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Representation stability on the cohomology
of complements of subspace arrangements

Artur Rapp

Abstract We study representation stability in the sense of Church and Farb of sequences of
cohomology groups of complements of arrangements of linear subspaces in real and complex
space as Sn-modules. We consider arrangements of linear subspaces defined by sets of diagonal
equalities xi = xj and invariant under the action of Sn which permutes the coordinates. We
provide bounds for the point when stabilization occurs and an alternative proof of the fact that
stabilization happens. The latter is a special case of very general stabilization results proved
independently by Gadish and by Petersen; for the pure braid space the result is part of the
work of Church and Farb. For the latter space, better stabilization bounds were obtained by
Hersh and Reiner.

1. Introduction
In this paper, we consider arrangements of diagonal subspaces of Rdn for natural
numbers d and n. Let π be a set partition of {1, . . . , n}. LetW d

π be the linear subspace
of n-tuples (w1, . . . , wn) of points in Rd such that wi = wj whenever i and j are in the
same block of π. For an integer partition λ we denote by Adλ the arrangement of all
subspaces W d

π such that π is of type λ. More generally, set AdΛ = ∪λ∈ΛAdλ for every
finite set Λ of integer partitions of n. The complement Md

Λ = Rdn r ∪W∈AdΛW is a
real manifold. If Λ = {λ}, we writeMd

λ forMd
Λ. All representations, homology groups

and cohomology groups in this paper are taken with coefficients in C. The action of
the symmetric group Sn on n-tuples of points in Rd by permuting the coordinates
induces an Sn-representation on the reduced singular cohomology H̃i(Md

Λ). Formulas
for these Sn-representations were determined by Sundaram and Welker in [8]. We
look into representation stability in the sense of Church and Farb (see [2]) of these
modules. Our main purpose is to prove that the sequence of modules stabilizes, and
to obtain stabilization bounds. This is the content of Theorem 1.1. The fact that
this sequence stabilizes is a special case of results of Gadish ([3, Theorem A]) and
Petersen ([6, Theorem 4.15]). The case Λ = {(2, 1n−2)} was proved by Church ([1,
Theorem 1]) and for this case Hersh and Reiner provided better stabilization bounds
([4, Theorem 1.1]). For an integer partition λ we write l(λ) for its length i.e. its number
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of parts. As in [4, Definition 2.5] let rank(λ) := |λ| − l(λ) be the rank of λ. Note that
set partitions of type λ have rank(λ) as their poset rank in the partition lattice.

Theorem 1.1. Let Λ be a nonempty finite set of integer partitions of the number n0
not containing (1n0). For every n > n0 let Λ(n) be the set of all integer partitions of n
obtained from integer partitions in Λ by adding n− n0 parts of size 1. Let rank(Λ) =
min{rank(λ) | λ ∈ Λ}. For every i and d > 2 the sequence {H̃i(Md

Λ(n))}n stabilizes
at 4(i+ 1− rank(Λ))/(d− 1).

In Section 2, we provide the definition of representation stability and prove Theo-
rem 1.1. In Section 3, we consider the special caseMd

(k,1n−k) for k > d+ 1. We prove
that stability in this case starts earlier than in the bound given in Theorem 1.1.

2. Proof of the main theorem
An integer partition λ of a natural number n is a finite sequence (λ1, λ2, . . .) with
λ1 > λ2 > · · · and

∑
i>1 λi = n. We sometimes denote λ by (1m1(λ), . . . , nmn(λ))

wheremi(λ) is the number of occurrences of the number i in λ for 1 6 i 6 n. Given an
integer partition λ = (λ1, λ2, . . .) of n we write λ+� to denote (λ1 +1, λ2, λ3, . . .). Let
V be an Sn-representation and

∑
λ`n aλS

λ, aλ ∈ C, its decomposition into irreducible
Sn-representations Sλ. Then we write

V +� :=
∑
λ`n

aλS
λ+�.

We use the same notation when Sn-representations are replaced by symmetric func-
tions (see [5] for background on symmetric functions). As in [5] we write sλ for the
Schur function indexed by the integer partition λ and ch for the Frobenius char-
acteristic. Henceforth we simply refer to this as characteristic. The above equation
becomes

ch(V ) +� :=
∑
λ`n

aλsλ+�.

Now let n0 ∈ N. Let {Vn}n>n0 be a sequence of Sn+n0 -representations or a sequence
of characteristics of Sn+n0 -representations. We say that this sequence stabilizes at
m > n0, if

Vn = Vn−1 +�
for all n > m. We say that the sequence stabilizes sharply at m, if m is the smallest
integer such that

Vn = Vn−1 +�
for all n > m. The following lemma is a generalization of [4, Lemma 2.2].

