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Abstract To a vector configuration one can associate a polynomial ideal generated by powers
of linear forms, known as a power ideal, which exhibits many combinatorial features of the
matroid underlying the configuration.

In this note we observe that certain power ideals associated to transversal matroids are,
somewhat unexpectedly, monomial. Moreover, the (monomial) basis elements of the quotient
ring defined by such a power ideal can be naturally identified with the lattice points of a
remarkable convex polytope: a polymatroid, also known as generalized permutohedron. We dub
the exponent vectors of these monomial basis elements “parking functions” of the corresponding
transversal matroid.

We highlight the connection between our investigation and Stanley–Reisner theory, and
relate our findings to Stanley’s conjectured necessary condition on matroid h-vectors.

1. Introduction
Polynomial ideals generated by powers of linear forms, often called power ideals, ap-
pear in a number of mathematical contexts (see [3] and the references therein.)

This paper is concerned with a family of power ideals associated to a vector configu-
ration. These were originally introduced in the context of multivariate approximation
theory, mainly as a tool to study the space spanned by the local polynomial pieces
of a box spline and their derivatives [11]. Such power ideals are known to strongly
reflect combinatorial aspects of the underlying vector configuration (see e.g. Theo-
rem 2.2 below), and have generated renewed interest in recent years, owing to their
rich geometry and combinatorics and to their relevance in subjects as varied as the co-
homology of homogeneous manifolds and Cox rings (see [3, 13, 16] and the references
therein.) We delay a precise definition until Section 2.

In [23] Postnikov and Shapiro introduced and investigated a class of power ideals
associated to graphs. Their definition essentially coincides with the one from mul-
tivariate approximation theory, although they were apparently unaware of such de-
velopments. Alongside they introduced a monomial ideal associated to a graph, and
showed that both power and monomial ideals of a graph define graded quotient rings
with the same Hilbert function, and vector space dimension equal to the number of
spanning trees of the graph. Remarkably, the standard basis elements modulo the
monomial ideal also form a basis for the quotient ring defined by the power ideal;
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their exponent vectors received the name “G-parking functions”, as they specialize
to the renowned parking functions. G-parking functions turn out to be intimately
related to the chip-firing game on a graph, and have attracted much attention (see [5]
and the references therein).

The motivation for this note is an attempt of the author to extend the methods
of Postnikov and Shapiro beyond graphs. For this purpose, an obvious candidate
to contemplate is a class of vector configurations associated to transversal matroids
(see Section 3 for definitions). Thus our subject matter is a family of power ideals
associated to transversal matroids, with a focus on monomial bases for the quotient
rings they define.

Our first main result is that, surprisingly, no monomial basis for such a power ideal
needs to be constructed, in the first place: the power ideals we consider are mono-
mial (Theorem 4.1). A priori, this property is rather unexpected for power ideals of
arbitrary vector configurations, as their generators comprise powers of linear forms
of varying degrees and supports. By way of example, the smallest graph whose corre-
sponding power ideal is not monomial is the graph with 4 vertices and 5 edges (see [23,
Example 3.2]).

Secondly, the exponent vectors of the standard monomials modulo such a (mono-
mial) power ideal can be readily identified with the lattice points of a polymatroid
(a.k.a. generalized permutahedron), a convex polytope defined by a submodular func-
tion (Corollary 4.8). We illustrate both results in Example 1.1 below. By a (largely ad
hoc) parking interpretation of such nonnegative integer vectors, and in analogy with
the G-parking functions of Postnikov and Shapiro, we have dubbed them “A-parking
functions” associated to the set system A defining the transversal matroid (see Re-
mark 4.4). We emphasize however that a chip-firing-like interpretation of A-parking
functions is missing. This stands in contrast with G-parking functions, which arise as
superstable configurations in the chip-firing terminology.

Example 1.1. Let k = R and V ⊂ R3 be the vector configuration consisting of the
columns of the following matrix:1 2 0 0 0 0 7 0 9 10

0 4 0 0 0 36 49 64 0 0
0 8 27 64 125 216 0 0 0 0

 .

