tableau U

(1) column-strict if the entries of each column satisfy U; ; <p Uit1,5,

(2) descent-free or row-semistrict if desp(U) = 0,

(3) cyclically row-semistrict if it is row-semistrict, and if the last entry U, », of
each row satisfies U, », #p U 1,

(4) standard if it is column-strict and row-semistrict,

(5) excedance-free if excp(U) = 0,

(6) record-free if no row has a nontrivial P-record,

(7) left anchored (right anchored) if each row is left anchored (right anchored).
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For example, we may examine the tableaux in (93) for these properties to obtain the
table

S T U v w
column-strict v v
row-semistrict v v v
cyclically row-semistrict v
standard v ;
excedance-free v v
record-free v v v
left anchored v v v
right anchored v v

where the row-semistrict tableaux S and T fail to be cyclically row-semistrict because
their first rows begin with 1 and end with 3 >p 1 and 4 >p 1, respectively.

Other properties of path-tableaux depend upon the fact that each path 7; in a
path family has a source vertex src(m;) and a sink vertex snk(m;). Given a path-
tableau U, let src(U) and snk(U) denote the Young tableaux of integers obtained
from U by replacing paths 7, . .., 7, with their corresponding source and sink indices,
respectively. If U is a path-tableau, call U

(1) row-closed if for each index i, snk(U;) is a permutation of src(U;),
(2) left row-strict if entries of src(U) strictly increase in each row,
(3) cylindrical if each row i satisfies suk(U; 1,...,U; ) =src(Us2,..., Uik, Us1).

For example consider Fb34; again, the unique path families p, o, and 7 of type
2314, 2134, and 2341 which cover Fy341,

(94)
4 4 P4~ ,----- 04~ ,-=---- TY N —
3 3 P3 REEN 03}\/— T3 L0\ enen
Foza = 9 9 P2 wennt ) O wenw, 0 Ty eeent N 0
1 1 P1 o1 J T1 J

and the path tableaux
(95)

55: , 7 — P4 , UU: , vv= ,

belonging to U(p, 31), U(o,31), U(T,31). To inspect these tableaux for the properties
defined above, we replace each path m; with the ordered pair (src(m;), snk(w;)),

[44] [44] [44] [34]
23 31|12\’ 12 23|31\’ 12 21|33\’ 12 23|41\’

(96)

and we obtain the summary

SS TT Uuu Vv
row-closed v v v
left row-strict v v v
cylindrical v v

Using Lindstrom’s Lemma [40, 50], its permanental analogs [62, Thm. 4.15], and
its power sum immanant analogs [62, Thm. 4.16] we may now extend Proposition 6.2
to include more combinatorial interpretations.
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PropoSITION 9.1. Fiz w € &,, avoiding the patterns 3412 and 4231, with correspond-
ing zig-zag network F,, having path matriz A. Let P = P(w) and G = inc(P) be the
corresponding unit interval order and incomparability graph. We have

(97)

ImmS (A) = det(A) = #{U € U(P,1") | U column-strict },

{é

Immf?#(A) = per(A4) =

if G is an independent set (w = e and P is a chain),
otherwise.

#{U € U(Fy,n) | U left row-strict },
=#{U e U(P,n)|U row-semistrict },

(98) =#{U € U(P,n)| U excedance-free },
= # acyclic orientations of G.
Immgﬁ (A) = #{U e U(Fy,n)|U cylindrical },
=#{U eU(P,n)|U cyclically row-semistrict },
(99) =#{U e U(P,n) | U record-free, row-semistrict },

=n-#{U € U(P,n)|U right-anchored, row-semistrict },

= # acyclic orientations of G having exactly one source.

By (62), Proposition 9.1 gives interpretations of €*(Cy (1)), 1 (Cw (1)), ¥ (Co (1))
in the special case that A = n. The identities (60) — (61) then lead to results for
general A. (See [18, Thm.4.7], [62, Thms. 30-31].)

THEOREM 9.2. Fiz w € &, avoiding the patterns 3412 and 4231 with corresponding
zig-zag network Fy, and unit interval order P = P(w) as in (79). For each partition
A F n we have the following.

(i-a) €*(C!, (1)) = #{U € U(P,\")|U column-strict}.
(i-b) €*(C! (1)) = # colorings of inc(P) of type \.
(i-a) nA(C{U(l)) =#{U € U(Fy, N) | U row-closed, left row-strict }.
(ii-b) n*(C!, (1)) = #{U € U(P,\) | U row-semistrict }.
(ii-¢) n(C!, (1)) = #{U € L{(P A) |U excedance-free }.
(iii) xM(C! (1)) = #{U € U(P,\)| U standard }.
(iv-a) YMC! (1)) = #{U € U(F,,\) | U cylindrical }.
(iv-b) YM(C!, (1)) = #{U € U(P,\) |U cyclically row-semistrict }.
(iv-¢) P MC! (1)) = #{U € U(P,\) | U record-free, row-semistrict }.
(iv-d) YMCL (1)) = A1 -+ A - #{U € U(P,\) | U right-anchored, row-semistrict }.

See [62, Thm. 31] for a proof of statement (ii-c) and its g-analog; see [18, Thm. 4.7]
for proofs of other statements and [16, Cor. 31], [18, §5-9] for proofs of their g-analogs.
We may also interpret 7, (C,(1)) and ) (C},(1)) in terms of acyclic orientations of
sequences of subgraphs of inc(P(w)) [62, Thm. 10, Thm. 13].

THEOREM 9.3. Fiz w € &,, avoiding the patterns 3412 and 4231, and define P = P(w)
as in Subsection 7.1. For all A = (Ay,...,A\r) F n we have
(1) n(C!,(1)) equals the number of acyclic orientations of subgraph sequences
(100 (ne(Pr) . ine(Pr,))
where (I1, ..., 1) is an ordered set partition of [n] of type .
(2) Y (1)) equals the number of acyclic orientations of subgraph sequences

(100) in which each subgraph inc(Pr;) is connected and its orientation has a
unique source.
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9.2. TYPE-BC TRACE EVALUATIONS. It is possible to extend Proposition 6.5 to in-
clude interpretations of the functions there in terms of path tableaux, poset tableaux,
and acyclic orientations, just as Theorem 9.2 extends Propositions 6.2 and 9.1. To do
this, we define BC-analogs of poset tableaux and path tableaux (and use the marked
acyclic orientations defined at the end of Subsection 8.2).