For integer partitions ν, λ and µ with µ ⊆ ν, we write LRνµ,λ for the set of all
Littlewood-Richardson tableaux of shape ν/µ and weight λ. A Littlewood-Richardson
tableaux T of shape ν/µ and weight λ is a semistandard skew tableau of shape ν/µ
whose boxes are labeled with λ1 1’s, λ2 2’s etc. and concatenating the reversed rows
of T from top to bottom yields a word w with the property: In every initial part of w
the integer i occurs at least as often as i+ 1 for every i > 1.

Lemma 2.1. Let λ and α be integer partitions. For every n > α1 we consider the
integer partition (n, α) = (n, α1, α2, . . .). The sequence {s(n,α)sλ}n stabilizes sharply
at λ1 + α1. In other words

s(n,α)sλ = s(n−1,α)sλ +�

if and only if n > λ1 + α1.
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Proof. Suppose n > λ1 + α1. Let ν be an integer partition of n + |λ| + |α| with
(n, α) ⊆ ν. By the Littlewood-Richardson rule (see [5]) the multiplicity of sν in
s(n,α)sλ is #LRν(n,α),λ. Let ν′ be the integer partition of n − 1 + |λ| + |α| obtained
from ν by replacing ν1 by ν1 − 1. We define the map

φ : LRν(n,α),λ → LRν
′

(n−1,α),λ

by the following procedure: Remove the first empty box in the first row of the tableau
and then move all other boxes of the first row one place to the left. The two steps are
illustrated below with n = 5, α = (1, 1), λ = (3, 1) and ν = (6, 4, 1):

1
1 1 2 →

1
1 1 2 →

1
1 1 2

.

We want to show that the resulting tableau is indeed a Littlewoood-Richardson
tableau so that φ is well defined. The only condition that has to be checked is that,
in the first two rows, we have no two 1’s lying in the same column. But this fol-
lows from the inequality ν1 > n, since n > λ1 + α1 implies that n is larger than
the number α1 of empty boxes in the second row plus the number of 1’s in the sec-
ond row. Note that φ has an inverse map: Given a tableau in LRν′n−1,λ we move the
first row one place to the right and put an empty box in the gap. So φ is bijective
and #LRν(n,α),λ = #LRν′(n−1,α),λ. This shows that {s(n,α)sλ}n stabilizes at λ1 +α1 or
sooner. Now let n = λ1+α1 and ν = (n, n, λ2+α2, λ3+α3, . . .). There is a Littlewood-
Richardson tableau of shape ν/(n, α) and weight λ: We look at the Ferrers diagram of
ν and put λ1 1’s at the end of the second row, λ2 2’s at the end of the third row and so
on. It follows that we have a Schur function sν with ν1 = ν2 and multiplicity greater
than or equal to 1 in the decomposition of s(n,α)sλ. This shows that s(n,α)sλ cannot
equal f +� for any symmetric function f , completing the proof of sharpness. �

Though the special case of Lemma 2.1 where α = () ([4, Lemma 2.2]) suffices
to prove our main results, Theorems 1.1 and 3.3, the general case might also be of
interest as we show in Section 4. For a finite arrangement A of linear subspaces of
Rdn, the intersection lattice LA is the set of intersections of arbitrarily many elements
of A ordered by reverse inclusion. The least element 0̂ is Rdn, the empty intersection,
and the greatest element 1̂ is the intersection of all elements of A. For a subset T of
LA the join sublattice of LA generated by T consists of all intersections of arbitrarily
many elements of T also ordered by reverse inclusion. If A is the arrangement of
diagonal subspaces given by equations of the form wi = wj for 1 6 i < j 6 n,
w = (w1, . . . , wn) ∈ (Rd)n, the intersection lattice LA is isomorphic to the lattice
Πn. For a set partition π ∈ Πn, we also write π for the corresponding subspace of
Rdn. If π ∈ Πn is a set partition into the subsets B1, . . . , Bl of {1, . . . , n}, we write
π = B1| · · · |Bl. In this notation, we have 0̂ = {1}|{2}| · · · |{n}. The set partition
π = B1| · · · |Bl is said to be finer than π′ = C1| · · · |Cm, if for every 1 6 i 6 l there
is a 1 6 j 6 m such that Bi ⊆ Cj . We may reorder the sets B1, . . . , Bl such that
#B1 > · · · > #Bl. The integer partition (#B1, . . . ,#Bl) is then called the type of π.
If Λ is a set of integer partitions of n, then ΠΛ is the join sublattice of Πn generated
by all set partitions of type λ for all λ ∈ Λ.

