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Sign-twisted Poincaré series and odd
inversions in Weyl groups

John R. Stembridge

Abstract Following recent work of Brenti and Carnevale, we investigate a sign-twisted
Poincaré series for finite Weyl groups W that tracks “odd inversions”; i.e. the number of odd-
height positive roots transformed into negative roots by each member of W . We prove that
the series is divisible by the corresponding series for any parabolic subgroup WJ , and provide
sufficient conditions for when the quotient of the two series equals the restriction of the first
series to coset representatives for W/WJ . We also show that the series has an explicit factor-
ization involving the degrees of the free generators of the polynomial invariants of a canonically
associated reflection group.

1. Introduction
1.1. Overview. Let Φ be a finite crystallographic root system with Weyl group W .
In [3], Brenti and Carnevale consider the sign-twisted Poincaré series

F (Φ; q) :=
∑
w∈W

sgn(w)q`1(w),

where `1(w) denotes the number of “odd inversions” of w; i.e. the number of positive
roots of odd height mapped to negative roots by w. In particular, they give an explicit
product formula for the above series in all cases except E8. For the root systems Bn
and Cn, they also have multivariate refinements that keep track of more detailed
information about the odd inversions, and in earlier work for types A and B [4],
they consider variations that include restricting the series to the distinguished coset
representatives for any parabolic quotient W/WJ .

Among their motivations, we should mention work of Klopsch and Voll [6]. In the
course of enumerating flags of subspaces over a finite field that are non-degenerate
with respect to various classes of bilinear forms, they conjectured a formula (proved
in [4]) that amounted to an explicit evaluation of the above series restricted to any
parabolic quotient in type A. A similar explicit evaluation for parabolic quotients in
type B arose conjecturally in the work of Stasinski and Voll [11] on the zeta functions
for certain group schemes. (This conjecture was proved independently in [4] and [8].)

The main goal of the present article is to provide further insights into these sign-
twisted series, with an emphasis on unified, classification-free results. For example, it
seems natural from the perspective of general root systems to exploit the fact that
the reflections corresponding to the even roots permute the odd roots. Although this
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diverges somewhat from the point of view taken in [3] (see Remark 6.2 below), it leads
to multivariate refinements that share the common feature that odd roots in the same
“even orbit” are given the same weight. Thus the multivariate series we consider here
involve 2 variables for An, Bn, F4 and G2, and 4 variables for Cn.

Our main results are as follows:
1. A combinatorial quotient theorem proving that for every parabolic subsys-

tem ΦJ , the corresponding series F (ΦJ ; q) is a divisor of F (Φ; q) (see Theo-
rem 5.1 and its corollaries). This makes it clear a priori (i.e. without use of
the classification of finite root systems) that the series F (Φ; q) necessarily has
many irreducible factors.

2. An explicit product formula for the multivariate series for each irreducible root
system (Theorem 6.1). The proof is by induction with respect to rank, using
Theorem 5.1. Each inductive step requires the evaluation of a sign-twisted
sum over a small number of right coset representatives. In the classical cases,
there are only 2 or 4 terms in each sum.

3. A general result that identifies, in a classification-free way, sufficient conditions
for the multivariate series for a parabolic quotient W/WJ to be the ratio of
the corresponding series for W and WJ (Theorem 7.1). Conjecturally, the
conditions are also necessary.

4. A uniform presentation of the univariate product formula, revealing that
F (Φ; q) = (1− qa1) · · · (1− qak ),

where a1, . . . , ak are the degrees of the free generators of the polynomial invari-
ants of a certain reflection group canonically associated to Φ (Theorem 8.5).
Although our only proof of this formula is case-by-case, it does suggest a
possible framework for a classification-free approach to the factorization of
F (Φ; q).

1.2. Preliminaries. Throughout, V shall denote a real Euclidean space with inner
product 〈· , ·〉 and Φ ⊂ V a finite crystallographic root system with co-root system
Φ∨ = {β∨ : β ∈ Φ}, positive roots Φ+, and Weyl group W = W (Φ). We use a
common index set I for the simple roots {αi : i ∈ I} ⊂ Φ and simple reflections
{si : i ∈ I} ⊂W . We will embed Φ∨ in V by taking β∨ = 2β/〈β, β〉.

If L is a sublattice of the root lattice ZΦ, it is easy to show that Φ ∩ L is again a
root system in V , possibly of lower rank. The main lattice of interest here is
(1) L0 :=

{∑
aiαi : ai ∈ Z,

∑
ai even

}
.

This has index 2 in ZΦ, and thus partitions Φ into “even” and “odd” roots; i.e.
Φ = Φ0 ∪ Φ1,

where Φ0 = Φ∩L0 is the root subsystem consisting of all roots of even height, and Φ1
is the set of roots with odd height. Note that the even Weyl group W (Φ0) necessarily
permutes Φ0 and Φ1.

Recall that the length function on W counts inversions; i.e. `(w) = |Φ(w)|, where
Φ(w) = {β ∈ Φ+ : −wβ ∈ Φ+}.

We may thus refine length by separating the contributions of even and odd roots; i.e.
`(w) = `0(w) + `1(w),

where `i(w) := |Φi(w)| and Φi(w) := Φi ∩ Φ(w).
As discussed earlier, our central object of interest is the series

(2) F (Φ; q) :=
∑
w∈W

sgn(w)q`1(w).
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Note that since every nontrivial w ∈W inverts at least one simple (and therefore odd)
root, it follows that F (Φ; q) has constant term 1. Likewise, since there is a unique
element that inverts all of the simple roots (the longest element), it is therefore also
the unique element that inverts all of the odd roots. Thus the degree of F (Φ; q) is the
number of odd positive roots.

It would be reasonable to consider a generalization of (2) in which the pair (Φ0,Φ1)
is replaced with (Φ′, Φ r Φ′) for any root subsystem Φ′ ⊂ Φ. However, it should be
noted that the corresponding series will vanish unless Φ′ contains none of the simple
roots of Φ. Indeed, the simple reflection si has only one inversion: the simple root αi.
If this simple root belongs to Φ′, then si must necessarily permute Φ+ r Φ′. Thus
multiplication by si would change the sign while preserving the number of inversions
not in Φ′. That is, the contributions from pairs (w,wsi) would cancel out.

We remark that each equal rank real form of a complex semisimple Lie group
with root system Φ induces a parity function on Φ (more precisely, a homomorphism
ZΦ→ Z/2Z) defined up to the action ofW . The even roots in this setting correspond
to the roots of the maximal compact subgroup. Thus the parity function we are
concerned with here is associated to the quasisplit equal rank real form; i.e. the case
where there is a positive system in which all simple roots have odd parity. (See for
example [7], especially Chapter VI and the discussion surrounding (6.99).)