Given a type-BC unit interval order @), define a marked @Q-tableau to be a Young
diagram filled with elements of @, in which a (possibly empty) subset of grounded
elements of @ is marked with stars. Define UB“(Q, \) to be the set of marked Q-
tableaux of shape A. The seven properties of P-tableaux stated after (93) carry over
in a straightforward way to Q-tableaux. For example, the type-BC unit interval order
Q@ = Q(132) and a few row-semistrict marked Q-tableaux of shape 3 are

5 \1|2|3\ 1* 1% ]2

OFE

23] [1]2]s

3]

7

B

)

\3|2|1\ ]3 2% 1* 2 [1*

1\7 \3|2

1

Given type-BC zig-zag network F,, € SE([m, n]) and a path family
T= (T, , T, Ty, ) € HBC(Fw),

define an F,-tableau, or more specifically a m-tableau, to be a Young diagram filled
with paths (7, ..., 7,). Define UB(F,,, \) to be the set of (unmarked) F,-tableaux
of shape \. Properties of such tableaux are simple extensions of properties of type-A
path tableaux stated before (94), with sink indices replaced by their absolute values.
For U € UBC(F,,, \), call U
(1) row-closed if {|snk(U;1)l, ..., |snk(U; ;)
i,
(2) left row-strict if src(U; 1) < -+ - < sre(U;,y,) for all ¢,
(3) cylindrical if |snk(U; ;)| = src(U; j41) for j =1,..., X — 1 and |snk(U; »,)| =
sre(Us 1).
For example, consider Fy,5 in (105) and let © = (75, 75, 77, 71, ™2, 73) be the fourth
path family shown there. Then UBC(F,,3) and UB(F,,21) contain row-closed

tableaux such as
Ty | T [Tt 1
b

b
3 7T2‘

b= {src(Uin),...,src(U; z;) } for all

the first of which is left-row strict and the second of which is cylindrical.
Left row-strict F,-tableaux of shape n correspond bijectively to path families in
1B¢(F,):

(101) < (Tmy . T, T, -, )

These tableaux and path families also correspond bijectively to marked acyclic ori-
entations of inc(Q(w)) and to certain subsets of marked Q(w)-tableaux. To describe
these correspondences, we first define an equivalence relation on I1B¢(F,,) by declaring

(102) m~71 if  p(type(r)) = ¢(type(r)),
where ¢ : B, = &,, is the map defined in (9). In terms of paths in the two families,
m ~ 7 if [snk(m;)| = |snk(r;)| for : =1,...,n.

The cardinality of an equivalence class (102) depends on the number of positive
sources of Fy, from which there exists a path to a negative sink. Specifically, if the
related type-BC unit interval order Q(w) has k grounded elements, then each equiv-
alence class consists of 2% families, with exactly one family 7 in each class satisfying
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L (type(r)) = 0, i.e. snk(m;) > 0 for 4 = 1,...,n. Thus we have the bijection
(103) EC(Fy) = {(r, K) € IPC(Fy) x 28 [ 4y (type(7)) = 0}
= (7, {snk(m), ..., snk(my)} NN).

Since the positively indexed paths 71, ..., 7, of 7 cover the upper half of F,, i.e. the
planar network Fi(, € Sf([n]), we also have the bijection

UBC(Fyym) — UNF ), n) x 211

-~-|—> (--~,{snk(ﬂﬁ)7...,snk(ﬁT)}ﬂN),

which preserves the row-closed, left row-strict, and cylindrical properties of tableaux.
For example consider the network Fi,5 and the unique path family 7 € B¢ (Fis3)
of type 132. Since the type-BC unit interval order Q(132) has 2 grounded elements,
the equivalence class of 7 consists of four path families encoded by (7, K) for subsets
K C{1,2},

(104)

(1,9) (7, {1}) (7, {2}) (7, {1,2})

We can now relate certain sets of F,,-tableaux and marked Q(w)-tableaux as follows.

LEMMA 9.4. For F,, € SB([m, n]), and corresponding Q = Q(w), we have bijections

(i) {U € UB“(F\y,n) | U left row-strict} & {U € UBS(Q,n) |U descent-free},
(ii) {U € UBS(Fy,,n) | U cylindrical } &
{U € UBC(Q,n) |U cyclically row-semistrict }.

Proof. Let k be the number of grounded elements of Q(w). By (104), tableaux on the
left-hand side of (i) correspond bijectively to pairs

{(U,K) € UN(F (), ) X 21| U left, row-strict},
and by (98) these correspond bijectively to
{(V,K) e UM Q(w), n) x 21| V descent-free }.

Elements of this set correspond bijectively to tableaux on the right-hand side of (¢):
simply modify V' by marking entries belonging to K. Similarly, tableaux in the first
set of (ii) correspond bijectively to pairs

{(U,K) € UA(Ep(w),n) x 2IF | U cylindrical },
and by (99) these correspond bijectively to
{(V,K) e UN(Q(w), n) x 21| V cyclically row-semistrict }.

Elements of this set correspond bijectively to tableaux on the right-hand side of (ii):
again modify V by marking entries belonging to K. O

Combining these bijections with Proposition 6.5, we obtain the following type-BC
analogs of the results in Proposition 9.1.
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PropoOSITION 9.5. Fiz w € ‘B, avoiding the patterns 3412 and 4231 with F,, €
SBC([m,n]) having path matriz A, and define A*, A~ as in (67). Let Q = Q(w)
be the type-BC unit interval order defined before Proposition 7.6. We have

per(A") = #{U € UB(F,,,n) | U left row-strict }
= #{U cUB“(Q,n) | U descent-free}
= #{U e UB(Q,n) | U excedance-free}
= # marked acyclic orientations of inc(Q),
per(A™) = #{U € UB“(F,,n) | U left row-strict with no grounded paths }
= #{U e UB(Q,n) | U descent-free with no grounded elements}
= #{U cUB(Q,n) | U excedance-free with no grounded elements}
= # acyclic orientations of inc(Q) with no grounded vertices,
det(AT) = #{U c UB“(Q, 1) | U column-strict with at most 1 grounded element }
= # proper marked BC-colorings of inc(Q) of type (n, ),
B {2’C if Q is a chain with k < 1 grounded elements,
0  otherwise,

det(A™) = #{U e UB(Q,1™) | U column-strict with no grounded elements }
= # proper marked BC-colorings of inc(Q) of type (&, n),

)1 if Q is a chain with no grounded elements,
0 otherwise,

Immgﬁ (AT) = #{U € UB“(F,,n) | U cylindrical },

= #{U c UB(Q,n) | U cyclically row-semistrict},

=#{U € UB(Q,n) |U record-free, row-semistrict },

=n-#{U € UB(Q,n) | U right-anchored, row-semistrict },

= # marked acyclic orientations of inc(Q) with one source,

Immef (A7) = #{U € UB(F,,,n) |U cylindrical with no grounded paths },

=#{U € UBC(Q,n) | U cyclically row-semistrict with no grounded elements },
= #{U e UB(Q,n) | U record-free, row-semistrict with no grounded elements },

=n-#{U € UB(Q,n) |U right-anchored, row-semistrict w/no grounded elts.},

= # acyclic orientations of inc(Q) with one source and no grounded vertices.

Proof. By Proposition 6.5, per(A*) counts all families in TIB¢(F,,), equivalently (101)
all left row-strict tableaux in UB¢(F,,n). By Lemma 9.4 this equals the number of
descent-free marked Q-tableaux, and by (98) it equals the number of excedance-free
marked @-tableaux. By the algorithms at the end of Subsection 8.1, this also equals
the number of marked acyclic orientations of inc(Q). By Proposition 6.5, per(A™)
counts the same assuming that ¢;(w) = 0, i.e. that @ has no grounded elements, and
is 0 otherwise.

Now let 0 = (o5,...,07,01,...,0,) be the unique path family in B¢(F,), so
that @ is the poset on o1, ...,0,, with grounded elements o1, ..., o0 for some k. By
Proposition 6.5, det(A*) counts the families 7 € IIB¢(F,,) in which only 77 and
may share a vertex. This number is nonzero if and only if @ is an n-element chain. If
o1 and o do not share a vertex, then ¢ is the unique such family and det(A™) = 1.
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In this case, @ has no grounded element and |48(Q, 17)| = 1. If on the other hand
o7 and oy do share a vertex, then exactly one other path family 7 € IIBC(F,) is
counted and we have det(A1) = 2. In this case, @ has one grounded element and
[UBC(Q,1™)| = 2 because the element may appear with or without a star in a marked
Q-tableau. More simply, det(A™) is 1 if F,, = F, and is 0 otherwise. Equivalently,
det(A™) is 1 if @ is a chain with no grounded element and is 0 otherwise.