Such vector configuration gives a representation for the transversal matroid defined by
the set system A = ({1, 2, 7, 9, 10}, {2, 6, 7, 8}, {2, 3, 4, 5, 6}). Its corresponding power
ideal I(V ) ⊂ R[x1, x2, x3] is generated by the following powers of linear forms:

(−2x2 + x3)6, (x2)4, (−6x2 + x3)6, (x3)5, (−2x1 + x2)6, (−8x1 + 6x2 − x3)8,

(−28x1 + 4x2 + 5x3)8, (−4x1 + x3)8, (x1)5, (−7x1 + x2)6, (−42x1 + 6x2 − x3)8.

A Gröbner basis computation with Macaulay2 [15] shows that I(V ) is in fact
monomial, since it is generated by the following monomials:
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There are 70 monomials modulo I(V ), whose exponent vectors are the lattice
points of the following polytope:

C(A) :=

(q1, q2, q3)ᵀ ∈ R3
>0 :

q1 6 4, q2 6 3, q3 6 4,
q1 + q2 6 5, q1 + q3 6 7, q2 + q3 6 5,
q1 + q2 + q3 6 7


and are depicted in Figure 1. A 3d model of this polytope, generated with Poly-
make [14], is available as an ancillary PDF file for the arXiv version.
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Figure 1. Polytope whose lattice
points correspond to the exponent
vectors of the standard monomial
basis modulo the power ideal I(V )
from Example 1.1. Exponents of
different degrees are shown in dif-
ferent colors to aid in visualization.

Key to our results are the classical Hall’s marriage theorem, its generalization to
independent transversals of a set system by Rado, and a generalization of the latter
to polymatroids by McDiarmid. We refer the reader to the books of Lovász and
Plummer [18] and of Schrijver [24] for a comprehensive account of these topics.

The power ideal associated to a vector configuration V defines a graded ring whose
Hilbert function is known to coincide with the h-vector of the (abstract) simplicial
complex of subsets T of V such that span(V rT ) = span(V ) (cf. Remark 5.5). In this
light, we believe that power ideals of vector configurations are most naturally regarded
in the framework of Stanley–Reisner theory of matroids; we expand on this point of
view in Section 5. In particular, our findings imply a proof of Stanley’s conjecture for
the class of h-vectors of cotransversal matroids, different (but cognate, after all) from
an earlier one by Oh [21]. This connection, and the relation with Oh’s work, is spelled
out in Remark 5.5.

The outline of the paper is as follows. Sections 2 and 3 collect some elementary
notions and results concerning vector configurations and transversal matroids, respec-
tively. Section 4 presents our main results mentioned above, namely Theorem 4.1 and
Corollary 4.8. Finally, Section 5 is a brief excursion into Stanley–Reisner theory of
matroids, intended to frame our investigation on power ideals.

Notation. In this note we only consider finite sets and collections, so we will drop
explicit mention of the hypothesis “finite” throughout. Given a positive integer n, we
use the notation [n] := {1, . . . , n}. Given a set S, |S| denotes the cardinality of S, and
2S stands for the power set of S, that is, the set of subsets of S. The set of nonnegative
reals is denoted by R>0 and the set of nonnegative integers by Z>0. Given an element
q = (q1, . . . , qd) ∈ Zd>0, we write xq for the monomial in k [xj : j ∈ [d]] with exponent
vector q, that is, xq :=

∏
j∈[d] x

qj

j .

2. Vector configurations, their matroids and their power ideals
Let k be a field. A vector configuration over k is a labeled collection V = (vs : s ∈ S) of
(not necessarily distinct) vectors in kd, for some d ∈ Z>0. Such a vector configuration
defines a matroid M(V ) on the ground set S, whose structure is determined by its
rank function rM(V ) : 2S → Z>0, defined by the rule:

T 7→ dimk span(vs : s ∈ T ), for T ⊆ S.

Matroids arising from vector configurations in such a way are said to be representable
(over k). We largely adopt matroid theory notation from Oxley’s book [22], to which
we refer the reader for undefined terminology. Aspects relating to the Tutte polynomial
can be consulted in [7].
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Caveat: Since this note is exclusively concerned with representable matroids, we
will often commit the following abuse of notation. In referring to the groundset of a
matroid M(V ) (or to subsets or elements thereof), we will interchangeably mean the
label set S or the vector collection V (or subsets or elements thereof).

In the following, we write M := M(V ) and r := rM(V ), and assume without loss
of generality that span(V ) = kd, so the rank of M equals d. Let H be a hyperplane
of(1) M , `H be any linear form vanishing on span(H) and ρH := |V rH|.