For each J ⊆ I, we let ΦJ denote the parabolic subsystem of Φ generated by
{αj : j ∈ J}, and WJ = W (ΦJ) = 〈sj : j ∈ J〉 the associated Weyl group. It is well
known that

W J := {w ∈W : `(wsj) > `(w) for all j ∈ J},
JW := {w ∈W : `(sjw) > `(w) for all j ∈ J},

are the unique representatives of minimum length for the left and right cosets of WJ

in W , respectively. Moreover, one has `(xy) = `(x) + `(y) for all x ∈ W J , y ∈ WJ

and all x ∈WJ , y ∈ JW .
The following key feature of inversion sets will be used repeatedly.

Lemma 1.1. For all x, y ∈W such that `(xy) = `(x) + `(y), we have

Φ(xy) = Φ(y) ∪̇ y−1Φ(x) (disjoint union).

Proof. It is clear that if β ∈ Φ+ is an inversion of xy, then either yβ < 0, or yβ > 0
and xyβ < 0; i.e. β ∈ Φ(y) or yβ ∈ Φ(x). Thus Φ(xy) ⊆ Φ(y)∪ y−1Φ(x). If this union
failed to be disjoint, or the inclusion was proper, then we would have

`(xy) = |Φ(xy)| < |Φ(x)|+ |Φ(y)| = `(x) + `(y),

a contradiction. �

2. Orbits of odd roots
Recall that the even Weyl groupW (Φ0) permutes the odd roots; the structure of these
orbits will play a key role in what follows. The W -orbit structure is well-known: two
roots (whether or not they are odd) belong to the same W -orbit if and only if they
belong to the same irreducible component of Φ and have the same length. Moreover,
at most two root lengths (long and short) occur within any irreducible component.

Lemma 2.1. Let γ1, γ2 be distinct odd roots such that 〈γ2, γ
∨
1 〉 > 0.

(a) If γ1 and γ2 have the same length, then they belong to the same W (Φ0)-orbit.
(b) If γ1 is long and γ2 is short, then γ1 = γ2 +β, where β ∈ Φ0 and 〈β, γ∨1 〉 = 1.
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Proof. In either case, we must have 〈γ2, γ
∨
1 〉 = 1 (e.g. see [1, VI.1.3]). Hence the

reflection corresponding to γ1 maps γ2 to −β where β = γ1 − γ2 is a necessarily
even root of the same length as γ2. Furthermore, 〈β, γ∨1 〉 = 〈γ1 − γ2, γ

∨
1 〉 = 1, so the

conclusions in (b) hold for either case. In (a), the root β must also have the same
length as γ1, so 〈γ1, β

∨〉 = 〈β, γ∨1 〉 = 1 and the (even) reflection corresponding to β
maps γ1 to γ1 − β = γ2. �

Lemma 2.2. Let O1,O2 be W (Φ0)-orbits generated by odd roots of the same length. If
O1 −O2 ⊂ Span Φ0, then O1 = ±O2 or O1,O2 ⊂ Span Φ0.

Proof. Let V0 = Span Φ0 and assume O1 6= ±O2. If we select arbitrary representatives
γi from Oi, then γ1 6= ±γ2 and Lemma 2.1(a) (applied to both γ2 and −γ2) shows
that γ1 and γ2 must be orthogonal. Hence SpanO1 and SpanO2 are orthogonal as
well. On the other hand, the W (Φ0)-orbit generated by any vector γ is spanned by
γ and the irreducible components of Φ0 for which the orthogonal projection of γ is
nonzero. In particular, the span of such an orbit contains the orthogonal projection
of γ onto V0, and hence the projection onto V ⊥0 as well. However, we are given that
γ1 − γ2 ∈ V0, so γ1 and γ2 have the same orthogonal projection onto V ⊥0 . Thus the
projections cannot be orthogonal unless they are 0; i.e. γ1, γ2 ∈ V0. �

Lemma 2.3. If Φ and Φ0 have the same rank and Φ is irreducible, then any two odd
roots of the same length are in the same W (Φ0)-orbit.

Proof. Since Φ and Φ0 are assumed to have the same rank, every root in Φ must be
in the linear span of Φ0. Thus given any odd root γ that is Φ0-dominant, we may
consider its coordinates with respect to the simple roots of Φ0, say γ =

∑
ciβi. One

knows that dominance forces ci > 0 and the support (i.e. {i : ci > 0}) must coincide
with the union of one or more irreducible components of Φ0. (This amounts to the
fact that the inverse of any irreducible Cartan matrix has strictly positive entries.)

Now suppose that γ1, γ2, . . . are the Φ0-dominant members of the distinct W (Φ0)-
orbits of odd roots. If γ1 and γ2 have the same length and overlapping support,
the dominance forces 〈γ2, γ

∨
1 〉 > 0 and we contradict Lemma 2.1(a). In other words,

distinct orbits generated by odd roots of the same length have disjoint, orthogonal
support.

Alternatively, suppose that γ1 is long and γ2 is short. If they have overlapping
support, we still have 〈γ2, γ

∨
1 〉 > 0 and Lemma 2.1(b) implies that γ1 = γ2 + β where

β is an even root such that 〈β, γ∨1 〉 = 1. The latter forces β to be positive, since γ1
is dominant. Thus the support of γ1 contains the support of γ2. However, an even
root such as β must have support that is confined to a single irreducible component
of Φ0, so if there is a gap between the supports of γ1 and γ2, it is this one irreducible
component, and β is the orthogonal projection of γ1 onto this component.

Returning to the hypothesis that γ1 and γ2 have the same length, consider that
our task is to show that this leads to a contradiction. Since γ1 and γ2 must have
disjoint orthogonal support and Φ is irreducible, this is possible only if another orbit
representative, say γ3, has support overlapping γ1 or γ2 or both. As we have seen,
this is possible only if γ3 is long and γ1 and γ2 are short. Since this eliminates the
possibility of γ1 and γ2 both being long, this means that γ3 generates the only long
odd orbit, and irreducibility forces its support to include the supports of both γ1
and γ2. Furthermore, since the supports of γ1 and γ2 are disjoint, the inclusions must
be proper, and as we have shown, each “support gap” must be a single irreducible
component of Φ0. This forces the support of γ3 to consist of exactly two irreducible
components, and the orthogonal projections of γ3 onto these two components must
be even roots, contradicting the fact that γ3 is odd. �
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Proposition 2.4.
(a) Every W (Φ0)-orbit of odd roots includes a simple or a negative simple root.
(b) If the nodes of the Dynkin diagram of Φ are 2-colored so that each edge is

incident to a black vertex and a white vertex, then the black simple roots and
the negatives of the white simple roots in the same W -orbit belong to the same
W (Φ0)-orbit.

