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Codegree and regularity of stable set
polytopes

Koji Matsushita & Akiyoshi Tsuchiya

ABSTRACT The codegree codeg(P) of a lattice polytope P is a fundamental invariant in discrete
geometry. In the present paper, we investigate the codegree of the stable set polytope Pg
associated with a simple graph G. Specifically, we establish the inequalities

w(G@) + 1 < codeg(Pg) < x(G) +1,

where w(G) and x(G) denote the clique number and the chromatic number of G, respectively.
Furthermore, an explicit formula for codeg(Pg) is given when G is either a line graph or an
h-perfect graph. Finally, as an application of these results, we provide upper and lower bounds
on the regularity of the toric ring associated with Pg.

1. INTRODUCTION

A lattice polytope is a convex polytope all of whose vertices have integer coordinates.
Let P C R™ be a full-dimensional lattice polytope. Then the codegree of P, denoted
by codeg(P), is the smallest positive integer k such that the kth dilated polytope kP
of P has an interior lattice point. On the other hand, the degree of P, denoted by
deg(P), is defined by deg(P) = n + 1 — codeg(P). Then deg(P) coincides with the
degree of the h*-polynomial of P, which encodes the number of lattice points in the
dilatations of P. The codegree and the degree are fundamental invariants of lattice
polytopes, playing significant roles in various fields, particularly in discrete geometry
and commutative algebra. See e.g. [1] for detailed information for the degree and
codegree of lattice polytopes.

Throughout the present paper, we only treat simple graphs, which we simply call
graphs instead of simple graphs. The stable set polytope Pg associated with a graph
G is the convex hull of the indicator vectors of all stable sets of G, where a set of
vertices of G is called stable if no two of its elements are adjacent. In the present
paper, we investigate the codegree of Pg. The following is the first main result:

THEOREM 1.1. Let G be a graph. Then one has
w(@) + 1 < codeg(Pg) < x(G) + 1,

Manuscript received 23rd December 2024, revised 12th August 2025 and 29th September 2025, ac-
cepted 1st October 2025.

KEYWORDS. stable set polytope, codegree, clique number, chromatic number, matching polytope,
perfect graph, h-perfect graph, toric ring, regularity.

ACKNOWLEDGEMENTS. The first author was partially supported by Grant-in-Aid for JSPS Fellows
22J20033. The second author was partially supported by JSPS KAKENHI 22K13890.

ISSN: 2589-5486 http://algebraic-combinatorics.org/


https://doi.org/10.5802/alco.460
http://algebraic-combinatorics.org/

KoJ1 MATSUSHITA & AKIYOSHI TSUCHIYA

where w(G) and x(G) denote the clique number and the chromatic number of G,
respectively. In particular, if G is perfect, then we obtain

w(G) + 1 = codeg(Pg) = x(G) + 1.

It is well known that w(G) < x(G) for any graph G. From the above theorem,
we can regard codeg(Pg) — 1 as an invariant lying between these two important
invariants in graph theory. Furthermore, it is an important fact that there exists a
graph G satisfying w(G) < codeg(Pg) — 1 < x(G) (see Example 5.1).

Also, Theorem 1.1 implies that codeg(Pg) can be computed by using invariants of
the underlying graph G when G is a perfect graph. Next, for several classes of graphs,
we give an explicit formula of codeg(P¢) in terms of G. The matching polytope Mg of
G is the convex hull of the indicator vectors of all matchings of G, where a set of edges
of G is called a matching if no two of its elements share a common endpoint. We can
regard Mg as the stable set polytope of the line graph of G. Namely, Mg = Pr ),
where L(G) denotes the line graph of G. Then an explicit formula for codeg(M¢) is
given as follows:

THEOREM 1.2. Let G be a graph with connected components Gy, ...,G,. Then one has
if A(G) is even and
A(G)+2 . . ;
codeg(Mg) = each G; with A(G;) = A(G) is complete
A(G)+1 (otherwise),
where A(G) denotes the mazimal degree of G.
Note that w(L(G)) = A(G) unless G is a triangle, and if G is a complete graph

with an odd number of vertices > 5, then one has
A(G) +1 =w(L(G)) + 1 < codeg(Pr(a)) = x(L(G)) +1 = A(G) + 2.