Definition 2.1. The power ideal of V is the following ideal of k [xj : j ∈ [d]]:
I(V ) := (`HρH : H hyperplane of V ) .

The power algebra of V is the quotient P(V ) := k [xj : j ∈ [d]] /I(V ).

Clearly, P(V ) is a graded k-algebra. We write P(V )k for its k-th graded component,
so that P(V ) =

⊕
k∈Z>0

P(V )k, and Hilb(P(V ); z) :=
∑
k∈Z>0

dimk P(V )kzk for its
Hilbert series.

Many enumerative invariants of a matroid M arise as specializations of the Tutte
polynomial TM (x, y). It occupies a special position in the present context because of
the following theorem, which illustrates the combinatorial nature of power ideals.

Theorem 2.2 ([3, 11, 16]). Hilb(P(V ); z) := z|S|−dTM
(
1, z−1) .

Following Ardila [2, Chapter 4] and Postnikov and Shapiro [23, Section 9], the
power ideal of V can be presented as the ideal of relations of a certain “squarefree
algebra”. Concretely, denote by FV the quotient of k [ys : s ∈ S] by the relations:

y2
s for s ∈ S,∏

s∈T
ys for T ⊆ S cocircuit of M,

and consider the k-algebra homomorphism ΦV : k [xj : j ∈ [d]]→ FV defined by:

ΦV : xj 7→ rj :=
∑
s∈S

(vs)jys,

where (vs)j denotes the j-th coordinate of vector vs ∈ V .

Lemma 2.3 ([23, Corollary 10.5]). ker ΦV = I(V ).

We postpone the proof of Lemma 2.3 to Section 5, to highlight the relation between
power ideals and Stanley–Reisner theory.

3. Transversal matroids and their vector configurations
Let A be a set system on a ground set S, that is, a labeled collection of nonempty
subsets of a set S. We use the notation A = (A(j) : j ∈ [d]), where d is a positive
integer and A(j) ⊆ S for j ∈ [d] := {1, . . . , d}. Given J ⊆ [d] we write A(J) :=⋃
j∈J A(j).
A partial transversal of A is a subset T ⊆ S whose elements belong to distinct

members of A, that is, such that T = {sj : j ∈ J} for some J ⊆ [d], where sj ∈ A(j)
for each j ∈ J . The partial transversals of A constitute the independent sets of a
matroid M(A) on the ground set S [8]. Matroids arising from set systems in such a
way are known as transversal matroids(2). By removing subsets in A if necessary, we

(1)By the caveat, H may thus refer to a subset of V or to the corresponding index subset of S.
(2)Transversal matroids can be equivalently defined in terms of matchings on bipartite graphs

(see e.g. [22, Section 1.6]). We opt for the set system point of view throughout.
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may assume in the following that the rank of M(A) equals d; that this entails no loss
of generality follows from [8, Lemma 5.1.1].

It is well known that every transversal matroid is representable over a large enough
field. Let k be such a field, and for every j ∈ [d] and s ∈ S define scalars v(s, j) ∈ k
such that v(s, j) = 0 if and only if s /∈ A(j), and the nonzero v(s, j)’s are sufficiently
generic. For every s ∈ S define the vector vs := (v(s, j) : j ∈ [d])ᵀ ∈ Rd. The resulting
vector configuration V (A) := (vs : s ∈ S) representsM(A) over R, that is,M(V (A)) =
M(A) [8, Theorem 5.4.7]. We refer the reader to [4] or [8, Section 5.4] for further
details on this construction. Underlying this representation of transversal matroids
is the following existence statement of partial transversals in the case when |S| = d.
For future reference, we have supplemented it with the celebrated Hall’s marriage
theorem, which asserts the equivalence of statements 3.1(a) and 3.1(c) below.

Theorem 3.1 ([18, Theorem 8.2.1]). Let A = (A(j) : j ∈ [d]) be a set system with
|S| = d. Denote by det(V (A)) the determinant of the d× d matrix whose columns are
given by the vectors in V (A). The following statements are equivalent:

(a) A has a partial transversal of size d.
(b) det(V (A)) 6= 0.
(c) |A(J)| > |J | for every J ⊆ [d].

4. Main result
To present our main result, we fix a rank-d set system A = (A(j) : j ∈ [d]) on S,
along with a representation V (A) := (vs : s ∈ S) ⊂ kd, as constructed in Section 3.
To lighten notation, we set V := V (A), M := M(A) = M(V (A)). Let M∗ denote the
rank-(|S| − d) matroid on S dual to M , and r∗ be its rank function.