(c) If Φ is irreducible of rank n, then either
(i) Φ0 has rank n− 1, all simple roots of Φ0 have height 2 in Φ, and every

opposite pair of odd roots ±γ belong to distinct W (Φ0)-orbits, or
(ii) Φ0 has rank n, one simple root of Φ0 has height 4 in Φ, and all odd roots

of the same length are in the same W (Φ0)-orbit.
Furthermore, case (i) occurs if and only if Φ ∼= An or Cn.

Proof. Choose a black-white coloring of the Dynkin diagram as in (b), and assume
that Φ is irreducible of rank n. Since the diagram is a tree, there are exactly n − 1
roots β1, . . . , βn−1 of height 2 in Φ; each is of the form αi + αj where i is a black
node and j is an adjacent white node. If the edge between i and j is simple (i.e. the
parabolic subsystem generated by αi and αj is isomorphic to A2), then the reflection
corresponding to αi+αj interchanges αi with −αj and −αi with αj . It follows that for
any nodes i and j connected by a path of simple edges, theW (Φ0)-orbit of αi contains
αj if i and j have the same color, and the orbit contains −αj if i and j have different
colors. On the other hand, it is well-known that two simple (or negative simple) roots
belong to the same W -orbit if and only if they are in the same connected component
of the Dynkin diagram after all non-simple edges have been deleted. Thus (b) follows.

Now consider that as a member of the even root system Φ0, each root βi is clearly
indecomposable (i.e. not expressible as a sum of two positive even roots), and thus is
necessarily a simple root of Φ0. On the other hand, as a root subsystem of a rank n
root system, Φ0 necessarily has rank 6 n, and thus it can have at most one additional
indecomposable root.

Case 1: Φ0 has rank n−1. Define an integral co-weight ω for Φ by setting 〈αi, ω〉 = 1
(if i is black) and −1 (if i is white). We therefore have 〈βi, ω〉 = 0 for all i and hence
W (Φ0) fixes ω, since β1, . . . , βn−1 forms a base for Φ0 in this case. Thus 〈γ, ω〉 is a
constant as γ varies over any W (Φ0)-orbit in Φ. For odd γ, this constant is the sum
of an odd number of ±1’s, and hence nonzero. Consequently, the W (Φ0)-orbits of γ
and −γ are distinct for every odd root γ, proving (i).

We claim that 〈γ, ω〉 is limited to the values 0,±1 for all γ ∈ Φ (i.e. ω is minuscule).
Indeed, even roots belong to the hyperplane orthogonal to ω, and if there were an odd
root γ such that 〈γ, ω〉 > 3, then there would be an even root of the form β = γ ± αi
for some i. In that case, we would have 〈β, ω〉 > 2, a contradiction.

Thus every W (Φ0)-orbit of odd roots belongs to the (affine) hyperplane 〈 ·, ω〉 = 1
or its negative, and both hyperplanes contain at least one simple root or negative
simple root from each W -orbit. To prove (a) for this case, it therefore suffices to
show that all roots of a given length within one of these hyperplanes belong to the
same W (Φ0)-orbit. If there were two such orbits, say O1 and O2, then we cannot
have O1 = ±O2 (the orbit opposite to O1 is in the opposite hyperplane), and yet
we do have 〈γ1 − γ2, ω〉 = 0 for all γi ∈ Oi, so Lemma 2.2 implies Oi ⊂ Span Φ0, a
contradiction.

To see that Φ = An and Cn belong to Case 1, it suffices to show that the even
roots are confined to a central hyperplane in these cases. For this, let ε1, . . . , εn be the
standard orthornomal basis for Rn, and realize Cn using the simple roots α1 = 2ε1
and αi = εi− εi−1 (1 < i 6 n). It is easy to see that ω = (1/2)(1,−1, 1,−1, . . . ) ∈ Rn

Algebraic Combinatorics, Vol. 2 #4 (2019) 625



John R. Stembridge

has the property that 〈αi, ω〉 = ±1 for all i, so β is even if and only if 〈β, ω〉 is even.
On the other hand, the value 〈β, ω〉 for any root β is the sum or difference of two
coordinates of ω, so the only possible values are 0 and ±1. That is, β is even if and
only if 〈β, ω〉 = 0 and thus Φ0 is confined to the hyperplane orthogonal to ω. This
yields the same result for An−1 if we recognize it as a parabolic subsystem of Cn.
That is, the even roots of An−1 are confined to the hyperplane orthogonal to ω in the
span of An−1.

Case 2: Φ0 has rank n. In this case, there must be a positive root β0 ∈ Φ0 that
has height at least 4 in Φ and is indecomposable in Φ0. Any such root is necessarily
a simple root of Φ0 and therefore unique, since the height 2 roots already account for
all but one of the simple roots of Φ0. Having previously shown in Lemma 2.3 that
length separates the W (Φ0)-orbits of odd roots in this case, (a) follows immediately.
To complete the proof, it suffices to identify an indecomposable even root of height 4
in all remaining irreducible Φ (i.e. other than An or Cn). For this, note that all such
Φ must have a parabolic subsystem isomorphic to D4, B3, or G2.
Case 2(a) Φ includes a parabolic copy of D4. Here, we claim that the sum of the four

simple roots in the D4-subsystem is an indecomposable root β0 of Φ0. If
not, this root would have to be a sum of two height 2 roots, and hence
the diagram of D4 would have to have two white vertices and two black
vertices.

Case 2(b) Φ includes a parabolic copy of B3. Numbering the Dynkin diagram of this
subsystem 1⇐2−3, we claim that β0 = 2α1 +α2 +α3 is indecomposable in
Φ0. This is immediate after confirming that β0 is indeed a root, since it is
a sum of unequal numbers of white and black simple roots (counted with
multiplicity).

Case 2(c) Φ is isomorphic to G2. With the simple roots indexed so that α1 is short
and α2 is long, the root β0 = 3α1 +α2 is clearly indecomposable in Φ0. �

Φ A2n−1 A2n Bn Cn D2n−1 D2n E6 E7 E8 F4 G2

|Γ(Φ0)| 2 1 2 2 2 4 1 2 1 1 1
|W (Φ0)\Φ1| 2 2 2 4 1 1 1 1 1 2 2

Table 1. The order of Γ(Φ0) and the W (Φ0)-orbit count on Φ1.

Remarks 2.5.
(a) The above result implies that a W (Φ0)-orbit of odd roots may fail to include

a simple root only if Φ is of type A or C and the corresponding W -orbit
includes only one simple root. That is, only for one of the long odd orbits in
Cn, a long and a short orbit in C2, and one of the odd orbits in A1. Most
of these orbits do include positive roots, the exceptions being the singleton
orbits formed by the short negative simple root of C2, and the negative simple
root of A1.