By Proposition 6.5, Immﬁi{ (A1) equals n times the number of path families =
in I1B¢(F,) such that ¢(type(r)) € &, is an n-cycle. This is the number of cylin-
drical tableaux in UBC(F,,n) because each family 7 can be arranged in the orders
(T, To()> Tu(w(G))s - - - » To-1(j)) for j =1,...,n to create n cylindrical m-tableaux. The
remaining interpretations follow from (99). Immyn (A~) is the same, assuming that
l(w) = 0, i.e. that @ has no grounded elements, and is 0 otherwise. O

To combinatorially interpret evaluations of 8, -traces, and state type-BC analogs
of the results in Theorem 9.2, we will use pairs of path-tableaux, poset-tableaux, and
acyclic orientations. Define a Young bidiagram of shape (A, u) to be a pair of Young
diagrams of shapes A and p. Given a type-BC path family 7 = (75, ..., 7, 71, ..., 70)
covering a zig-zag network F,, € SE¢([m, n]), we fill Young bidiagram of shape (X, u)
with the paths (71,...,m,), keeping grounded paths in the left diagram. We call the
resulting pair (U, V) of tableaux an F,,-bitableau or more specifically, a 7-bitableau of
shape (A, p). If m has type v € 9B, then we also say that each m-bitableau has type
v. Let B(Fy, A, i) be the set of all F,,-bitableaux of shape (A, p). If (U,V) is a =-
bitableau of type v with ¢(v) = e, then we may use (103) to replace paths m,..., 7,
in (U, V) with the elements of Q(w), marking each grounded element i in U with
a star if snk(m;) < 0. We call the resulting structure a marked Q(w)-tableau. Let
B(Q(w), A, 1) be the set of all marked Q(w)-bitableaux of shape (A, y).

For example, consider Fl,,,.7 € SEC([5,5]) and the unique path families 7 of type
21345 and 7 of type 21345 covering F,,,-7,

(106)
5 5 TN, s,
4 4 T4 o’"’g’ JRITELEERETED T4 o’"°‘, RECTITTITTTeY
2 2 Ty ——--- ’ \\\ T2 - - --- ’ \\\
1 1 1 N 1 I
Fogust = ) R :‘,

11N G I TR
A BN I I T |
3
wl
21
.
.
S
RS
et

Two 7-bitableaux and two 7-bitableaux of shape (21,11) are
(107)

| ml) (Il ) (=l =], (]

) b ) )

) ) )
ma|m | 2| ma] n|m n[n]

Since paths w3 and 7, intersect 75 and 75, respectively, they are grounded and must
appear in the left tableaux. The poset Q(23451) and four marked Q(23451)-bitableaux
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of shape (21,11) are

5 3 3]
< e, \mm )

(108) (I

: 7] ]
: 2[7) 5[]
If (U, V) is an F,,-bitableau or Q(w)-bitableau, then the component tableaux U, V
could have some of the properties enumerated between (93) and Proposition 9.1. Some

combinations of these may be used to interpret trace evaluations as in Theorems 9.6
-9.9.

THEOREM 9.6. Let w € B, avoid the patterns 3412 and 4231 and let Q = Q(w) be
the related type-BC unit interval order. For each bipartition (A, u) Fn we have

(ee)*(CBC(1)) = #{(U,V) € B(Q, N, u") | U, V column-strict},
(en)™*(CBC(1)) = #{(U,V) € B(Q, N, ) | U column-strict, V row-semistrict },
(ne)*(CBC(1)) = #{(U, V) € B(Q, \, i) | U row-semistrict, V column-strict},
(nm) M (CBC(1)) = #{(U, V) € B(Q, \, 1) | U, V row-semistrict }.

Proof. Let F = F,, have path matrix A, fix (\, u) - n with |\| = k, and let 6 = (¢&)M*
be one of the characters in the theorem. By Lemma 6.3 and Theorem 6.4, we have
(109)

(CEM(CB(1)) = Tmm By, (A) = 3 I (A7 S (A )

IC[n]
=k

By (60), cach of the type-A immanants above is a sum of products of determinants or
permanents of matrices in {AIJ | J C I} or {A] ;[J C [n] \ I}. By Proposition 9.5
each factor counts certain one-row or one-column tableaux and their product counts
bitableaux of the required shape. O

COROLLARY 9.7. Let w € *B,, avoiding the patterns 3412 and 4231 have zig-zag net-
work F,, and type-BC unit interval order @ = Q(w). The combinatorial interpretations
of trace evaluations in Theorem 9.6 have several valid alternatives. We may replace
(marked) column-strict Q-tableaux U, V of shape v with (marked) colorings of inc(Q)
of type v. We may replace (marked) row-semistrict Q-tableauz U, V of shape v with
either of the following:

(i) (marked) excedance-free Q-tableaux of shape v,
(ii) (marked) row-closed, left row-strict Fy,-tableauz of shape v.

Furthermore, we have that (nn)>*(CB(1)) equals
(iii) the number of marked acyclic orientations of subgraph sequences

(110) (inC(Qh)v s 7inC(Q1r)7 inC(QJl)a veey inC(QJt))
where (It, ..., Iyxny, J1,- -, Juy) varies over all ordered set partitions of [n] of type

()\13 R )\Z()\)a Hiy -y /u‘@(u))v
and all grounded vertices appear in Iy,. .., Iz

Proof. By Proposition 9.5, one-rowed tableaux in Theorem 9.6 which are row-
semistrict (descent-free) correspond bijectively to one-rowed tableaux with properties
(7) or (i¢) and to acyclic orientations (7i7) of inc(@Q). Thus there is a correspondence
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of several-rowed tableaux and of acyclic orientations of subgraph sequences. In all
cases, we have equality of the indices of paths, poset elements, and vertices which are
grounded, so markings correspond in the obvious way. O

For example, consider evaluating traces at 6’535151(1) by applying Theorem 9.6 to

the poset Q(23451) in (108). The first bitableau in (108) contributes to

()M (Cpsr (1), (> (o7 (1)),

the second to

(€6)*(Coppsr(D), (en)® M (Cgier(1), (ne)*1*(Coypsz (1)), (nm) MM (C 7 (1)),
the third to
21,11/ ABC
(7777) (02345T(1))7
and the fourth to
(7€) (Capsz(1)s (m)* 1 (Coppar(1)-

If we modify the criteria of the theorem as in Corollary 9.7 (i), the same is true,
since a tableau with two or fewer columns is @Q-excedance-free if and only if it is
Q-row-semistrict.

If instead we modify the criteria of the theorem as in Corollary 9.7 (ii) we may ap-
ply these to path families covering F,,,.7 in (106). In this case, we find that the third
and fourth tableaux in (107) contribute to (nn)m’n(CZBSC%T(l)), and that the fourth
tableau also contributes to (776)21’2(623325(1)). The tableaux contribute to no addi-
tional evaluations listed in Theorem 9.6 because the left tableau of the first bitableau
is not left row-semistrict, the left tableau of the second bitableau is not row-closed,
and the left tableaux of all four bitableaux fail to have the property that source and
sink indices are equal.

Finally, we may modify the criteria of the theorem by applying Corollary 9.7 (iii)
to

3 4 5

(111) inc(Q(23451)) = é—i—o—o—o ;

and by marking and acyclically orienting sequences of subgraphs on (2, 1,1, 1) vertices.