Theorem 4.1. The power ideal I(V ) ⊂ k [xj : j ∈ [d]] is a monomial ideal.

Our proof of Theorem 4.1 proceeds directly, by identifying the monomial ideal
N (A) ⊂ k [xj : j ∈ [d]] that I(V ) is equal to. To this end, we introduce a set function
fA : 2[d] → Z>0 defined by the rule:

J 7→ r∗(A(J)), for J ⊆ [d].

It is not difficult to see that fA(I ∩ J) + fA(I ∪ J) 6 fA(I) + fA(J) holds for every
I, J ⊆ [d], so that fA is a submodular function (see e.g. [24, Section 44.1a]). Like every
submodular function, fA defines a convex polytope known as a polymatroid.

Definition 4.2. The parking polymatroid of A is the polymatroid C(A) defined by
fA, that is, the convex polytope in Rd defined as follows:

C(A) :=

q ∈ Rd>0 :
∑
j∈J

qj 6 fA(J) for every J ⊆ [d]

 .

Definition 4.3. The parking ideal of A is the ideal N (A) of k [xj : j ∈ [d]] defined by
the monomials {xq : q ∈ Zd>0, q /∈ C(A)}.

Remark 4.4. It is natural to consider the following “parking” interpretation of the
lattice points of C(A). A parking lot offers a set S of labeled parking spots for cars
of d different brands, subject to the peculiar rule that cars of brand j ∈ [d] may
only occupy parking spots A(j) ⊆ S. A number of cars totalling qi + 1 > 0 cars
of brand i, for i ∈ [d], arrive to park in this parking lot. We say that the tuple
q = (q1, . . . , qd) ∈ Zd>0 is an “A-parking function” if all the cars manage to park while
observing the parking lot’s rule.
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To relate this to the polymatroid C(A), let A = (A(j) : j ∈ [d]) be the set system
defined by the parking rule (we assume that A has rank d; that is, we neglect car
brands which may not park at all.) Notice that if q ∈ Zd>0 is an “A-parking function”,
then a collection of cars comprising qi > 0 cars of brand i, for i ∈ [d], can park in a
subset T ⊂ S of the parking spots, in such a way that at least one car of each brand
can still find a parking spot among the remaining ones S r T . In other words, S r T
contains a partial transversal of size d or, equivalently, T is an independent set ofM∗.

Thus q ∈ Zd>0 is an “A-parking function” if and only if A has a q-transversal
that is independent in M∗, where a q-transversal of A is defined as a subset T =
T1 ∪ . . . ∪ Td ⊆ S, such that Tj ⊆ A(j), |Tj | = qj and Tj ∩ Tj′ = ∅ for j, j′ ∈ [d]
distinct. By Rado’s theorem for polymatroids (see [24, Section 44.6g]), A has a q-
transversal that is independent in M∗ if and only if q ∈ C(A), that is, if and only if∑

j∈J
qj 6 r

∗ (A(J)) = fA(J), holds for all J ⊆ [d].

This parking analogy was distilled in the course of proving Proposition 4.7. To-
gether with the work of Postnikov and Shapiro on power ideals and parking functions
associated to graphs [23], it motivated the chosen names for C(A) and N (A). We
should point out, however, that the term “A-parking function” is chiefly understood
as a nickname, because a chip-firing-like interpretation for it is currently unavailable.
It is a prominent problem in combinatorics to find variations and higher dimensional
analogs of the chip-firing game on graphs.

Example 4.5. To illustrate the parking interpretation in Remark 4.4 above, let A =
({1, 2, 7, 9, 10}, {2, 6, 7, 8}, {2, 3, 4, 5, 6}) as in Example 1.1. Then q = (3, 1, 3) ∈ Z3

>0
is an A-parking function. For instance, 4 cars of brand 1 could park in lots 1, 2, 9 and
10, 2 cars of brand 2 could park in lots 7 and 8, and 4 cars of brand 3 could park lots
3, 4, 5 and 6. Accordingly, ΦV (xq) = 0, as asserted in Proposition 4.7.

Proposition 4.6. I(V ) ⊆ N (A).