(b) To minimize the need for special considerations for the root system B2 ∼= C2,
it is preferable to require the type B series of root systems to begin at rank 3
and allow rank 2 only for type C. That way, all type B root systems have
only 2 odd orbits, whereas in all type C cases there are 4. See the last row of
Table 1.
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3. The even normalizer
It will develop that the series F (Φ; q) depends only on a subgroup N(Φ0) of W ;
namely, the normalizer of W (Φ0) in W . Since the W -action on Φ corresponds to the
conjugation action of W on reflections, we have that

N(Φ0) = {w ∈W : wΦ0 = Φ0}.

Let ∆0 denote the base formed by the simple roots for Φ0. Since the action of W (Φ0)
on bases for Φ0 is simply transitive, the normalizer is a semidirect product; i.e.

N(Φ0) ∼= W (Φ0) o Γ(Φ0),
where Γ(Φ0) := {w ∈W : w∆0 = ∆0} is the subgroup ofN(Φ0) consisting of elements
with no even inversions. See Table 1 for the cardinalities of Γ(Φ0) for irreducible Φ.

The normalizers N(Φ0) are closely related to the groups of “chessboard” elements
for classical Weyl groups discussed in [4], [3], [6], and [10]. In fact, for the root systems
An, B2n+1, and Dn they are exactly the same, whereas for B2n, the chessboard group
defined in [4] and [10] may be seen as the normalizer of a reflection subgroup of W
that is slightly larger than W (Φ0).

To illustrate the case Φ = B2n (n > 2) in more detail, fix a choice of simple roots
α1 = ε1 and αi = εi − εi−1 (1 < i 6 2n). From the construction in the proof of
Proposition 2.4, one obtains that the simple even roots are ε2, ε3 + ε1, and εi − εi−2
(2 < i 6 2n), so Φ0 decomposes orthogonally into {±ε2i,±ε2i±ε2j : i 6= j} ∼= Bn and
{±ε2i+1 ± ε2j+1 : i 6= j} ∼= Dn. Recognizing that W acts via signed permutations of
the coordinates, one sees that N(Φ0) ∼= W (Bn) ×W (Bn), with the subgroup Γ(Φ0)
being a 2-element group generated by the (simple) reflection corresponding to ε1.
Thus it happens in this case that N(Φ0) is also a reflection subgroup of W , and the
chessboard group cited above may be seen as its W -normalizer.

Remarks 3.1.
(a) The longest element w0 = w0(Φ) in W (Φ) maps roots of height h to height
−h, so it preserves parity (i.e. belongs to N(Φ0)) and maps the simple roots
of Φ0 to some permutation of their negatives. Since w0(Φ0) has a similar effect
on the even roots, it follows that w0(Φ0)w0(Φ) is always a member of Γ(Φ0)
(possibly trivial).

(b) It is tempting to assume that Γ = Γ(Φ0) acts faithfully as a group of diagram
automorphisms of Φ0, but this isn’t true in general: a nontrivial w ∈ Γ may
act trivially on ∆0 and Φ0. For example, if Φ is C2, then Φ0 has rank 1 and
therefore has no nontrivial diagram automorphisms. However, Γ is a 2-element
group in this case.

Since Γ(Φ0) ∼= N(Φ0)/W (Φ0), it follows that Γ(Φ0) acts on the W (Φ0)-orbits of
odd roots (and generally, theW (Φ0)-orbits of any N(Φ0)-action). It will be important
in what follows to identify the cases where the action on these orbits is nontrivial.

Proposition 3.2.
(a) If Φ is irreducible, then Γ(Φ0) stabilizes each W (Φ0)-orbit of odd roots except

possibly when Φ ∼= An or Cn.
(b) If Φ ∼= A2n, then Γ(Φ0) is trivial.
(c) If Φ ∼= A2n−1 or Cn, then |Γ(Φ0)| = 2.

Moreover, in (c), if the diagram is properly 2-colored so that the black nodes include all
end nodes (for A2n−1), or the end node corresponding to a short simple root (for Cn),
then the nontrivial element of Γ(Φ0) is the product of the black simple reflections, and
it acts by interchanging opposite pairs ±O of W (Φ0)-orbits of odd roots.
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Proof. By Proposition 2.4(c), we know that unless Φ is of type A or C, odd roots in
the same W -orbit are also in the same W (Φ0)-orbit. This proves (a).

For the remaining assertions, we may assume that Φ ∼= An or Cn. In such cases,
recall from the proof of Proposition 2.4 that there is an integral co-weight ω such
that 〈αi, ω〉 = 1 if i is black and 〈αi, ω〉 = −1 if i is white. (For A2n, any proper
2-coloring will suffice for what follows.) Moreover, the span of Φ0 is the hyperplane
V0 orthogonal to ω, and hence W (Φ0) is the stabilizer of ω.

On the other hand, N(Φ0) is the stabilizer of V0. As a group of orthogonal trans-
formations, it must therefore preserve the orthogonal complement of V0. Hence

N(Φ0) = {x ∈W : xω = ±ω}.
It follows that |Γ(Φ0)| 6 2, with equality if and only if there is an element x ∈ W
such that xω = −ω. In that case, x acts on W (Φ0)-orbits by interchanging opposite
pairs.

In the case Φ ∼= A2n, if we embed Φ in R2n+1 so that W acts by permuting
coordinates, then ω will have n + 1 equal positive coordinates and n equal negative
coordinates (or vice-versa), and thus no member of W can transform ω to −ω.

For the remaining cases, let θ =
∑
α∨i , where i ranges over the black nodes. We

claim that ω = θ/2. To see this, consider that if i is black, then none of its neighbors
participate in the sum and 〈αi, θ〉 = 2. If j is white, then in most cases it has two
neighbors, both black, with corresponding simple roots αi that are not shorter than αj .
Hence 〈αj , α∨i 〉 = −1 for both neighbors and 〈αj , θ〉 = −2. The one exception occurs
in C2n when αj is long, in which case it has only one neighbor i, but 〈αj , α∨i 〉 = −2
and again 〈αj , θ〉 = −2. Either way, the claim follows.

Now let x be the product of the black simple reflections. Since these reflections
commute, it is clear that Φ(x) consists of the black simple roots, and it is evident
from the co-root coordinates for θ that xω = −ω. Hence x belongs to the nontrivial
coset of N(Φ0). Since it has no even inversions, it is therefore a member of Γ(Φ0). �

4. Parabolic and multivariate refinements
Let q = (qβ : β ∈ Φ+

1 ) be a collection of variables indexed by the odd positive roots
and consider the series

F (Φ; q) :=
∑
w∈W

sgn(w)
∏

β∈Φ1(w)

qβ .