Proof of Theorem 1.1. By [8, Theorem 2.5(ii)] we have

H̃i(Md
Λ(n)) =

⊕
π∈(Π>0̂

Λ(n) )/Sn

IndSn(Sn)π (H̃codim(π)−i−2([0̂, π])⊗ H̃codim(π)−1(Sdn−1∩π⊥)).
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(Π>0̂
Λ(n))/Sn is a set of representatives of the action of Sn on ΠΛ(n) excluding 0̂. (Sn)π

is the stabilizer subgroup of π. H̃j([0̂, π]) is the reduced simplicial homology on the
order complex ∆([0̂, π]) in degree j > −1. codim(π) is the codimension of π as a real
subspace of Rdn and Sdn−1 is the (dn − 1)-dimensional sphere. If π is of type µ =
(1m1(µ), 2m2(µ), . . .) ` n, then its stabilizer (Sn)π is the product of wreath products∏
j Smj(µ)[Sj ] and codim(π) = d(n− l(µ)) = d · rank(µ). The length of a chain in Πn

from 0̂ to π is less than or equal to
∑l(µ)
j=1(µj − 1) = n − l(µ) = rank(µ). Since the

atoms in ΠΛ are of shape λ for λ ∈ Λ, the length of a chain in ΠΛ from 0̂ to π is less
than or equal to rank(µ)−rank(Λ)+1 and contributes to homology in degree less than
or equal to rank(µ)−rank(Λ)−1. It follows that if the homology H̃codim(π)−i−2([0̂, π])
is not zero, then

−1 6 d · rank(µ)− i− 2 6 rank(µ)− rank(Λ)− 1

and then
(i+ 1)/d 6 rank(µ) 6 (i+ 1− rank(Λ))/(d− 1).

Let µ̃ be the integer partition obtained from µ by removing the parts of size 1.
The rank of µ and the rank of µ̃ are the same. From [4, Proposition 2.8], we have
rank(µ̃) + 1 6 |µ̃| 6 2 · rank(µ̃). This yields

1 + (i+ 1)/d 6 |µ̃| 6 2(i+ 1− rank(Λ))/(d− 1).

The subgroup Sm1(µ)[S1] ∼= Sm1(µ) acts trivially on H̃codim(π)−i−2([0̂, π]). The coor-
dinates of vectors in the space π⊥ which correspond to the singletons of π are zero.
It follows that the above copy of Sm1(µ) acts trivially on H̃codim(π)−1(Sdn−1 ∩ π⊥).
Let S(m1(µ)) be the trivial Sm1(µ)-module. We get the following isomorphism of∏
j>1 Smj(µ)[Sj ]-modules:

H̃codim(π)−i−2([0̂, π])⊗ H̃codim(π)−1(Sdn−1 ∩ π⊥)
∼= S(m1(µ)) ⊗ (H̃codim(π)−i−2([0̂, π])⊗ H̃codim(π)−1(Sdn−1 ∩ π⊥)).

We consider the interval [0̂, π] in ΠΛ(n) . The atoms in [0̂, π] have at least n − n0
singletons. If we delete min{n−|µ̃|, n−n0} many singletons from π, after renumbering
we can view [0, π] as an interval in ΠΛ(max{|µ̃|,n0}) . We may also ignore the coordinates
of vectors in π⊥ which correspond to the singletons of π. We have codim(π) = d ·
rank(µ̃). It follows that the

∏
j>2 Smj(µ)[Sj ]-module

H̃codim(π)−i−2([0̂, π])⊗ H̃codim(π)−1(Sdn−1 ∩ π⊥)

does not depend on n and we write Vµ̃ for it. Using the transitivity of induction on∏
j>1 Smj(µ)[Sj ] 6 Sm1(µ) × Sn−m1(µ) 6 Sn we get:

IndSn∏
j>1

Smj(µ)[Sj ]
(Sm1(µ)⊗Vµ̃) = IndSnSm1(µ)×Sn−m1(µ)

(
Sm1(µ)⊗ IndSn−m1(µ)∏

j>2
Smj(µ)[Sj ]

(Vµ̃)
)

= IndSnSn−|µ̃|×S|µ̃|

(
Sn−|µ̃| ⊗ IndS|µ̃|∏

j>2
Smj(µ̃)[Sj ]

(Vµ̃)
)
.