A graph is said to be h-perfect if Pq is defined by the constraints corresponding
to cliques and odd holes, and the nonnegativity constraints. Note that every perfect
graph is h-perfect. Then for an h-perfect graph G, an explicit formula for codeg(Pg)
is given as follows:

THEOREM 1.3. Let G be an h-perfect graph. Then one has
codeg(Pg) = w(G) + 1.
Note that if G is an odd cycle of length > 5, then G is h-perfect and one has
3=w(G)+1=codeg(Pg) < x(G)+1=4.

Finally, we discuss the regularity of the toric ring of Pg. In combinatorial commu-
tative algebra, finding methods to evaluate algebraic invariants using combinatorial
invariants is an important problem. For example, in [9] and [12], the regularity of edge
ideals is evaluated using invariants of the underlying graphs. Similarly, in this paper,
we establish upper and lower bounds for the regularity of the toric rings of stable set
polytopes in terms of invariants of the underlying graphs. For a lattice polytope P, let
K|[P] be the toric ring associated with P over a field K and reg(K[P]) the regularity
of K[P]. As an application of Theorem 1.1, we obtain the following.

THEOREM 1.4. Let G be a graph with n vertices. Then one has
n—x(G) < reg(K[Pa]).
Moreover, if K[Pg] is normal, then we obtain

reg(K[Pg]) < n —w(G).
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In particular, if G is perfect, then one has
n — x(G) = reg(K[Pg]) = n — w(G).

The present paper is organized as follows: In Section 2, after recalling the definitions
and properties of stable set polytopes and perfect graphs, we give a proof of Theorem
1.1. Section 3 gives explicit formulas for codeg(P¢) in the cases where G is a line graph
or an h-perfect graph. In particular, Section 3.1 proves Theorem 1.2, and Section 3.2
proves Theorem 1.3. Section 4 discusses the regularity of K[Pg] , with a focus on
proving Theorem 1.4. Finally, Section 5 considers examples related to the inequalities
in Theorem 1.1.

2. BOUNDS ON THE CODEGREE OF STABLE SET POLYTOPES

In this section, a proof of Theorem 1.1 is given. First, we recall the definition of stable
set polytopes. Let G be a graph on [n] := {1,2,...,n} with edge set E(G). A subset
S C [n] is called a stable set (or an independent set) of G if {i,j} ¢ E(G) for all
i,j € S with ¢ # j. In particular, the empty set & and any singleton {i} with ¢ € [n]
are stable sets of G. Let S(G) be the set of all stable sets of G. For a subset A C [n],
we denote ey € R™ the indicator vector of A, namely, e4 = Zie 4 €, where e; is the
ith unit coordinate vector in R™. Remark that ez = 0 := (0,...,0) € R™. Then the
stable set polytope of G is defined as

P = convi{es : S € S(G)} C R".
Note that dim P¢ is equal to the number of vertices of G.

Next, we define a perfect graph. A subset C' C [n] is said to be cligue of G if for
any 4,7 € C with i # j, {i,j} € E(G). We denote w(G) the maximal cardinality of
cliques of G, which is called the cliqgue number of G. A map f : [n] — [k] with a
positive integer k is said to be a coloring of G, if for any {i,j} € E(G), f(i) # f(J).
The minimal integer k such that there exists a coloring f : [n] — [k] of G is called a
chromatic number of G. In general, one has

w(G) < x(G).

However, the equality does not always hold (e.g. an odd cycle of length > 5). A
graph G is called perfect if for any induced subgraph H of G, w(H) = x(H). Perfect
graphs were introduced by Berge in [2]. A hole is an induced cycle of length > 5 and an
antihole is the complement graph of a hole. In 2006, Chudnovsky, Robertson, Seymour,
and Thomas solved a famous conjecture in graph theory, which was conjectured by
Berge and is now known as the strong perfect graph theorem.