Proof. Let H ⊂ S be a hyperplane of M and `H ∈ k [xj : j ∈ [d]] be an associated
linear form defined as in Section 2. Let J ⊆ [d] be the subset of indices of the nonvan-
ishing coefficients of `H and q ∈ Zd>0 be the exponent vector of a monomial in `HρH .
We claim that

∑
j∈J qj > fA(J), so that xq ∈ N (A).

Assume span(H) = span({vi1 , . . . , vid−1}) for some vectors vi1 , . . . , vid−1 ∈ V . Then
`H can be written as the determinant of the matrix with columns given by the vectors
vi1 , . . . , vid−1 and the vector (x1, . . . , xd)ᵀ:

`H = det

vi1 · · · vid−1 x1
...
xd

 ∈ k [xj : j ∈ [d]] ,

and by Theorem 3.1 it follows that its j-th coefficient is nonzero if and only if the set
system (A(j′) ∩H : j′ ∈ [d] r {j}) has a partial transversal of size d− 1.

By Hall’s marriage theorem (cf. Theorem 3.1), this observation implies that
|J ′| 6 |A(J ′) ∩ H| whenever J ′ 6⊇ J . Similarly, |J | > |A(J) ∩ H| necessarily holds,
because otherwise there would be some j ∈ [d] r J such that the set system
(A(j′) ∩H : j′ ∈ [d] r {j}) has a partial transversal of size d − 1, which contradicts
the characterization of the vanishing coefficients of `H . Now, since the j-th coefficient
of `H vanishes whenever j /∈ J , clearly `H(vs) = 0 whenever s /∈ A(J), and hence
S r A(J) ⊆ H. Thus we find |A(J)| = |A(J) ∩ H| + |S r H| = |A(J) ∩ H| + ρH ,
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which implies the inequality

(1) |A(J)| < |J |+
∑
j∈[d]

qj = |J |+
∑
j∈J

qj .

On the other hand, r∗ can be written in terms r as follows (cf. [22, Proposi-
tion 2.1.9]):

r∗(T ) = r(S r T )− r(S) + |T | for T ⊆ S.
Also, we know that the rank function of the transversal matroid defined by A is given
by (cf. [8, Proposition 4.2.3]):

r(T ) = min{|A(J ′) ∩ T |+ d− |J ′| : J ′ ⊆ [d]} for T ⊆ S.

Combining the first equality evaluated at A(J) with the second one evaluated at
S rA(J), we obtain the following inequality:

(2) r∗(A(J)) 6 |A(J)| − |J |.

Equations (1) and (2) then yield our claim that
∑
j∈J qj > r∗(A(J)). �

Proposition 4.7.N (A) ⊆ ker ΦV .

Proof. Let q ∈ Zd>0 be such that xq ∈ N (A). The squarefree monomials in the ex-
pansion of the image ΦA(xq) ∈ FV can be seen as q-transversals of A, as defined in
Remark 4.4. Since q /∈ C(A), no such q-transversal is independent in M∗ or, equiv-
alently, every such q-transversal is divisible by

∏
s∈T ys for some cocircuit T of M .

Thus ΦA(xq) = 0. �

Corollary 4.8. {xq : q ∈ C(A) ∩ Zd>0} forms a basis for P(V ).

5. Connection with Stanley–Reisner theory
Throughout this section, let V = (vs : s ∈ S) ⊂ kd be a vector configuration which
spans kd and M = M(V ) be its rank-d matroid.

As in [2, Chapter 4] and [23, Section 9], our proof of Lemma 2.3 draws upon a vector
space of polynomials associated to V whose dimension can be calculated easily. To
introduce it, let vs(x) :=

∑
j∈[d](vs)jxj ∈ k [xj : j ∈ [d]].

Definition 5.1. The cocircuit ideal of V is following the ideal of k [xj : j ∈ [d]]:

J (V ) =
(∏
s∈T

vs(x) : T ⊆ S cocircuit of M
)

The cocircuit algebra of V is the quotient D(V ) := k [xj : j ∈ [d]] /J (V ).

It is well-known that D(V ) has the same Hilbert series as P(V ) (see e.g. [6, 10, 16]).
We give a proof of this fact based on Theorem 2.2 and on some elementary results in
Stanley–Reisner theory.