Of course we recover the original series F (Φ; q) by setting qβ = q for all β ∈ Φ+
1 . More

generally, for each J ⊆ I, we will consider the restriction of the above series to the
set W J consisting of the minimum-length coset representatives for W/WJ ; i.e.

FJ(Φ; q) :=
∑
w∈WJ

sgn(w)
∏

β∈Φ1(w)

qβ .

One sees that FJ(Φ; q) = F (Φ; q) when J = ∅.
Although these multivariate series do not seem to offer simple closed forms, the

following result shows that a significant amount of cancellation of terms does occur at
this level of generality. (One should also note that this feature is specific to sums over
left cosets. The analogous sum over JW offers no comparable degree of cancellation,
and specializations of such sums appear to factor less often than the left coset series.
See Remark 7.6.)

Proposition 4.1. For all J ⊆ I, we have

FJ(Φ; q) =
∑

w∈N(Φ0)∩WJ

sgn(w)
∏

β∈Φ1(w)

qβ .
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This justifies our prior claim that F (Φ; q) depends only on the normalizer N(Φ0).
For the proof, we need to fix a total ordering of the index set I. Given w ∈ W

such that w /∈ N(Φ0), we define the first fault of w to be the least i ∈ I such that
w−1αi is even. Such an index i must exist, otherwise, w−1 would map all simple roots
to odd roots, and thus w−1 and w would be parity preserving on roots; i.e. members
of N(Φ0).

Lemma 4.2. If w ∈ W J and w−1αi is even for some i ∈ I, then siw ∈ W J . Further-
more, if i is the first fault of w, then i is also the first fault of siw.

Proof. If siw /∈W J , then there is some index j ∈ J such that `(siwsj) < `(siw). Thus
either `(w) = `(siwsj) or `(w) = `(siwsj) + 2. In the latter case, w has a reduced
expression that ends with sj , contradicting the fact that w ∈ W J . In the former
case, the Deletion Property [5, §1.7] implies that a reduced expression for siwsj may
be obtained by taking a reduced expression for w, appending sj , prepending si, and
deleting two terms. If one or both of the deleted terms is internal to the chosen
expression for w, then w would have a reduced expression that begins with si or ends
with sj . The latter contradicts the fact that w ∈W J , and the former contradicts the
fact that `(siw) > `(w) in this case. The remaining possibility is that the first and
last terms are deleted; i.e. siwsj = w, or equivalently, w−1αi = ±αj . However, this
contradicts the fact that w−1αi is even.

For the second claim, consider that for all indices k ∈ I, we have
(siw)−1αk = w−1siαk = w−1αk − aw−1αi

where a is the integer 〈αk, α∨i 〉. Thus if i is the first fault of w, it follows that (siw)−1αk
is even if and only if w−1αk is even. In particular, i must be the first fault of siw. �

Proof of Proposition 4.1. Lemma 4.2 implies that the map w 7→ siw (with i being
the first fault of w) defines a sign-reversing involution on the members of W J not
in N(Φ0). Exchanging w with siw if necessary, we may assume that `(siw) > `(w).
In that case,

Φ(siw) = Φ(w) ∪̇ {w−1αi}.
Thus the inversion sets of w and siw are identical aside from the presence of a single
even root, so their contributions to the sum cancel out, leaving only the contributions
from N(Φ0) ∩W J . �

Remark 4.3. We have previously noted that the longest element w0 is the unique
member of W that inverts all odd roots. Since Φ(w) ⊆ Φ+ r ΦJ for all w ∈ W J , we
thus have the degree bound

degFJ(Φ; q) 6 |Φ+
1 r ΦJ | = degF (Φ; q)− degF (ΦJ ; q).

Furthermore, there may be multiple members of W J that invert all of Φ+
1 r ΦJ ,

resulting in the possibility of cancellation and a degree that does not achieve this
bound. For example, when (Φ,ΦJ) ∼= (D4, A

⊕3
1 ), there are 5 odd positive roots not in

ΦJ , but it is easily checked that FJ(D4; q) = (1− q2)(1 + 3q2). This also shows that
the irreducible factors of FJ(Φ; q) need not be cyclotomic.

From now on, we will focus on three specializations of the variables qβ ; namely,
(i) The univariate grading; i.e. qβ is independent of β.
(ii) The coarse grading; i.e. qβ depends only on the W -orbit of β.
(iii) The fine grading; i.e. qβ depends only on the W (Φ0)-orbit of β.

By Proposition 2.4, we know that in most irreducible cases, each W -orbit of roots
contains only one W (Φ0)-orbit of odd roots, and hence, the coarse and fine gradings
coincide. The exceptions are An (which has two W (Φ0)-orbits of odd roots) and
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Cn (which has four; two long and two short). Among these exceptions, A1 and C2
are somewhat degenerate in having an oddW (Φ0)-orbit that consists only of negative
roots. (Recall Remark 2.5(a).) The corresponding series F (Φ; q) under the fine grading
therefore depends on only 1 or 3 variables, rather than 2 or 4, respectively.

5. Perfect cosets and divisibility
Fix J ⊆ I and consider a minimal right coset representative y ∈ JW . Recall that this
means `(sjy) > `(y) for all j ∈ J , or equivalently y−1αj > 0 for such j. We say that
y is perfect if, in addition, y−1αj is odd for all j ∈ J . (Thus in the terminology of the
previous section, the perfect members of JW have no faults in J .) We let

JW1 := {y ∈W : y−1αj ∈ Φ+
1 for all j ∈ J}

denote the set of minimal coset representatives that are perfect, and

GJ(Φ; q) :=
∑

y∈JW1

sgn(y)
∏

β∈Φ1(y)

qβ

the corresponding sign-twisted series.

Theorem 5.1. For all J ⊆ I, we have

F (Φ; q) =
∑

y∈JW1

(
sgn(y)

∏
β∈Φ1(y)

qβ

)
F (ΦJ ; y−1q)

under the fine(1)grading for Φ, where y−1q denotes the change of variable qβ → qy−1β

for odd β ∈ Φ+
J . In particular, if F (ΦJ ; y−1q) = F (ΦJ ; q) for all y ∈ JW1, then

F (Φ; q) = GJ(Φ; q)F (ΦJ ; q)
under the fine grading for Φ.

Note that if y is perfect and β ∈ ΦJ is odd, then y−1β is clearly another odd root
in the same W -orbit. Hence, for the coarse specialization of the variables qβ , we have

Corollary 5.2. In all cases, F (Φ; q) = GJ(Φ; q)F (ΦJ ; q) under the coarse grading.

Thus it is clear a priori (i.e. without use of the classification of finite root systems,
or explicit evaluation) that F (Φ; q) has many divisors under the coarse grading, and
therefore is likely to have a nice factorization.