Two sequences contributing to (nn)?*!(Cy,,57(1)) are

5 3 3 2 1* 4 5

1 2 4
(112) (@_b.’ .7 .7 .)7 ( .7 @7 .7 .)
THEOREM 9.8. Let w € B,, avoiding the patterns 3412 and 4231 have type-BC unit
interval order Q, and fix bipartition (A, u) Fn. We have
(0OM(CRE(L) = #{(U, V) € B(Q, A\ p) |U,V standard }.

Proof. Let A be the path matrix of F,, and let x*, x* be the characters of &, &, _;
satisfying (xx)M* = (x* ® 5)(””%; .- By Lemma 6.3 and Theorem 6.4 we have

(COOM(CEC(1)) = Imm®: , (4) = 3 InmSE (A7 Imm e (A4
I1C[n]

|T|=k

[;L]\I,[n]\l)'

Sr—k in terms of induced

St and Immxu

Expanding irreducible character immanants Imm

trivial character immanants, we obtain

Z ZK;;Immna (AT} ZK@iImmng(A[;]\L[n]\I).

IC[n] aFk BEn—k
[ I|=k
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Now let @) be the type-BC unit interval order corresponding to w. For any subset J of
[n] and any partition v F |J|, let #(Q ;, V) be the number of row-semistrict @ j-tableaux
of shape v, and let p(J) be the number of elements of ); which are grounded. By
(60) and Proposition 9.5, we have

ImmG’“(A+ )= 2”([)7"(@1,04),

and

S — T(Qn\bﬁ) 1fp([n]\l):0
Imm?ﬂ k(A[n]\[y[n}\[) = {0 !

Thus by [18, Thm. 4.7 (ii-b), (iii)], the sums
S K mmSH (47 ) = 22D S KL r(Qr,a),

akk akk
ST (Qpur, B) i p([n) N 1) =0

1 —
ZKB Imm (A[n]\l,[n]\l) = BFn—k
BFn—k 0 otherwise

otherwise.

are equal to the numbers of standard J;-tableaux of shape A containing any number
of grounded elements which may be circled, and standard Q.. ;-tableaux of shape p
containing no grounded elements, respectively. O

For example, consider the evaluation (xx)*" 11(053251( )) and the poset (Q(23451)

n (108). Of the bitableaux shown there, only the second contributes to this evaluation.

THEOREM 9.9. Let w € B,, avoiding the patterns 3412 and 4231 have type-BC unit
interval order Q, and fix bipartition (A, u) Fn. We have

(Pp)M(CBC(1)) = #{(U, V) € B(Q,\, ) | U,V eyclically row-semistrict }.

Proof. Let A be the path matrix of F, and let k£ = |A|. By Lemma 6.3 and Theorem 6.4
we have

(113)
wwm%meW>=QMﬁwmmW%ww>
IC[n
[ I|l=m
y [70, Prop. 2.4] we have
Immwx Z Imle (Xs,0) - Immgﬁﬁ (xJ,.,7,)-

(J1seesdr)
Thus each term in the sum (113) is itself a sum of products of type-A single-cycle
power sum trace immanants, evaluated at A or A~. By Proposition 9.5 each factor
counts one-row cyclically row-semistrict tableaux, and their product counts bitableaux
of the required shape. O

COROLLARY 9.10. Let w € B, avoiding the patterns 3412 and 4231 have zig-zag
network Fy, and type-BC unit interval order @ = Q(w). In Theorem 9.9 we may
replace cyclically row-semistrict Q-tableaux with either of the following:
(i) record-free Q-tableauz,
(i) cylindrical F,,-tableauz.
We also have that (y)M*(CBC(1)) equals
(iil) Ap---Appr - ps#{(U, V) € B(Q, A\, 1) | U,V left-anchored, row-semistrict }.
(iv) the number of marked acyclic orientations of subgraph sequences (110) in
which each oriented subgraph has one source, and all grounded vertices appear
ini,... 1.
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Proof. By Proposition 9.5, one-rowed tableaux in Theorem 9.9 which are cyclically
row-semistrict correspond bijectively to one-rowed tableaux with properties (¢) or
(#4) and to acyclic orientations (7i¢) of inc(Q) which have one source. Thus there is
a correspondence of several-rowed tableaux and of acyclic orientations of subgraph
sequences. In all cases, we have equality of the indices of paths, poset elements, and
vertices which are grounded, so markings correspond in the obvious way. O

For example, consider evaluating (1/}1#)21’11(5'28;151(1)) by applying Theorem 9.9 to
the poset Q(23451) in (108). Of the tableaux listed there, only the first and third
contribute to this trace evaluation. If we modify the criteria of the theorem as in
Corollary 9.10 (i), the same is true, since a tableau with two or fewer columns is
Q-record-free if and only if it is cyclically Q-row-semistrict. On the other hand, if we
modify the criteria of the theorem as in Corollary 9.10 (iii), then the first, second,
and fourth bitableaux contribute.

Now suppose that we modify the criteria of the theorem as in Corollary 9.10 (ii).
Then we may apply these to path families covering F,;,.7 in (106), and we find that
the first, third and fourth tableaux in (107) contribute to (z/Jw)m’u(éE;lﬁ(l)).

Finally, we may modify the criteria of the theorem by applying Corollary 9.10 (iii)
to (111). Both tableaux in (112) contribute, since no component has more than one
source.

While Proposition 9.1 — Theorem 9.3 have known g-analogs, no such g-analogs are
known for the results in Subsection 9.2.

PROBLEM 9.11. State and prove q-analogs of the results in Lemma 9.4 — Corollary 9.10

10. SOME EQUIVALENCE RELATIONS

Given a Coxeter group W and its Hecke algebra H = H (W), the trace space T (H)
naturally partitions H into equivalence classes via the relation =~ defined by

(114) D, = D, if for all 6, € T(H) we have ,(D1) = 04(D>).

When W = G,, or B,,, we may restrict this relation to the subset of Kazhdan-Lusztig
basis elements indexed by elements of W avoiding the patterns 3412 and 4231. Two
more equivalence relations related to this restricted relation are defined in terms of
isomorphism of the posets and graphs described in Sections 7 — 8: P(v) & P(w)
(Q(v) =2 Q(w)), or G(v) = G(w). In type A these relations refine the first; in types

BC, we conjecture the same to be true and prove a weaker statement.

10.1. TYPE-A EQUIVALENCE RELATIONS.
The equivalence relation on

(115) {Cu(q)|w € &, avoids the patterns 3412 and 4231}

defined by poset isomorphism P(v) & P(w) refines that defined by graph isomorphism
G(v) 2 G(w), which in turn refines the restriction of the relation ~ (114) to this set.

THEOREM 10.1. For v,w € &, avoiding the patterns 3412 and 4231, we have the
implications

P) 2 Pw) = G)=ZGw) = Cu(q)~Culq).
Proof. The first implication is clear; the second follows from a g-analog of Theo-
rem 9.2 (i-b) in [18, Prop.7.3 — Thm.7.4] which states that all of the evaluations
{e7(Cw(q)) | X n} are determined by G(w). O

The converse of the first implication above is not true (89); the converse of the
second is not known to be true.
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PrROBLEM 10.2. For somen find 3412-avoiding, 4231-avoiding permutations v, w € &,
which satisfy G(v) 2 G(w) and C,(q) = Cy(q) or show that this is impossible.

By Theorems 7.1 and 10.1, the problem of evaluating H,(g)-traces at (115) reduces
to the problem of evaluating these traces at the subset of (115) indexed by 312-
avoiding permutations [18, Thm. 5.6].