Definition 5.2. The Stanley–Reisner ideal of M is the ideal S(M) ⊆ k [ys : s ∈ S]
generated by the monomials

{∏
s∈T ys

}
, as T ⊆ S ranges over the circuits of M . The

Stanley–Reisner ring of M is the quotient ring k[M ] := k [ys : s ∈ S] /S(M).

The following Lemma collects the preliminary results from Stanley–Reisner the-
ory needed in the sequel. These are adaptations of more general statements to the
particular context of representable matroids, relevant for our purposes.
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Lemma 5.3.
(a) The following d linear forms are a linear system of parameters for k[M ] ([25,

Lemma III.2.4]):

θj :=
∑
s∈S

(vs)jys, j ∈ [d].

(b) Hilbk[M ]/(θ1, . . . , θd) = zdTM (z−1, 1) ([7, Equation (7.10) ff.], [12, Theo-
rem A3]).

(c) The quotient ring k[M ]/(θ1, . . . , θd) is spanned by the monomials {
∏
s∈T ys},

where T ranges over the independent sets of M ([25, Theorem III.2.5 ff.]).

Theorem 5.4. Let W = (ws : s ∈ S) ⊂ kn−d be such that M(W ) = M∗, and θi :=∑
s∈S(ws)iys, for i ∈ [n − d], be the corresponding linear system of parameters

for k[M∗] from Lemma 5.3(a). Then D(V ) ∼= k[M∗]/(θ1, . . . , θn−d). In particular,
Hilb(D(V ); z) = zn−dTM

(
1, z−1), and D(V ) is spanned as a k-vector space by the

products {
∏
s∈T vs(x)}, where T ranges over independent subsets of M∗.

Proof. For notational convenience, let us first identify the common ground set S of
M andM∗ with [n], and assume without loss of generality that the set {1, 2, . . . , d} ⊂
[n] is a basis of M , so {d + 1, . . . , n} is a basis of M∗. Let g−1 ∈ GLn(k) be a
transformation acting on k[y1, . . . , yn] as g−1 : yd+i 7→ θi for 1 6 i 6 n−d. We choose
g−1 so that it has the following matrix form when expressed in the basis {y1, . . . , yn}:

g−1 =

B1 0d×(n−d)
w1 . . . wn

 , so that g =

v
ᵀ
1 0d×(n−d)

...
vᵀn B2

 ,

where 0d×(n−d) denotes a d×(n−d) matrix of zeros, and B1 ∈ kd×d, B2 ∈ k(n−d)×(n−d)

are suitable nonsingular matrices (which exist, by our assumption that {1, . . . , d} is a
basis of M , and are uniquely determined). It follows that g · k[M∗]/(θ1, . . . , θn−d) ∼=
D(V ), which establishes the isomorphism. The remaining statement follows by acting
with g on the spanning set in Lemma 5.3(c). �

Proof of Lemma 2.3. Clearly, the ideal of relations ker ΦV ⊂ k [xj : j ∈ [d]] of the
squarefree algebra Im(ΦV ) contains the power ideal I(V ). Indeed, the linear form `H
associated to a hyperplane H of V maps to a linear form ΦV (`H) ∈ FV with s-th
coefficient equal to `H(vs), which vanishes if and only if vs ∈ H. It follows that the
nonvanishing coefficients of ΦV (`H) are indexed by elements in the complement of
H in V , which is a cocircuit T of V . Since the only squarefree term of ΦV (`HρH ) is
a scalar multiple of

∏
s∈T ys, we get `HρH ∈ ker ΦV . In particular, this implies the

following inequality, understood coefficientwise:

(3) Hilb(Im(ΦV ); z) 6 Hilb(P(V ); z).

To prove the containment ker ΦV ⊆ I(V ), we reproduce the linear-algebraic argu-
ment in [2, Chapter 4] and [23, Section 9] to establish the equality of the dimensions
of the graded components of Im(ΦV ) and D(V ). Then, by Theorems 2.2 and 5.4,
inequality (3) holds with equality, so ker ΦV = I(V ).

By Theorem 5.4, the k-th graded component D(V )k of D(V ) is spanned by the
products ∏

s∈T
vs(x) :=

∏
s∈T

∑
j∈[d]

(vs)jxj

 ,
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where T ⊆ S ranges over subsets with |T | = k and r(S r T ) = d. On the other hand,
the k-th graded component Im(ΦV )k of Im(ΦV ) is spanned by the products

∏
j∈[d]

r
qj

j :=
∏
j∈[d]

(∑
s∈S

(vs)jys

)qj

,

where q ∈ Zd>0 ranges over exponent vectors with
∑
j∈[d] qj = k.