For the finer gradings available with An and Cn, it need not be the case that
F (Φ; q) is divisible by F (ΦJ ; q). For example, a posteriori (see Theorem 6.1 below)
F (An; q) is divisible by F (Ak; q) under the fine grading only if k is even, or n is odd
and k + 1 divides n + 1. On the other hand, the following result shows that An and
Cn have parabolic subsystems of co-rank at most 2 where divisibility is clear a priori.

Corollary 5.3. If ΦJ ∼= A2n, then F (Φ; q) = GJ(Φ; q)F (ΦJ ; q) in the fine grading.

Proof. For perfect y ∈ JW , the map β 7→ y−1β acts as a parity-preserving isomor-
phism between two copies of A2n embedded in Φ (namely, ΦJ and y−1ΦJ). Although
it is possible that β and y−1β are in distinct W (Φ0)-orbits for odd β ∈ ΦJ , there
is a diagram automorphism of A2n that interchanges the black and white vertices
of the 2-colored Dynkin diagram. By Proposition 2.4, it follows that this automor-
phism interchanges the two orbits of odd roots, and thus F (A2n; q) is invariant un-
der interchanging the variables qβ in these two orbits. Thus either way, we have
F (ΦJ ; y−1q) = F (ΦJ ; q) for all y. �

(1)Note that the fine grading for Φ may force the identification of some variables appearing in
F (ΦJ ; q) that would otherwise be distinct in the fine grading for ΦJ .
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Proof of Theorem 5.1. Suppose that y ∈ JW is not perfect, so that there is some j ∈
J such that β = y−1αj is an even (necessarily positive) root. Since `(xy) = `(x)+`(y)
for all x ∈WJ , Lemma 1.1 implies
(3) Φ(xy) = Φ(y) ∪̇ y−1Φ(x).
Replacing x with xsj if necessary so that `(xsj) > `(x), we also have

Φ(xsjy) = Φ(y) ∪̇ {y−1αj} ∪̇ y−1sjΦ(x) = Φ(y) ∪̇ {β} ∪̇ ty−1Φ(x),
where t = y−1sjy is the reflection corresponding to β. Since β is even, t belongs to
W (Φ0), so for each W (Φ0)-orbit of odd roots, the number of such roots in y−1Φ(x)
and ty−1Φ(x) is the same. It follows that the contributions of xy and xsjy to the
series F (Φ; q) cancel out, and thus the net contribution of the coset WJy is zero.

For perfect y, we still have (3), whence∑
x∈WJ

sgn(xy)
∏

β∈Φ1(xy)

qβ = sgn(y)F (ΦJ ; y−1q)
∏

β∈Φ1(y)

qβ

and the result follows. �

Let ρ∨ be the unique co-weight such that 〈αi, ρ∨〉 = 1 for all i ∈ I. (It is well-
known that 2ρ∨ is also the sum of all positive co-roots.) We have found that the most
convenient way to explicitly compute GJ(Φ; q) under the coarse grading is as follows.
Proposition 5.4. Let Φ = O1 ∪̇ O2 ∪̇ · · · be the partition of Φ into W -orbits, and
choose variables qi so that qi = qβ for all β ∈ Oi ∩ Φ+

1 .
(a) The map w 7→ wρ∨ defines a bijection between the set JW1 of perfect coset

representatives and
(Wρ∨)J := {θ ∈Wρ∨ : 〈αj , θ〉 is odd and positive for all j ∈ J}.

(b) Under the coarse grading, we have

GJ(Φ; q) =
∑

θ∈(Wρ∨)J

(−1)N(θ)
q
N1(θ)
1 q

N2(θ)
2 · · · ,

where N(θ) := |{β ∈ Φ+ : 〈β, θ〉 < 0}| and
Ni(θ) := |{β ∈ Oi ∩ Φ+ : 〈β, θ〉 is odd and negative}|.

Note that the roots β contributing to Ni(θ) may be odd or even.

Proof. (a) Recall that w ∈ JW1 if and only if w−1αj is odd and positive for all j ∈ J .
On the other hand, the height of a root β is 〈β, ρ∨〉, so 〈αj , wρ∨〉 = 〈w−1αj , ρ

∨〉 is
odd and positive if and only if w−1αj is odd and positive. Since ρ∨ is regular, the
map w 7→ wρ∨ is injective, and the claim follows.

(b) Given θ = wρ∨ and a root β, we have 〈β, θ〉 = 〈w−1β, ρ∨〉, so
Φ(w) = {−w−1β : β ∈ Φ+, 〈β, θ〉 < 0}

and N(θ) is the total number of inversions for w; i.e. N(θ) = `(w). Since β and −w−1β
clearly belong to the same W -orbit, and −w−1β is odd if and only if 〈β, θ〉 is odd, we
obtain that Ni(θ) is the number of odd inversions for w in the W -orbit Oi. �

Remarks 5.5.
(a) Determining the points in the W -orbit of ρ∨ that correspond to the perfect

cosets for WJ\W does not require generating the entire orbit. Indeed, we
claim that it is possible to efficiently generate the much smaller set JWρ∨

consisting of members of the orbit that are ΦJ -dominant, and select from
these the ones that are perfect. Indeed, we claim that JWρ∨ is the smallest
set X of co-weights that
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(i) contains ρ∨, and
(ii) contains θ − β∨ if θ ∈ X, β ∈ Φ+ r ΦJ , 〈β, θ〉 = 1, and θ − β∨ is

ΦJ -dominant.
Given that θ and β satisfy the hypotheses for (ii), it follows that θ − β∨ is
the image of θ under the reflection corresponding to β. Thus the fact that
JWρ∨ contains X follows by induction with respect to height. Conversely,
given w ∈ JW , either w = 1 and wρ∨ = ρ∨, or we have `(wsi) < `(w) and
β = −wαi > 0 for some i. We must also have β /∈ ΦJ , otherwise wsiw−1 ∈WJ

and `(wsi) = `(wsiw−1 ·w) > `(w), a contradiction. Furthermore, it must be
the case that wsi ∈ JW . Otherwise, for some j ∈ J we would have

`(sjwsi) < `(wsi) < `(w) < `(sjw),

contradicting the fact that sjwsi and sjw differ in length by 1. Thus by
induction with respect to length, we may assume wsiρ

∨ ∈ X. However,
wsiρ

∨ = w(ρ∨ − α∨i ) = wρ∨ + β∨ and 〈β,wsiρ∨〉 = 〈αi, ρ∨〉 = 1, whence
wsiρ

∨ − β∨ = wρ∨ ∈ X by (ii).
(b) For example, if (Φ,ΦJ) ∼= (E8, E7), then there are only 240 cosets for WJ\W

(one for each root), and it is a fast calculation to generate the 240 vectors
in JWρ∨ by the above algorithm. It turns out that 32 of the 240 vectors
correspond to cosets whose minimal representatives are perfect. In Table 2,
we list the co-weight coordinates of these 32 vectors; i.e. for each w ∈ JW1, we
list 〈wρ∨, αi〉 for 1 6 i 6 8, along with `(w) = N(wρ∨) and `1(w) = N1(wρ∨)
(cf. the formulas in Proposition 5.4(b)).