PROPOSITION 2.1 ([5]). A graph is perfect if and only if it has no odd holes and no
odd antiholes.

Also, there is a polyhedral characterization of perfect graphs.

PROPOSITION 2.2 ([6, Theorem 3.1]). Let G be a graph on [n]. Then G is perfect if
and only if

(1) Pg=qx€R": le <1, for any mazimal clique Q
i€Q

Note that for a (not necessarily perfect) graph G, each inequality appearing in (1)
defines a facet of Pg ([16]).
Before proving Theorem 1.1, we show the following lemma.
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LEMMA 2.3. Let G be a graph on [n]. For any k € Zso, one has int(kPg) N Z™ # &
if and only if e, € int(kPg). In particular, one has

codeg(Pg) = min(k € Z>g : e, € int(kPg)).

Proof. Since subsets of stable sets are also stable, for any inequality Z?Zl a;x; < b
defining a facet of Pg, one has

(i) b=0and (ay,...,a,) = —e; for some i € [n] (called a trivial facet), or

(ii) b >0 and (a1,...,an) € ZY,.

Suppose that there is a lattice point (ci,...,¢,) in int(kPg). To see that ep, €
int(kPg), it is enough to show that e, satisfies any inequality of the form (ii) strictly,
that is, > i, a; < kb.

Since (c1,...,¢,) € int(kPg), one has (c1,...,¢,) € Z% and >, a;c; < kb.
Therefore, we get > - a; < > a;c; < kb, as desired.

The converse is trivial. 0

Next, we prove the lower bound of Theorem 1.1.

PROPOSITION 2.4. Let G be a graph on [n]. Then one has codeg(Pg) > w(G) + 1.
Moreover, one has codeg(Pg) = w(G) + 1 if G is perfect.

Proof. For a clique @ of G with |Q| = w(G), the inequality >, x; < 1 defines a facet
of Pg ([16, Theorem 2.4]). Thus, if e, € int(kPg) for some k € Z~q, then k must be
greater than w(G), which implies that w(G) + 1 < codeg(P¢) from Lemma 2.3.
Suppose that G is perfect. Then any non-trivial facet of Pg is defined by the
inequality > ;o 2; < 1 for some maximal clique of G (Proposition 2.2). Thus, we
have codeg(Pg) = w(G) + 1. O

Note that, for a perfect graph G, the equality codeg(Pg) = w(G) + 1 is also shown
in the proof of [15, Theorem 2.1 (b)].

Before proceeding to the proof of Theorem 1.1, we recall the notion of the join of
graphs. Let G; and G5 be graphs on disjoint vertex sets. The join of G and Gs is
the graph obtained from the disjoint union of G; and G5 by adding an edge between
every vertex of G and every vertex of GG3. The join of more than two graphs is defined
analogously by repeatedly applying this construction.

Now, we turn to prove Theorem 1.1.

Proof of Theorem 1.1. We have already shown that codeg(Pg) > w(G) + 1 in Propo-
sition 2.4, so we prove that codeg(Pg) < x(G) + 1. By Lemma 2.3, it is enough to
show that ep,) € int((x(G) + 1)Paq).

We take a proper coloring f : [n] — [x(G)] of G. By the minimality of x(G), we
have f~1(i) # @ for any 1 < i < x(G). For any 1 < i < x(G), let G; be the graph
on f~*(i) with no edges, and let G’ be the join of G1,...,G,(g). Then since G’ is a
complete multipartite graph, G’ is a perfect graph on [n] with x(G’) = x(G). Hence
codeg(Pg) =w(G')+1=x(G')+1 = x(G)+1 from Proposition 2.4. By Lemma 2.3,
this implies that ep,) € int((x(G) + 1)Pgr. On the other hand, for each i € [x(G)],
f71(i) is a stable set of G. Moreover, the set {f~1(1),..., f71(x(G))} coincides with
the set of all maximal stable sets of G’. Hence Pg: C Pg. It then follows from
dim Pg = dim Pgr that int((x(G) +1)Per C int((x(G) +1)P¢. In particular, one has
€[] € int((x(G) + 1)7)(;. O