Given T ⊆ S with |T | = k and r(S r T ) = d, and q ∈ Zd>0 with
∑
j∈[d] qj = k,

denote by λT,q ∈ k the coefficient of xq in the expansion of
∏
s∈T vs(x) and by µT,q ∈ k

the coefficient of
∏
s∈T ys in the expansion of

∏
j∈[d] r

qj

j . Then λT,q = µT,q. The claim
follows since the dimension of D(V )k (resp. Im(ΦV )k) is given by the rank of the
matrix with rows labeled by {T ⊆ S : |T | = k, r(S r T ) = d}, columns labeled by
{q ∈ Zd>0 :

∑
j∈[d] qj = k}, and entries λT,q (resp. µT,q). �

Remark 5.5.A remarkable result in Stanley–Reisner theory (cf. [25, Corollary II.3.2])
is that the coefficients of the Hilbert series:

Hilb (k[M∗]/(θ1, . . . , θn−d); z) = h0 + h1z + · · ·+ hn−dz
n−d

are nonnegative integer which coincide with the entries of the h-vector (h0, . . . , hn−d)
of the independence complex of M∗.

The study of numerical properties of h-vectors (such as log-concavity or unimodal-
ity) and of other combinatorial invariants of matroids is an active subject of research
that has experienced major breakthroughs in recent years (e.g. [1, 17]).

In this regard, Stanley conjectured in 1977 that h-vectors of matroids are pure
O-sequences (cf. [25, Conjecture III.3.6]). This means that given a matroid h-vector
(h0, h1, . . .), there exists an order ideal of monomials Q ⊂ k[x1, . . . , xh1 ] such that Q
contains exactly hk monomials of degree k, for k ∈ Z>0, and its maximal monomials
with respect to divisibility have all the same degree. This conjecture has attracted
considerable attention, but is only known to hold in few special cases (see [9, 19, 21]
and the references therein).

It is well-known (and not difficult to prove) that the integer points of a polymatroid
can be regarded as the exponent vectors of a pure order ideal of monomials (see e.g. [24,
Theorem 44.5]). Therefore, in light of Theorem 2.2 and Lemma 5.3, Corollary 4.8
implies that Stanley’s conjecture holds for the family of matroids dual to transversal
matroids, known as strict gammoids or cotransversal matroids.

This fact had already been established by Oh in [21], and his proof also relied
on associating a polymatroid to a set system. Interestingly, it turns out that Oh’s
polymatroid is almost equivalent to C(A), even though our point of view is completely
different. To see this, associate to every element s ∈ S the indicator function gs : 2[d] →
Z>0, given by the rule:

J 7→

{
1 if s ∈ A(J)
0 else

, for J ⊆ [d],

and note that the gs’s are nondecreasing submodular functions. Thus their sum
gA :=

∑
s∈S gs = |A(J)| is nondecreasing and submodular as well, and by [24, The-

orem 44.6], the polymatroid O(A) ⊂ Zd>0 associated to gA is the one constructed
in [21] (modulo affine projection). We leave to the reader the easy verification that
the so-called base points of O(A) from [21] correspond to the image of C(A) ∩ Zd>0
under the shift q 7→ q + (1, . . . , 1).

Algebraic Combinatorics, Vol. 2 #4 (2019) 581



Camilo Sarmiento

Remark 5.6. Extensive computations suggest that the Betti diagrams of the power
ideal and the cocircuit ideal associated to a transversal matroid (via the representation
in Section 3) coincide, although we have failed to prove so.

It is indeed reasonable to expect such an equality to hold, given that it has been
observed in the graph case as well. Concretely, it is conjectured in [23] that the power
ideal and the monomial ideal (known as “G-parking function ideal”) associated to a
graph G have equal Betti diagrams. On the other hand, Mohammadi and Shokrieh
have shown in [20, Lemma 10.4] that the Betti diagram of the latter monomial ideal
coincides with that of the Stanley–Reisner ring of the corresponding cographic ma-
troid (which equals the Betti diagram of a certain cocircuit ideal associated to G, by
Theorem 5.4).

To the best of our knowledge, equality of the Betti diagrams is wide open in
the graph case. We leave the corresponding statement for transversal matroids as
a conjecture.
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