COROLLARY 10.3. For w € &,, avoiding the patterns 3412 and 4231, there exists
v € &, avoiding 312 such that Cy,(q) = Cy(q).

Furthermore, some experimentation suggests that the problem of evaluating traces
at all Kazhdan—Lusztig basis elements reduces to the problem of evaluating traces
at the subset of (115) indexed by 312-avoiding permutations. With precise details of
such a reduction not yet conjectured, we have the following problem [4, Conj.1.9],
[33, Conj. 3.1].

PROBLEM 10.4. Show that for each w € &,, there exists a set S = S(w) C &,, of
312-avoiding permutations and a set {p, »(q) | v € S} C N[q] of polynomials such that
we have

574; (q) ~ Z Pv,w (q)év (q)

vES

We remark that Haiman [33, §3] introduced the name codominant for 312-avoiding
permutations because by (5) these have the form vwq for wg the longest element of &,,
and v belonging to the dominant (132-avoiding) subset of the vexillary (2143-avoiding)
permutations defined in [49].

10.2. TyPE-BC EQUIVALENCE RELATIONS.
We distinguish between the type-BC case of the equivalence relation (114) and its
q = 1 specialization. For Dy, Dy € HB%(q), define

(116) Dy ~, Dy if for all 0, € T(HE(q)) we have 6,(D;) = 0,(Ds).

For Dy, Dy € Z[B,], let D1 =~ D5 be the ¢ = 1 specialization of the above. These
relations naturally restrict to the Kazhdan-Lusztig bases of HE¢(q) and Z[8,,], and
to the subsets of these indexed by elements w € 9B, avoiding the patterns 3412 and
4231. Tt is easy to show that the equivalence relation on

(117) {CB%(q) |w € B,, avoiding the patterns 3412 and 4231}

defined by type-BC unit interval order isomorphism Q(v) = Q(w) refines that defined
by type-BC indifference graph isomorphism I'(v) = T'(w), which in turn refines the
relation ~;.

THEOREM 10.5. For v,w € B, avoiding the patterns 3412 and 4231, we have the
implications

Q) =Q(w) = T =Tw) = CF1)=1 Ce().
Proof. The first implication is clear; the second follows from Corollary 9.7 0

The converse of the first implication above is not true (90); the converse of the
second is not known to be true. We conjecture that the second implication can be
strengthened.

CONJECTURE 10.6. For v,w € B, avoiding the patterns 3412 and 4231, we have the
implication T'(v) 2 T(w) = CB%(q) =, CE(q).

The converse of this conjectured implication is not known to be true.
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PRrROBLEM 10.7. For somen ﬁnd§412-avoid@g, 4231-avoiding permutations v, w € ‘B,
which satisfy T'(v) 2 T(w) and CB<(q) =, CB(q), or show that this is impossible.

By Theorems 5.19 and 10.5, the problem of evaluating 9B, -traces at
(118) {CB°(1) |w € B,, avoids the patterns 3412 and 4231}

reduces to the problem of evaluating these traces at the subset of (118) indexed by
elements of B,, avoiding the signed patterns 12, 21, 21, 312, 312.

COROLLARY 10.8. For w € B,, avoiding the patterns 3412 and 4231, there exists
v € B, avoiding the signed patterns 12, 21, 21, 312, 312 such that we have CE(1) ~;
CEC(1).

If Conjecture 10.6 is true, then the conclusion of Corollary 10.8 becomes C~'Bc(q) =P
CBC(q). It would be interesting to discover the extent to which trace evaluations at

{CB%(q) |w € B,, avoids the signed patterns 12, 21, 21, 312, 312}

describe trace evaluations at the entire Kazhdan-Lusztig basis of HZ¢(q), as in Prob-
lem 10.4. One might call the above B,,-elements codominant in analogy to codominant
permutations in &,,, although the author is not aware of a definition of dominant el-
ements of 9B, in the literature. On the other hand, it would be interesting to relate
codominant elements of B, to the subsets of vexillary, theta-vexillary, Grassmannian,
leading, and amenable elements of 8,,, which appear in [7, 8, 13, 48, 71].

11. SYMMETRIC FUNCTIONS

For W = &,, or B,,, and H = H(W) its Hecke algebra, bases of T(W) and T (H(W))
are often studied in conjunction with bases of an appropriate module A of symmetric
functions. When W = &,,, the symmetric function bases consist of traces of the
corresponding Lie group; when W = B,, they do not. In either case, we have the
equalities

rank(7 (W)) = rank(7 (H(W))) = rank(A),

which makes A a convenient setting in which to define generating functions for trace
evaluations.

11.1. TYPE-A SYMMETRIC FUNCTIONS.
Corresponding to the six commonly used bases of T(H,,(q)) and T(&,,) (§4.1) are
six bases of the Z-module

Ap(z) = A (21, 29, .. .),

of homogeneous degree-n symmetric functions: the Schur basis {s) | A F n}, elemen-
tary basis {e) | A F n}, (complete) homogeneous basis {hy | A F n}, power sum basis
{pr| A F n}, monomial basis {my | F n}, and forgotten basis {fx|A F n}. (See
[67, Ch.6].) The correspondence of trace bases and symmetric function bases is given
explicitly by (the g-extension of) the Frobenius map

(119) chy : T(Hn(q)) = Ap(z)
(120) ch,(8,) = % Z O(W)Petype(w)
T wes,
(121) => }9(/019;“
pukEn H
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where § = 6; as in Section 4, and 6(u) := 8(w) for any w € &,, of cycle type p.
Specifically, we have
chq(xq/\) = 3, chq(e;‘) = ey, chq(n{]\) = hy,

Chq(¢;) =DPx Chq((b:;\) = my, Chq(%;\) = fx

We construct generating functions for H,(g)-trace evaluations as follows. Given
element D € Q(q) ® H,(q), define the generating function

Yy(D) =" ex(D)my € Q(q) @ An(2)

AFn

(122)

for the evaluation of induced sign characters at D. By [62, Prop. 2.1], this symmetric
function is in fact a generating function for the evaluation of all the standard traces
at D, because it is equal to

1yn—E(A) A
Sy = Y T P

z
AbEn AFn A

o = SR D)ss = S5 (D)es = 3D,

AEn AFn AFn
Equivalently, if we let w : A, (z) — A, (x) be the standard involution mapping

(123)  saesy ex—hay o o= (CD) e mae fy,
then we have that wY, (D) = Y., €2(D)fx is equal to

A
S 0my = Y P S A D)ss = T (D) = T (Des.
An YR Arn An An
It is not difficult to show that every symmetric function in Q(q) ® A, (z) is Y, (D) for
some D € Q(q) ® H,(q). (See [62, Prop. 3].)
Theorem 9.2 (i-b) shows that when w € &,, avoids the patterns 3412 and 4231, the

symmetric function Y,(C\y(q)) is related to colorings of inc(P(w)). More generally,
Stanley [64] defined the chromatic symmetric function of any simple graph G to be

e e
(124) XKoo= Yol gl @1

where the sum is over all proper colorings x: V' — {1,2,...,} of G (§8.1). Expanding
in the monomial basis of A,,, we have

Xag = E cG, My,
\

where cg ) is the number of proper colorings of G of type A.
Shareshian and Wachs [59] defined a quasisymmetric extension X¢ 4 of the symmet-
ric function X¢. Given a proper coloring « of G, define INVg(k) to be the number of

pairs (i,7) € E with i < j and k() > k(j). For any composition o = (o, ..., a¢) En,
define
caa(q) — Z qINVG(R),
K proper
type(k)=a
and let
M, = Z xit g
i1 <<y
be the monomial quasisymmetric function indexed by «. Then we have the definition
(125) XG,q = z:qnwc(ﬁ):rll'€ 1(1)‘1“; = = Z CG,a(‘])Maa
K aFn

where the first sum is over proper colorings of G. It is easy to see that the ¢ = 1
specialization of X¢ , satisfies Xg1 = Xg. When G = inc(P) for a unit interval
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order P labeled as in Algorithm 7.3, the quasisymmetric function Xj,.(py, is in fact
symmetric [60, Thm. 4.5]. Furthermore, we have the following [18, Thm. 7.4].