Let
fµ̃ := ch

(
IndS|µ̃|∏

j>2
Smj(µ̃)[Sj ]

(Vµ̃)
)
.

We have

ch
(

IndSnSn−|µ̃|×S|µ̃|

(
Sn−|µ̃| ⊗ IndS|µ̃|∏

j>2
Smj(µ̃)[Sj ]

(Vµ̃)
))

= hn−|µ̃|fµ̃
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where hn−|µ̃| = s(n−|µ̃|). It follows that the characteristic of H̃i(Md
Λ(n)) is∑

µ̃

hn−|µ̃|fµ̃

where the summation runs over all integer partitions µ̃ with no parts 1, and 1 + (i+
1)/d 6 |µ̃| 6 2(i+ 1− rank(Λ))/(d− 1).

From Lemma 2.1, it follows that the sequence stabilizes at a number larger than
2|µ̃| for every µ̃ occurring in the sum. This is fulfilled at 4(i+1−rank(Λ))/(d−1). �

3. Improved stability bounds for k-equal arrangements
We consider the sequence {H̃i(Md

(k,1n−k))}n for k > 2. Theorem 1.1 states that
stabilization occurs at 4(i+ 2− k)/(d− 1). First we have a closer look at the special
case k = 2. In this case, stabilization occurs at 4i/(d−1). Compare this to the known
results in the literature which focus on the case k = 2: By [1, Theorem 1] we have
stabilization at 2i for d > 3 and stabilization at 4i for d = 2. By [4, Theorem 1.1] we
have the following for i > 1. The sequence is zero from the beginning, if d−1 does not
divide i. Otherwise it stabilizes sharply at 3i/(d − 1) for odd d > 3 and it stabilizes
sharply at 3i/(d− 1) + 1 for even d > 2.

Now we consider {H̃i(Md
(k,1n−k))}n for general k > 2. The stability of this sequence

was also considered by Gadish ([3, Example 6.11]) as an example of his general results.
We want to determine smaller upper bounds than the ones given in Theorem 1.1 where
stabilization occurs for k > d+ 1. Let hn = s(n) be the complete homogeneous sym-
metric function, en = s(1n) the elementary symmetric function and ω the involutive
ring homomorphism of the ring of symmetric functions with ω(hn) = en. We write
πn for the characteristic of H̃n−3(∆(Πn)) and ln = ω(πn). For symmetric functions f
and g we write f [g] for the plethysm of these two functions.

Theorem 3.1. [8, Theorem 4.4(iii)] Let d > 2, k > 2, i > 0 and n > 1. Let Uk :=∑
j>k s(j−k+1,1k−1). For every r, t > 1 and q > 0 such that i = (d−1)(n−r−q)+t(k−2)

let ψn,q,r,t be
ω
(
ωk
(
er[
∑
j>1 lj ]

)
|deg t[Uk]

)
|deg n−qhq if d is even((

hr[
∑
j>1 lj ]

)
|deg t[Uk]

)
|deg n−qhq if d is odd and k is even((

(−1)thr[
∑
j>1(−1)jπj ]

)
|deg t[Uk]

)
|deg n−qhq if d and k are odd.

Then the characteristic of the Sn-representation on H̃i(Md
(k,1n−k)) is∑

r,t>1,q>0:
i=(d−1)(n−r−q)+t(k−2)

ψn,q,r,t.

Lemma 3.2. Let d > 2, k > d + 1, i > 0 and n > 1. Let r, t > 1 and q > 0 be such
that i = (d− 1)(n− r − q) + t(k − 2). Let Uk :=

∑
j>k s(j−k+1,1k−1) and ψn,q,r,t be

ω
(
ωk
(
er[
∑
j>1 lj ]

)
|deg t[Uk]

)
|deg n−qhq if d is even((

hr[
∑
j>1 lj ]

)
|deg t[Uk]

)
|deg n−qhq if d is odd and k is even((

(−1)thr[
∑
j>1(−1)jπj ]

)
|deg t[Uk]

)
|deg n−qhq if d and k are odd.

Then
(i) ψn,q,r,t = ψn−1,q−1,r,t +� if q > n/2 and n > 2.
(ii) ψn,q,r,t = ψn−1,q−1,r,t +� if d is even, q > tk and n > 2.
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(iii) ψn,q,r,t = 0 if r > t or t > n/k.
(iv) ψn,q,r,t = 0 if q 6 n/2 and n > 2i

d−1 .
(v) ψn,q,r,t = 0 if k > d+ 2, q 6 tk and n > ki

k−d−1 .