Note that we have indexed the simple roots of E8 as in this Dynkin diagram:

1−3−

2

4−5−6−7−8.

The fact that the first 7 coordinates are odd and positive in each of the 32
cases confirms that these correspond to minimal coset representatives that
are perfect.

6. Factoring the fine graded series
Following the road map laid out in the previous section, we are now in a position to
explicitly evaluate the fine or coarse graded series for each irreducible root system.
To set a convention for naming the variables for the coarse grading, let

• qβ = q if Φ is of type A, D, or E,
• qβ = p (if β is short) or q (if β is long) for Bn, F4, and G2, and
• qβ = q (if β is short) or r (if β is long) for Cn

for all odd positive roots β. In this way, the variable attached to an odd root in An−1
is unchanged when An−1 is embedded as a parabolic subsystem of Bn or Cn.

In types A and C, where each W -orbit of roots contains two W (Φ0)-orbits of odd
roots (Proposition 2.4), we will use the variables q± and r± for the fine grading. For
Cn, the W (Φ0)-orbit containing the long simple root will be weighted r+, and the
short simple root that is adjacent to it in the Dynkin diagram will be weighted q+.
For A2n−1, the odd orbit containing the simple roots at both ends of the Dynkin
diagram will be weighted q+. For A2n, we have noted previously that the diagram
automorphism interchanges the two W (Φ0)-orbits of odd roots, so the fine series is
unaffected by the choice of which one is weighted q+; either choice will suffice despite
being non-canonical.
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〈wρ∨, αi〉, i = 1, . . . , 8 `(w) `1(w)
1 1 1 1 1 1 1 1 0 0
1 1 3 1 1 1 1 −6 6 3
1 1 1 3 1 1 1 −10 10 5
7 1 1 1 1 1 1 −11 12 6
1 1 3 1 1 3 1 −14 14 7
1 1 5 1 1 1 1 −16 18 9
3 1 1 1 1 5 1 −19 20 10
1 1 1 3 1 3 1 −21 24 12
1 1 1 3 1 1 5 −25 28 14
1 1 1 1 5 1 1 −23 28 14
1 5 1 1 1 3 1 −23 28 14
3 1 1 1 1 1 9 −27 28 14
1 1 3 1 1 1 7 −26 28 15
1 3 1 1 3 1 3 −24 28 15
1 1 1 1 1 1 11 −28 28 15
1 7 1 1 1 1 1 −22 28 15

〈wρ∨, αi〉, i = 1, . . . , 8 `(w) `1(w)
1 1 3 1 1 1 7 −27 29 14
1 3 1 1 3 1 3 −25 29 14
1 1 1 1 1 1 11 −29 29 14
1 7 1 1 1 1 1 −23 29 14
1 1 1 3 1 1 5 −26 29 15
1 1 1 1 5 1 1 −24 29 15
1 5 1 1 1 3 1 −24 29 15
3 1 1 1 1 1 9 −28 29 15
1 1 1 3 1 3 1 −26 33 17
3 1 1 1 1 5 1 −28 37 19
1 1 5 1 1 1 1 −27 39 20
1 1 3 1 1 3 1 −29 43 22
7 1 1 1 1 1 1 −28 45 23
1 1 1 3 1 1 1 −29 47 24
1 1 3 1 1 1 1 −29 51 26
1 1 1 1 1 1 1 −28 57 29

Table 2. Perfect coset representatives for W (E7)\W (E8).

For the fine series, it will be convenient to let q → q̄ denote the transformation
of the variables in which the value of qβ on a W (Φ0)-orbit O is replaced by its value
on the opposite orbit −O. For An and Cn, this amounts to interchanging q+ with q−
and r+ with r−. In particular, as noted above,

(4) F (A2n; q) = F (A2n; q̄).

Of course in the other irreducible cases, we know that every W (Φ0)-orbit is centrally
symmetric (O = −O) and this transformation has no effect (Proposition 2.4).

In the following, we let (a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Theorem 6.1. For the finely graded series, we have

F (A2n−1; q) = (1− qn+)(q+q−; q+q−)n−1,

F (A2n; q) = (q+q−; q+q−)n,
F (B2n; q) = (q2; q2)n(p; q2)n,

F (B2n+1; q) = (q2; q2)n(p; q2)n+1,

F (C2n; q) = (1− qn+)(q+q−; q+q−)n−1(r+r−; q+q−)n,
F (C2n+1; q) = (1− r+q

n
−)(q+q−; q+q−)n(r+r−; q+q−)n,

F (D2n; q) = (1− qn)2(q2; q2)2
n−1,

F (D2n+1; q) = (q2; q2)2
n,

F (E6; q) = (q2; q2)4,

F (E7; q) = (q2; q)7,

F (E8; q) = (1− q8)(q2; q2)7,

F (F4; q) = (1− p2)(1− q2)(1− p2q2)(1− p2q4),
F (G2; q) = (1− p2)(1− q2).
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Proof. Proceed by induction with respect to rank. In most cases, the claimed identity
may be proved by using Proposition 5.4 to compute the series GJ(Φ; q) for a suitable
parabolic subsystem ΦJ of co-rank 1, and then appealing to Corollary 5.2 and the
induction hypothesis. However, for An and Cn, our induction will directly rely on
Theorem 5.1.

Case 1: Φ = An. With coordinates chosen so that αi = εi+1 − εi (1 6 i 6 n), the
co-weight ρ∨ is the orthogonal projection of (0, 1, . . . , n) into the hyperplane normal
to (1, . . . , 1). The W -orbit of ρ∨ may thus be identified with the permutations of
{0, . . . , n}. If ΦJ ∼= An−1 omits the first simple root, then the members of this orbit
that are ΦJ -dominant are of the form (a0, . . . , an) with a1 < · · · < an, and the
ones that correspond to perfect cosets (see Proposition 5.4(a)) must also have ai+1−
ai odd for all i > 1. Only two permutations satisfy this property: (0, 1, . . . , n) and
(n, 0, . . . , n − 1). Thus there are only two perfect coset representatives: the identity
element and y = s1s2 . . . sn. Of course y has n inversions; the odd ones are the roots
εn+1− εi = αn + · · ·+αi for i = n mod 2. These all belong to the W (Φ0)-orbit of αn.
If n is odd, then these inversions are all weighted q+, and Corollary 5.3 yields

(5) F (A2n−1; q) = (1− qn+)F (A2n−2; q).