THEOREM 11.1. For w € &,, avoiding the patterns 3412 and 4231, and P = P(w)
defined as in Subsection 7.1, we have Y, (Cw(q)) = Xine(p),q-

11.2. TyPE-BC SYMMETRIC FUNCTIONS.
Corresponding to the eleven commonly used bases of T(HE(q)) and T(B,,) (§4.2)
are eleven natural bases of the Z-module of type-BC symmetric functions of degree n,

An(a,y) = éo Ak(2) ® An_k(y),

where © = (x1,x2,...) and y = (y1,¥2,...). These bases of A, (x,y) consist of ten
nonplethystic bases of the form (0g)x,, = ox(2)g.(y),

{Gsshul Q) Ends {lee)xul (A p) g, {(hh)xu| (A p)
{(eh)ru| (A p) s {(he)x | (A p) 0},
{mm)nul ) Eng, {()xul Qo) End, {mf)xu (A p) Fnl,
{(Fm)a ) ks {(pp)au (A p) 0},

and the plethystic power sum basis
(127) {PXpp | (A ) F b,

defined in terms of ordinary power sum symmetric functions py(z) := =¥ + 25 + - --
by

(126)

p;\r = (p/\1 (33) + D (y)) T (p)\e(x) (.%') + Pxony (y))’

p; = (pltl (Z‘) — Puy (y)) e (pﬂi(u) (J") ™ Preuy (y))
The functions (128) often appear in the literature as px[X+Y], p,[X —Y], respectively.
A correspondence between bases of T(HE®(q)) and the bases (126) — (127) of A,,(z, %)

is given explicitly by the (g-extension of the) plethystic BC-Frobenius map [52, §1,
App. B]. (See also [6, Eq. (2.5)].)

(128)

(129) pch,: T(HBC( ) = An ( )
(130) pehy(0g) = 5o > WP )P

weEDB,

O\, 1) -
(131) = 2 T ot AP
R )'_nz)\zu2 (A)+€(p)

where a(w), B(w) are the partitions satisfying sct(w) = (a(w), B(w)), and where we
define 0(A, p) := 0(w) for any w € B,, having sct(w) = (A, u). Specifically, pch, maps
(132)

)y = (hh)x g, ()3 5 (he)xys  (en)g™ = (eh)x s (€)o7 > (e€)ap,
(P)at = (mm)xpu,  (97)0" = (Mfaps (V0D (Fm)as (V1) = () aus
)H = (38)as (WW)3H = (DP)aws o™ = PiD; -

We extend the involutive homomorphism w on A, (z) (123) to an involutive homo-
morphsim on A, (z,y) in the simplest way: w(ox(2)gu(v)) := w(or(z))w(gu(y)). This
exchanges the symmetric functions on line 1 of (132) with the corresponding functions
on line 2, transposes the index shapes of (ss)y,, and multiplies each power sum ba-
sis element by (—1)“ M+ Transition matrices relating the ten nonplethystic bases
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have entries which are simply products of entries of transition matrices relating type-A
symmetric functions, e.g.

(133) (SS))\,H = Z K)\,QKH,B(mm)a}B.
(e,B)Fn

The plethystic power sum basis can be related to the others via the nonplethystic
Schur basis,

(134) P = D 000 (A 1) (58)a,s-
(e, B)Fn

We construct generating functions for HE¢(g)-trace evaluations as follows. Given
any element D € H2%(q), define the generating function

(135) YECD) =) (ee)o(D)(mm)xu € Zlg, ¢ '] & An(a,y).
AFn

This symmetric function is in fact a generating function for the evaluation of all the
standard traces at D, in the following sense.

PROPOSITION 11.2. For D € HE¢(q) we have

YE(D) = 3 () (D) (mm)a, = S ()2 D) mfla = 3 (e (D) (fm)a

(A p)n (A p)n (Ap)kn
T T
=D my*D)FHrm = D 0007 (D) (ss)au = Y (6)y*(D)(ee)ru
(A\p)Fn (A\p)Fn (A pu)Fn
=D (@M (D) eh)ru = > ()" (D) (he)au = Y (71 (D) (hh)x
(A p)kn (A pu)bn (A p)kEn
(=1 N+ () (D) , _
=y S (pP)rp = D (1) W 2 (Dyplp,, .
(A p)Fn " A\,p)kn

Equivalently, wY,2(D) is equal to

(136)
Y 3 D= D (" (D)fm)xu= > @™ (D)(mf)ru
(A p)kFn (A p)bn (A p)Fn
= > )yt mmhu =Y )y D)(sshau =Y, ($0)3"(D)(hh)x
(A p)bEn (A p)bEn (A p)kn
= > (@MDY = Y () (D) eh)ru= > (1)) (D)(ee)ru
(A p)Fn (A pu)Fn (A pu)En
A
=Y (Wjjz (D)(pp)x,u= > @ Dwiv
(A p)Fn H A\, p)kFn

Proof. Consider the fourth and fifth sums in (136), in which the symmetric functions
and traces satisfy

(137) (s =D KnaKups(mmlas, — (me? =" KiaKus(x0);"
(@.B)Fn (A w)kn
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Using (137) to expand the fifth sum in the monomial symmetric function basis, we
have

D> (003 (D) Y KnaKus(mmas =Y Y KxakKus(x0);" (D)(mm)as

(A, p)kFn (e,B)Fn (e,B)Fn (A, p)Fn
= > (m)gP(D)(mm)ap,
(a,B)Fn
i.e. it is equal to the fourth sum. Similarly, for each of the remaining sums of the form

Z()\#),_n(Cﬁ){]\’“(D)oa(x)gg(y) in (136), there is a matrix (M ) (a.8)) (A, u)Fn,(a,8)Fn
and equations

(58)am = D Mixp0).(a.8)00(2)95(Y), (€O =" Mix 0 (X))
(av,8) (M)

relating it to the fifth sum. In particular, we have M ) (0.8 = Kx oK,

KAT,OLKILJ}7 K)\,OLK/LT,ﬁﬁ Ko:)l\Kﬂji7 Ko;;KlBjiT? Ko:)l\TKﬁjia Kai)l\TKBTMlT, XA(a)Xu(ﬁ)a

respectively. (See [10, §3].) Relating the last sum to the fifth sum, we have equations

_ (XX)A7;L(04?6> + - a,B (XX)AM(OQB) A
(58)a = (Zﬁ) 2azg 2RI PoPE T L G p TR bog™. O
a, o

To say that the functions {Y,(D)|D € Z[®B,]} arise often in the study of type-BC
symmetric functions would be an understatement; in fact, every element of Z[g] ®
Ay (x,y) has this form.

PROPOSITION 11.3. Every symmetric function in Z[q] ® Ay (z,y) has the form Yq(D)
for some element D € Q(q)[B,].