Proof. (i) We have ψn,q,r,t = fn−qhq for a symmetric function fn−q of degree n − q
and hq = s(q). From Lemma 2.1, we get

ψn,q,r,t = fn−qhq = fn−qhq−1 +� = f(n−1)−(q−1)hq−1 +� = ψn−1,q−1,r,t +�
if q > n− q or equivalently q > n/2.

(ii) If d is even, then ψn,q,r,t = ω(ft[Uk])|deg n−qhq for a symmetric function ft of
degree t. The first column of every Schur function in Uk =

∑
j>k s(j−k+1,1k−1) has

length k. From [4, Proposition 4.3 (d)] it follows that for every sλ with λ ` n − q
occurring in the Schur function decomposition of ω(ft[Uk])|deg n−q the first row of λ
has length less than or equal to tk. If q > tk, it follows from Lemma 2.1 that

ψn,q,r,t = ω(ft[Uk])|deg n−qhq
= ω(ft[Uk])|deg n−qhq−1 +�
= ω(ft[Uk])|deg (n−1)−(q−1)hq−1 +� = ψn−1,q−1,r,t +�.

(iii) If r > t the terms er[
∑
j>1 lj ], hr[

∑
j>1 lj ] and (−1)thr[

∑
j>1(−1)jπj ] only

have terms of degree greater than t. Then the whole term ψn,q,r,t is zero. Uk only
has terms of degree greater than or equal to k. Then ft[Uk] for a symmetric function
ft of degree t has only terms of degree greater than or equal to tk. If t > n/k then
tk > n > n− q and again ψn,q,r,t is zero.

(iv) Suppose ψn,q,r,t 6= 0. We have to show that q > n/2 or n 6 2i
d−1 . Suppose

q 6 n/2. From ψn,q,r,t 6= 0 and (ii) we get r 6 t. From q 6 n/2 and i = (d − 1)(n −
r − q) + t(k − 2) we get

i

1− d + n/2 + t(k − 2)
d− 1 6

i

1− d + n− q + t(k − 2)
d− 1 = r.

Using r 6 t we get
i

1− d + n/2 + t(k − 2)
d− 1 6 t

and simplifying yields

n/2 6 i

d− 1 + t(d+ 1− k)
d− 1 .

Using k > d+ 1 we get
n 6

2i
d− 1 .

(v) Let k > d+2. Suppose ψn,q,r,t 6= 0 and q 6 tk. We have to show that n 6 ki
k−d−1 .

From q 6 tk, i = (d− 1)(n− r − q) + t(k − 2) and r 6 t by (iii) we get
i

1− d + n− tk + t(k − 2)
d− 1 6

i

1− d + n− q + t(k − 2)
d− 1 = r 6 t.

It follows that
i

1− d + n− tk + t(k − 2)
d− 1 6 t

and then
n 6

i

d− 1 + t

(
k + k − 2

1− d + 1
)
.

From (iii) we know t 6 n/k. It follows that

n 6
i

d− 1 + n

k

(
k + k − 2

1− d + 1
)
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and then
n

(
k − 2
d− 1 − 1

)
6

ki

d− 1 .

Using k > d+ 2 we get

n 6
ki
d−1

k−2
d−1 − 1

= ki

k − d− 1 . �

Theorem 3.3. Let d > 2, k > d + 1 and i > 0. The sequence {H̃i(Md
(k,1n−k))}n

stabilizes at 2i
d−1 . If d is even and k > d+ 2, the sequence stabilizes at ki

k−d−1 .

Proof. From Theorem 3.1, we have that the characteristic of the Sn-representation
on H̃i(Md

(k,1n−k)) is ∑
r,t>1,q>0:

i=(d−1)(n−r−q)+t(k−2)

ψn,q,r,t

where ψn,q,r,t is as in the previous lemma. If q > n/2 then we get

ψn,q,r,t = ψn−1,q−1,r,t +�

from Lemma 3.2(i). From Lemma 3.2(iv) we get ψn,q,r,t = 0 if q 6 n/2 and n > 2i
d−1 .

Putting these facts together we get for n > 2i
d−1 :∑

r,t>1,q>0:
i=(d−1)(n−r−q)+t(k−2)

ψn,q,r,t =
∑

r,t>1,q>1:
i=(d−1)(n−r−q)+t(k−2)

ψn,q,r,t

=
∑

r,t>1,q>1:
i=(d−1)(n−r−q)+t(k−2)

ψn−1,q−1,r,t +�

=
∑

r,t>1,q>0:
i=(d−1)(n−1−r−q)+t(k−2)

ψn−1,q,r,t +�.