3. EXPLICIT FORMULA FOR THE CODEGREE OF A STABLE SET POLYTOPE

In this section, for several classes of graphs, we give an explicit formula of codeg(P¢)
in terms of G. In particular, proofs of Theorems 1.2 and 1.3 are given.
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3.1. MATCHING POLYTOPES. Let G be a graph on [n] with edge set E(G). A matching
M of a graph G is a subset of F(G) such that every vertex of G is incident to at most
one edge in M. The matching polytope of G is the convex hull of the indicator vectors
of the matchings on G, that is,

Mg = conv {eM e RP@) . M ¢ E(G) is a matching of G} .

The matching polytope M is a stable set polytope of some graph. Indeed, the line
graph L(G) of G is a graph whose vertex set is F(G) and whose edge set is

{{e,e'} C E(G):e+#¢ and ene # o}

Then one has Mg = Pr(g) by changing coordinates.
The matching polytope has the following description:

PROPOSITION 3.1 ([7]). Let G be a graph on [n] with edge set E(G). Then one has

x(e) =0, Ve € E(G)
B G Z z(e) < 1, Yo € [n]
Mg=(qzeR @ . ecia(v) s
> ae) < VU [n] U] is odd
EEE(Gu)

where 1g(v) and Gy denote the set of all edges incident to a vertex v in G and the
induced subgraph of G with vertex set U, respectively.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Since Mg = Mg, X --- X Mg, , one has
codeg(M ) = max{codeg(Mg¢,),...,codeg(Mg,)}

by Lemma 2.3, where G4, ..., G, are the connected components of G. Thus, we may
assume that G is connected and it suffices to prove that codeg(M¢g) = A(G) + 2 if
G is a complete graph K, with m vertices, where m is odd, otherwise codeg(Mg) =
A(G) + 1.

By Proposition 3.1, if eg(q) € int(kMg) for some k € Z, then the inequalities
ltg(v)| < k and |E(Gy)| < klU‘T_l hold for any v € G and U C [n] such that |U] is
odd. In particular, k¥ must be greater than A(G) for the first inequality to hold.

On the other hand, it follows from the handshaking lemma and |U|-A(Gy)—1 >0
that

_1 A(Gu) - |U]
|E(Gu)| = %ZU w0 § =5 ——
(b) 2 () 2

The equalities of (a) and (b) hold if and only if Gy = K\y|. In addition, the equality
of (c) holds as well, that is, we have |E(Gy)| = (A(G) + 1)|U‘T_1 if and only if
Gu = Kjy| = G since G is connected. Therefore, if G = K, for some odd integer m,
then codeg(Mg) = A(G) + 2, otherwise codeg(Mg) = A(G) + 1. O

Algebraic Combinatorics, Vol. 8 #6 (2025) 1747



KoJ1 MATSUSHITA & AKIYOSHI TSUCHIYA

3.2. THE STABLE SET POLYTOPES OF h-PERFECT GRAPHS. Let G be a graph on [n].
We say that G is h-perfect [17] if the stable set polytope has the following description:

x; 20, Vi € [n]
x; <1, for any clique
Po=<zeR" : :E: y clique @
i€Q
in < |C|271, for any odd cycle C'
ieC

From Proposition 2.2 every perfect graph is h-perfect. However, an h-perfect graph is
not necessarily perfect. For example, it is known that every odd cycle of length > 5
is h-perfect, but not perfect.

Now, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. If w(G) = 1, that is, G has no edges, then our assertion clearly
holds, thus we may assume that w(G) > 2.