Proof. Fix a symmetric function in A, (z, y) and expand it in the plethystic power sum
basis as Z(/\ Wn O (q)pjp;. Then choose one representative w,, ,, of each conjugacy
class of %B,, and consider the trace evaluations (14)

o (Tw) = > (00" ) (0005 (T, )
(@ B)n

Since the matrices ((xx®?(X, 1)) (x,),(c5) and ((Xxg‘*ﬁ(Tww))(aﬁ),(w,) are both in-
vertible, so is their product ((¢)*(Tuw, ,))(xu), (k) Call the inverse of this product
B = (b(a,),(x,u)(q)) and for each (a, 3) - n define

Ua,B = Z b(a,b’),(m,u)(q)Twmy S Q(Q) ® HEC(Q)'
(k,v)Fn

Then we have
1 if (\p) = (o, B),
0 otherwise.

" Uayp) = {
Now define the Q(q)[%B,] element

D= Z a(X’B(q)Uwaﬁ.
(e,B)Fn
By (14) and (136) we have
Y,(D)= Y LQ’”( > aa,ﬁ(q)Ua,g)pip;= > axu(@)pip,
(A p)bn (a,8)Fn (A p)kn

as desired. O
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For any type-BC incomparability graph I' = (V| E), we define the type-BC chro-
matic symmetric function of T’ to be

k(1 k(2 k(=1 k(=2
(139) XEC 1= 3ol O LI e,
where the sum is over all proper BC-colorings x : V' — Z ~ {0} of T" (§8.2).
For the incomparability graph inc(Q) of a BC-poset @, we may express the sym-

metric function XES(Q) in terms of decompositions of P into chains. Letting cg x,

be the number of column-strict marked @Q-bitableaux of shape (\', i), we have

Xis@) = D coau(mm)xu.
A
THEOREM 11.4. For w € B,, avoiding the patterns 3412 and 4231 and Q = Q(w)

defined as in Subsection 7.2, we have YBC(GE’}C(I)) = XEIS(Q).

Proof. The coefficient of (mm) , in X EIS(Q) equals the number of proper BC-colorings
of inc(Q) of type (A, p). This is exactly the number of marked column-strict inc(Q)-
bitableaux of shape (X, ). By Theorem 9.6, this is (ee)*#(CBC(1)), and by (135),
we have the desired equality. O

It would be interesting to state and prove a g-analog of Theorem 11.4.

PROBLEM 11.5. Define a statistic stat on proper BC-colorings k of type-BC interval
graphs so that for w € B, avoiding the patterns 3412 and 4231, Q = Q(w) and
I' = inc(Q), we have a g-chromatic symmetric function of the form

K k(1 k(2 k(=1 k(=2
Xlg,((:] _ qutat( )(xl1 ( )\ml2 ( )I._,)(yl1 ( )\yl2 (=2) )

which satisfies the identity YqBC(GBC(q)) = Xp¢.

11.3. ANOTHER APPROACH TO TYPE-BC SYMMETRIC FUNCTIONS.
From the plethystic power sums {p} | A F k} U {py |\ F k} C Ax(z,y), one can
define other plethystic symmetric functions [10, §3], [69]
{sxIAFEY, {hyIAEEY, {eX [AREY, {m{IXFE} {7 IAF R,
{sx [AERY AbYIAERY {ex [AERY {my AR {f[AF R}
to be the symmetric functions in Ay (z, y) related to {p} | A F k} or {py | A F k} just as

{sx|AFEH{hx|AE kL {ex | Ak {ma | Ak} {fa| AF E} in Ay () are related to
{p» | A F k}. Such functions often appear in the literature as s)[X +Y],..., fA[X +Y]

and s)[X — Y],..., fa|X — Y]. Certain products of pairs of these form nine more
plethystic bases of the space A, (z,y):
(139)

{sXsu [ (A p) Fn}
{hXh | ) E ks AR e (A ) E b, {eXhy [\ p) Fnd, {eXey [(Ap) b nl,
{mymg |\ ) End, {m3 fr [ p)End, {fmg [ Ead {0 f7 T, p) Fnd
Naturally, one may study A, (x,y) in terms of these bases and
xp [Ov) Endy {p)au| (A1) F 0},

instead of using the eleven bases in (126) — (127). It is straightforward to show that
matrices relating bases of the forms {o;fg; [ (A ) B on} to {(pp)apl (X p) F n}
are the same as those relating bases of the forms {(og)x,.|(A p) F n} to
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{pjp;/?é(/\)*‘é(“”()\,u) F n}. Formulas for the matrix entries are given in [10,
App. A].

A correspondence between the plethystic bases and those of the trace space
T (HEC(q)) is given explicitly by the (¢g-extension of the) nonplethystic BC-Frobenius
map [10, §3], [69]

(140) nchg: T(HE(q)) = An(2,y)

1 alw w
onpl Z 2Z( (w))+E(5C ))a(w)(pp)a(w),ﬂ(w)
weEDB,

(142) =y O ()

ZAR
(A\p)Fn A

(141) nch,(6,) =

analogous to (129) — (131). Specifically, nch, maps

(ee);"" — e}fe;, (en);"“ — ejh;, (776)2"“ — hi‘e;, (nn);"" — hj\“h;,

(¢d)y™ = mimy,, (7)o" —mif,, ()™ = fiim,, (vt = £ fr,
00" = sis,, (W)rt e plp,, ot e 28T (gp)y .

Defining a trace generating function in Z[g, ¢~ '] ® A,(x,y) in terms of characters
(e€)o#, plethystic monomial symmetric functions m3m, , and elements D € H2(q),
we have expansions analogous to those in Proposition 11.2,

> (e (Dymimy, = > (eq)yH(Dymffr == > (y)y*(D)hih,
(A, p)Fn (A, p)Fn (A, p)Fn

1) AN (hap )M (D
- 3 D) S D)

ZAR
(mbn A (uw)bn

While one could define YqBC(D) to be the above symmetric function instead of that
in (135), this would lead to a less natural connection to the BC-chromatic symmetric
function (138).

12. HESSENBERG VARIETIES

Hessenberg varieties are subvarieties of flag varieties which were first studied [22, 23]
in conjunction with questions concerning eigenvalues of linear operators. More recent
work reveals connections to other varieties, representation theory, and combinatorics.

The Hessenberg varieties of Coxeter types A, B, C are parametrized by certain
vector spaces called Hessenberg spaces. Specifically, given a reductive algebraic group
G, Borel subgroup B, and Lie algebras g, b of these, call a subspace H C g a Hessenberg
space if it satisfies the Lie algebra containment conditions

(143) bCH, [6,H] CH.

Hessenberg spaces may be parametrized by appropriate sets of roots in root systems.
(See [38] for definitions.) Let ® be the root system of type A, B or C, let A C ®
be a simple system, let @~ C ® be the set of negative roots, and for v € ® let g,
be the root space of g corresponding to «y. Define the root poset on ® by a < [ if
B —« € spanyA, and define the negative root poset to be the subposet of this induced
by ®~. Call subset I C ®~ a dual order ideal of &~ if for all a, 3 € &~ we have

a€el,
agq)ﬂ}:ﬂe].

In particular, we have the following [22, Lem. 1].
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PROPOSITION 12.1. A bijection between Hessenberg spaces H C g and dual order ideals
I of the negative root poset on ®~ is given by
(144) I—H(I)=b0® D g,.

yel

For Hessenberg space ‘H and matrix S € g, define a subvariety of the flag variety
G/B by

(145) Hess(H) = Hess(H, S) := {¢yB € G/B|g~'Sg € H},

and call this a Hessenberg variety associated to H. If S is a regular semisimple element
of g, then call Hess(H) a regular semisimple Hessenberg variety. In this case, its
cohomology vanishes in odd degree [22, §3],
(146) H*(Hess(H)) = @ H¥ (Hess(H)).