Now let d be even and k > d+ 2. If d is even and q > tk we have

ψn,q,r,t = ψn−1,q−1,r,t +�

from Lemma 3.2(ii) and ψn,q,r,t = 0 if q 6 tk and n > ki
k−d−1 from Lemma 3.2(v). For

n > ki
k−d−1 the same computation as above yields the stability property. �

In Table 3.5, we give a list of sharp stability bounds for these representations.

Question 3.4. Is there an explicit formula for the sharp stability bound of
H̃i(Md

(k,1n−k)) for general k, d, i?

Table 3.5 (Sharp stability bounds for H̃i(M2
(k,1n−k))). If k is fixed and i grows,

the sequence of bounds appears to increase by 1 in most of the steps especially at the
beginning and with large k. Later, there also appear steps with bound differences 2 or 3.

k = 3 :
i 3 4 5 6 7 8 9 10 11 12 13 14
bound 6 7 8 11 13 14 16 18 20 21 23 25

k = 4 :
i 5 6 7 8 9 10 11 12 13 14 15 16
bound 8 9 10 11 12 15 17 18 19 20 22 24
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k = 5 :
i 7 8 9 10 11 12 13 14 15 16 17 18 19 20
bound 10 11 12 13 14 15 16 19 21 22 23 24 25 26

k = 6 :
i 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
bound 12 13 14 15 16 17 18 19 20 23 25 26 27 28 29

k = 7 :
i 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
bound 14 15 16 17 18 19 20 21 22 23 24 27 29 30 31 32 33

k = 8 :
i 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
bound 16 17 18 19 20 21 22 23 24 25 26 27 28 31 33 34 35

k = 9 :
i 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
bound 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 35 37

4. Stability in the homology of k-equal partition lattices
We showed in Lemma 2.1 that for integer partitions α and λ the sequence {s(n,α)sλ}n
stabilizes at α1 + λ1. In this section we give an application of this fact in a situation
where α is not the empty partition. For every 2 6 k 6 n we consider the lattice
Π(k,1n−k) of set partitions all of whose block sizes are 1 or greater than or equal
to k ordered by reverse refinement. We have Π(2,1n−2) = Πn. Note that Πk,1n−k is
the intersection lattice of the subspace arrangement with complementMd

(k,1n−k). We
recall the following result on the homology of the order complex of Πk,1n−k :

Theorem 4.1 ([7, Corollary 3.6]).
(i) Let 36 k6n and 16 t6 bn/kc. The characteristic of H̃n−3−t(k−2)(Π(k,1n−k))

tensored with the sign representation is given by the degree n term in

ωk(lt)

∑
j>k

s(j−k+1,1k−1)

 .
(ii) Let 2 = k 6 n. The characteristic of H̃n−3(Πn) tensored with the sign repre-

sentation is given by the degree n term in
bn/2c∑
t=1

lt

∑
j>2

s(j−1,1)

 .
By [7, Lemma 3.2] the term ωk(lt)

[∑
j>k s(j−k+1,1k−1)

]
|deg n decomposes into the

sum ∑
λ

φk,t,n,λ

where

φk,t,n,λ = ωk(lt)|∏
i>1: mi>0

Smi

[⊗
j>k

s(j−k+1,1k−1)

]
and the sum runs over all partitions λ = (λ1, . . . , λt) = (nmn , . . . , kmk) of n with t
parts and all parts greater than or equal to k. Now we apply Lemma 2.1 to {φk,t,n,λ}λ1

where λ2, . . . , λt, k and t are fixed and λ1 and n = n(λ1) =
∑
i>1 λi grow.
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Proposition 4.2. The sequence {φk,t,n,λ}λ1 stabilizes at λ1 = k +
∑
i>2 λi.

Proof. If λ1 > λ2 then mλ1 = 1 and the restriction ωk(lt)|∏
i>1: mi>0

Smi
is the

tensor product of the trivial S1-module and a
∏
i>1:i 6=λ1, mi>0 Smi-module. We get

φk,t,n,λ = s(λ1−k+1,1k−1)f for a symmetric function f of degree
∑
i>2 λi. It follows

from Lemma 2.1 that {φk,t,n,λ}λ1 stabilizes at λ1 = k +
∑
i>2 λi. �
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