By Proposition 2.4, we have codeg(Pg) > w(G) + 1, so it suffices to show that
ey € int((w(G)+1)Pg). To this end, we show that |C| < (w(G)+1)1 =L equivalently
2 < (w(G) = 1)(JC] — 1) for any odd cycle C of G. This is true if |C| > 5, and even if

|C| =3, w(G) > 3 in this case, so it is true either way. O

4. BOUNDS ON THE REGULARITIES OF THE TORIC RING ASSOCIATED WITH
Pa

Let S = K[z1,...,x,] denote the polynomial ring in n variables over a field K with
each deg(z;) = 1. Let 0 # I C S be a homogeneous ideal of S and
0= @ S(—j)Pri = > @PS(—5) -8 =S/ IT—=0
j=1 Jjz1
a (unique) graded minimal free S-resolution of S/I. The (Castelnuovo-Mumford) reg-
ularity of S/T is defined by

reg(S/I) =max{j —i: B;; # 0}.
See e.g. [4] for detailed information about regularity.

In this section, we discuss the regularity of the toric rings associated with sta-
ble set polytopes. In particular, a proof of Theorem 1.4 is given. Let P C RY, be
a full-dimensional lattice polytope with P NZ"™ = {ay,...,aq}, and let KJt,s] :=
K|t1,...,tn, s] be the polynomial ring in n + 1 variables over a field K. Given a non-
negative integer vector a = (ai,...,an) € Z%,, we write t* := t{115? - - - tir € K[t, s].
The toric ring of P is

K[P] := K[t*s,...,t%s] C K[t, s].

We regard K[P] as a homogeneous algebra by setting each deg(t®'s) = 1. Let R[P] =
Klx1,...,x4] denote the polynomial ring in d variables over K with each deg(z;) = 1.
The toric ideal of P is the kernel of the surjective homomorphism 7 : R[P] — K[P]
defined by 7w(z;) = t?s for 1 < ¢ < d. Note that Ip is a prime ideal generated by
homogeneous binomials. See e.g. [10] for details on toric rings and toric ideals.

We recall some properties for K[P]. A full-dimensional lattice polytope P C R™ is
called spanning if every lattice point in Z™ is affine integer combination of the lattice
points in P. Moreover, we say that P C R™ has the integer decomposition property if
for every integer k > 1, every lattice point in kP is a sum of k lattice points from P. A
lattice polytope which has the integer decomposition property is called IDP. It is easy
to see that an IDP polytope is spanning. Furthermore, a spanning polytope P is IDP
if and only if the toric ring K[P] is normal. In this case, K[P] is Cohen—Macaulay.
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The regularity reg(K[P]) := deg(R[P]/Ip) of K[P] does not have a direct combi-
natorial interpretation. However, if P is spanning, then deg(P) gives a lower bound
on reg(K[P]).

PRrROPOSITION 4.1 ([11, p. 5952]). Let P C R™ be a spanning lattice polytope. Then
one has reg(K[P]) > deg(P).

On the other hand, it is known that if K[P] is Cohen-Macaulay, then reg(K[P])
is equal to the degree of the h-polynomial of K[P] ([10, Corollary 2.18]). Moreover,
if P is IDP, then deg(P) coincides with the degree of the h-polynomial of K[P] ([10,
Theorem 4.5 and Lemma 4.22 (b)]). Hence we know the following.

PROPOSITION 4.2. Let P C R™ be an IDP lattice polytope. Then one has reg(K[P]) =
deg(P).

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. The origin 0 and each unit coordinate vector e; are vertices
of the stable set polytope Pg. This implies that P is spanning. Since deg(Pg) =
n+ 1 — codeg(Pg), it then follows from Theorem 1.1 and Proposition 4.1 that

n+1-x(G) —1=n—x(G) <deg(Pg) < reg(K[Pa]).
On the other hand, if P is IDP, then from Theorem 1.1 and Proposition 4.2 one has
reg(K[Pg]) = deg(Pg) =n+1—codeg(Pg) < n+1—-w(G) —1=n—w(G).
If G is perfect, then Pg is compressed, in particular, it is IDP ([14]). Hence we obtain
n—\(G) = reg(K[Pg]) = n — w(G),
as desired. 0

In general, stable set polytope are not always IDP. For example, let G be the graph
whose complement graph is the disjoint union of two 5-cycles. Then Pg is not IDP [13,
Proposition 8], in particular, K[Pg] is not normal. Hence we cannot apply Theorem
1.4 to obtain an upper bound on K[Pg]. However, in this case, by using Macaulay?2
[8], one has reg(K[Pg]) = 6. Hence we obtain reg(K[Pg]) = 10 — w(G). Therefore,
the following question naturally occurs.