Jj=20
(See also [54], [73].) Tymozcko [74, 75] defined a graded W-module structure on (146),
where W is the Weyl group of G. Let

(147) ch(H% (Hess(H)))

be the Frobenius characteristic of the character of the submodule H?/ (Hess(#)). For
regular semisimple Hessenberg varieties of type A, the Frobenius characteristics (147)
are closely related to trace evaluations and graph coloring. In types B and C, no such
relation is known.

12.1. REGULAR SEMISIMPLE HESSENBERG VARIETIES OF TYPE A.

Define type-A Hessenberg spaces as in (143) with G = GL,(C), g = ¢l,,(C). In
addition to the bijection (144) with dual order ideals, we have the following bijection
with codominant elements of &,,.

PROPOSITION 12.2. A bijective correspondence between 312-avoiding permutations in
S,, and Hessenberyg spaces in gl,,(C) is given by

(148) w— H(w) :={A = (a;;) € 91,,(C) |a; ; =0 for all j > max(w,...,w;)}.

Proof. Given w € &,, avoiding the pattern 312, define m; = max(wi,...,w;) for
t=1,...,n. By Theorem 7.1 the map w — my ---m, is bijective, and it is easy to
see that my - - - m,, satisfies the defining conditions of a Hessenberg function:

(1) i<m;<nfori=1,...,n,

(2) my <+ <My,

Thus the %H(Q:) spaces H(w) in (148) are precisely the Hessenberg spaces usually

denoted by H(mq - --m,,) in the literature. (See e.g. [1, Eq.(2.2)].) O

Let Hess”(#) denote a type-A regular semisimple Hessenberg variety, defined as in
(145) with H as above and S = diag(\1,...,\,), where Aq,..., A, are distinct. For
w € &, avoiding the pattern 312, define the generating function

L(w) . _
(149) Frf)(H(w)) := Y _ ch(HY (Hess™ (H(w))))q’

§=0
for the type-A Frobenius characteristics (147). Shareshian and Wachs conjectured that
oJFrqA (H(w)) is equal to a chromatic symmetric function, viewed as a polynomial in ¢
with coefficients in A,, [60, Conj. 10.1]. This was first proved by Brosnan—Chow [16].
(See also [5, 32, 43, 44].) Combining the equality with Theorem 11.1 we obtain the
following.
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THEOREM 12.3. For w € &,, avoiding the pattern 312 and unit interval order P =
P(w), we have

(150) Frg (H(w)) = wXine(p).q = 9Yq(Cu(q)-
We can see in three ways that the function in (150) belongs to spany,{sx | A F n}:

(1) The character of H* (Hess”(H(w))) belongs to spany{x*|A F n}. Thus its
Frobenius characteristic (122) belongs to spany{sy | A F n}.

(2) By [60, Thm. 6.3] the coefficient of s in Xj,c(p),q belongs to N[g].

(3) By [33, Lem. 1.1] we have x;(Cuw(q)) € N[q].

Furthermore, the function (150) is conjectured to belong to spany, {hx | A - n}. This
open problem also can be viewed in three ways.

PROBLEM 12.4. Prove one of the following.

(1) [60, Conj.10.4] For each permutation w € &, avoiding the pattern 312 and
index j = 0,...,0(w), the &,-module H? (Hess™(H(w))) is a permutation
module in which each point stabilizer is a Young subgroup.

(2) [60, Conj.5.1] For each unit interval order P labeled as in Algorithm 7.3, the
function Xine(py,q belongs to spanyig{ex | A Fn}. (See also [68, Conj. 5.5].)

(3) [33, Conj.2.1] For each permutation w € &, and each partition A\ - n, we
have (b;‘(éw(q)) € N[q]. (See also [70, Conj. 2.1].)

The statements above satisfy the implications (1) < (2) <= (3). For progress on
these problems, see e.g. [3, 34, 36, 57], and references cited in [62, §3.5].

12.2. REGULAR SEMISIMPLE HESSENBERG VARIETIES OF TYPES B AND C.

Define type-B Hessenberg spaces as in (143) with G = SO2,,11(C), g = 502,41 (C);
define type-C Hessenberg spaces similarly with G = SP3,,(C), g = sp,,,(C). Let MB,
M denote the sets of these spaces, respectively. The cardinalities of these sets are
equal to the number of order ideals appearing in (144). By [17, Thm. 3.1], this is (27?)
Thus neither collection of spaces corresponds bijectively to the (?:jf) “codomi-
nant” elements of B,, avoiding the signed patterns 12, 21, 21, 312, 312. This suggests
the following problem. (See also the type-B and C Hessenberg functions defined in |2,

§10].

PROBLEM 12.5. State a type-B or C analog of Proposition 12.2 in terms of a subset
of (27?) elements of B,,.

Let HeSSB(’H) denote the type-B regular semisimple Hessenberg variety de-
fined as in (145) with H € M8 and S € s02,,1(C) having distinct eigenvalues

(0, A1,. ., Any —A1,..., —Ay). Similarly, let Hessc(’H) denote the type-C regular
semisimple Hessenberg variety defined as in (145) with H € MS and S € sp,,,(C)
having distinct eigenvalues (A1,..., A, —A1,. .., —An).

In analogy to (149) we define the generating functions

(151) Fr2(H) = Zch(H2j(HessB(H)))qj, Fré(H) = Zeh(HQj(Hessc(H)))qj.

It would be interesting to connect the symmetric functions Fr?(?—[), Frg(’H) to
type-BC chromatic symmetric functions and type-BC trace generating functions, i.e.
to formulate type-B and C analogs of Theorem 12.3. By Theorem 11.4 the ¢ = 1
specializations of the chromatic symmetric functions and trace generating functions
are equal; general equality is stated as Problem 11.5. One could also consider in-
terpreting FrS(H), Frg (H) as trace generating functions. By Proposition 11.3, such
interpretations must exist.
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PROBLEM 12.6. Find families {D%, |1 € M8}, {D§|H € MS} of elements of
HEC(q) whose trace generating functions satisfy

(1) wYBC(DE) = Frl(H) for all H € ME,
(2) wYBC(DY) = Frg('H) for all H € MES.

Similarly, one could try to interpret FrS’(’;’-t)7 F‘rg(’H) in terms of graph coloring [58].

PROBLEM 12.7. Define families G = {GB(H)|H € MB}, G¢ = {G*(H) | H € MS}
of graphs and families {XCB,Vq|G € G&}, {X81q|G € G} of chromatic symmetric
functions so that we have

(1) wX(B;B(HM = Frg(H) for all H € ME,

(2) WXgC(H),q =Fr;(H) for all H € MS.

In addition, it would be interesting to connect these problems to the Kazhdan—
Lusztig basis of HE®(g) and to the type-BC indifference graphs defined in Subsec-
tion 8.2.

PROBLEM 12.8. Decide to what extent the symmetric functions in Problems 12.6 —
12.7 can be chosen to simultaneously solve Problem 11.5.

Finally, it would be interesting to study appropriate g-extensions of symmetric
functions Xii(c:(Q) (as in Problem 11.5) in conjunction with type-B and C Lusztig
varieties in addition to Hessenberg varieties. (See [5].)
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