QUESTION 4.3. Let G be a graph on [n]. Then does the following inequality hold?
reg(K[Pg]) < n— w(G).
5. EXAMPLES RELATED WITH THEOREM 1.1

We return the inequalities in Theorem 1.1. Then there are the following 4 cases:
(i) w(G)+1=codeg(Pg) = x(G) + 1;
(ii) w(G@) +1 < codeg(Pg) = x(G) + 1;
(i) w(G) + 1 = codeg(Ps) < x(G) + 1,
(iv) w(G)+1 < codeg(Pg) < x(G) + 1.
For each case, is there a graph G satisfying the condition? We can give an example
for each case.

EXAMPLE 5.1. (1) Every perfect graph satisfies the condition (i).

(2) Let n > 5 be an odd integer and set G = L(K,).Then one has w(G) =
n—1,x(G) = n and A(G) = n— 1. Hence it follows from Theorem 1.2 that G satisfies
the condition (ii).

(3) Let n > 5 be an odd integer and let G = C,, be an odd cycle of length n.
Then one has w(G) = 2 and x(G) = 3. Since it is known that C,, is h-perfect, from
Theorem 1.3 G satisfies the condition (iii).
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(4) Assume that C5 and L(K5) have no common vertices and let G be the join of Cs
and L(K5). Then one has w(G) = w(C5) +w(L(K5)) =244 =6 and x(G) = x(C5) +
X(L(K5)) = 345 = 8. Moreover, by using Normaliz [3], we obtain codeg(Pg) = 8. In
particular, (1,...,1) € R is an interior lattice point in 8Pg from Lemma 2.3. Hence
G satisfies the condition (iv).

As a preliminary question, one may ask whether the differences codeg(Pg) —
(w(G) + 1) and (x(G) + 1) — codeg(Pg) can be made arbitrarily large, either si-
multaneously or individually while keeping the other bounded or zero. More general,
we can consider the following problem.

PROBLEM 5.2. Let a, b, ¢ be integers satisfying
O<a<b<e
Determine when there exists a graph G satisfying
w(@)+1=a, codeg(Pg)=0b, x(G)+1l=c.
In other words, determine all the possible sequences
(w(G) + 1,codeg(Pg), x(G) + 1).

Note that the case a = b = ¢ in this problem can be solved by considering perfect
graphs. In investigating this problem, it seems useful to consider the join of graphs.
Indeed, for graphs G; and G5 and their join G, one has

w(G) = w(G1) + w(G2), x(G) = x(G1) + x(G2).
Moreover, in Example 5.1 (4), we have
deg(Pg) = 8 = 3+ 5 = deg(Pc;) + deg(Pr(ks)),
codeg(Pg) = 34 6 — 1 = codeg(Pc;) + codeg(Pr(k,)) — 1.

However, in general these equalities for the degree and the codegree do not hold. We
present an example where these equalities fail.

EXAMPLE 5.3. Let G be the join of two 5-cycles. Then one has deg(Pg) = 5 and
codeg(Pg) = 6. In particular, this example also satisfies the condition (iv) since
w(G) = 4 and x(G) = 6. On the other hand, deg(Pc,) = 3 and codeg(Pc,) = 3.
Hence we know that
deg(Pcs) + deg(Pcs) =0 7& 5= deg(PG)7
codeg(Pc, ) + codeg(Pc,) — 1 =5 # 6 = codeg(Pg).

Thus, for graphs G; and G5 and their join G, it is natural to ask when the equalities

deg(PG) - deg(PGl) + deg(PGz)a
codeg(Pg) = codeg(Pg, ) + codeg(Pg,) — 1

hold. A complete characterization of such pairs (G7,G2) seems to be an interesting
problem.
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