For even n, there is no harm in declaring the odd root αn to have weight q+ (recall (4)).
This agrees with the weight it is assigned as a member of ΦJ . However, it is the
opposite of the weight assigned to y−1αn = αn−1, so the effect of the substitution
q → y−1q on F (ΦJ ; q) is the change of variables q → q̄. Thus Theorem 5.1 in this
case implies

F (A2n; q) = F (A2n−1; q) + qn+F (A2n−1; q̄)
= (1− qn+)F (A2n−2; q) + qn+(1− qn−)F (A2n−2; q)
= (1− qn+qn−)F (A2n−2; q),

the second equality being a consequence of (4) and (5).

Case 2: Φ = Bn. By choosing simple roots α1 = ε1 and αi = εi − εi−1 (1 < i 6 n),
we have ρ∨ = (1, 2, . . . , n). The W -orbit of ρ∨ consists of all signed permutations of
{1, . . . , n}, and with ΦJ ∼= Bn−1 omitting the simple root αn, one sees that a member
(a1, . . . , an) of this orbit is ΦJ -dominant when 0 < a1 < · · · < an−1. Imposing the
additional constraints in Proposition 5.4(a) (i.e. ai = i mod 2), we see that there is
only one nontrivial member of this orbit that corresponds to a perfect coset; namely,
θ = (1, . . . , n− 1,−n). Since

{β ∈ Φ+ : 〈β, θ〉 < 0} = {εn} ∪ {εn ± εi : i < n},

one infers that this coset representative has 2n− 1 inversions. Among these roots, we
have 〈β, θ〉 odd if and only if β = εn and n is odd, or β = εn ± εi and i 6= n mod 2.
Thus Proposition 5.4 and Corollary 5.2 imply

F (Bn; q)/F (Bn−1; q) =
{

1− pqn−1 if n is odd,
1− qn if n is even.

For the base of this induction, one may specialize the series for C2.

Case 3: Φ = Cn. With simple roots α1 = 2ε1 and αi = εi− εi−1 (1 < i 6 n), one has
2ρ∨ = (1, 3, . . . , 2n − 1). The W -orbit of 2ρ∨ consists of all signed permutations of
these coordinates, and with J chosen so that ΦJ ∼= Cn−1, the condition for a member
(a1, . . . , an) of this orbit to be ΦJ -dominant is 0 < a1 < · · · < an−1. After accounting
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for the extra factor of 2, the perfection constraints of Proposition 5.4(a) amount to
the added condition that ai−ai−1 = 2 mod 4 for 1 < i < n, leaving four possibilities:

(1, 3, . . . , 2n− 3,±(2n− 1)), (3, 5, . . . , 2n− 1,±1).

The corresponding perfect coset representatives are
JW1 = {1, y, ys1, ys1y

−1},

where y = sn · · · s3s2. Thus there are four terms in the recurrence for F (Cn; q) pro-
vided by Theorem 5.1. Of course the term contributed by the identity element is
F (Cn−1; q). For the remaining three, the inversion sets are

Φ(y) = {εi − ε1 : 1 < i 6 n}, Φ(ys1) = {εi + ε1 : 1 6 i 6 n},
Φ(ys1y

−1) = Φ+ r ΦJ = {2εn} ∪ {εn ± εi : 1 6 i < n}.

Now recall from the proof of Proposition 2.4 that β ∈ Cn is odd if and only if
〈β, ω〉 = ±2, where ω = (1,−1, 1,−1, . . . ). Moreover, our conventions for the variables
qβ are such that if 〈β, ω〉 = 2, then qβ = r+ (if β is long) or q− (if β is short).

Hence the odd inversions for ys1y
−1 are εn + εi (for i = n mod 2), εn − εi (for

i 6= n mod 2), and 2εn. These have weights q+ and r− for n even, or q− and r+
for n odd. Since ys1y

−1 acts trivially on ΦJ , we conclude that this term contributes
−r−qn−1

+ F (Cn−1; q) for n even or −r+q
n−1
− F (Cn−1; q) for n odd.

Similarly, the odd inversions for y are ε2i−ε1 (all of weight q+), and for ys1 they are
2ε1 (of weight r+) and ε2i+1 + ε1 (of weight q−). Furthermore, y−1α1 = (ys1)−1α1 =
2ε2 and y−1α2 = (ys1)−1α2 = α3, so the substitutions q → y−1q and q → (ys1)−1q
are equivalent to the change of variable q→ q̄. Thus Theorem 5.1 implies

F (C2n; q) = (1− r−q2n−1
+ )F (C2n−1; q) + (r+q

n−1
− − qn+)F (C2n−1; q̄),

F (C2n+1; q) = (1− r+q
2n
− )F (C2n; q)− (r+q

n
− − qn+)F (C2n; q̄).

After isolating common factors, one sees that having the claimed product formula for
F (Cn; q) satisfy the above recurrence reduces to confirming the pair of identities

(1− qn+)(1− r+r−q
n−1
+ qn−1

− ) = (1− r−q2n−1
+ )(1− r+q

n−1
− )

+ (r+q
n−1
− − qn+)(1− r−qn−1

+ ),
(1− r+q

n
−)(1− qn+qn−) = (1− r+q

2n
− )(1− qn+)− (r+q

n
− − qn+)(1− qn−).

After checking directly that F (C2; q) = (1−q+)(1−r+r−), this induction is complete.

Case 4: Φ = Dn. With simple roots α1 = ε1 + ε2 and αi = εi− εi−1 (1 < i 6 n), one
has ρ∨ = (0, 1, . . . , n − 1). The W -orbit of ρ∨ consists of all signed permutations of
these coordinates, and with ΦJ ∼= Dn−1 omitting the simple root αn, one sees that a
member (a1, . . . , an) of this orbit is ΦJ -dominant when |a1| < a2 < · · · < an−1. The
perfection constraints in Proposition 5.4(a) require ai− ai−1 to be odd for 1 < i < n,
yielding four points in (Wρ∨)J ; namely,

θ±1 = (±1, 2, . . . , n− 1, 0), θ±n = (0, 1, . . . , n− 2,±(n− 1)).

Of course θn = ρ∨ contributes 1 to GJ(Φ; q). In the remaining cases, the roots in
Φ+ r ΦJ are of the form εn ± εi for i < n, and we have

〈εn ± εi, θ1〉 = ±i, 〈εn ± εi, θ−n〉 = −(n− 1)± (i− 1).

The results for θ−1 are similar to θ1 except that the values for εn ± ε1 are swapped.
Thus the coset representatives corresponding to θ±1 and θ−n have n− 1 and 2(n− 1)
inversions, respectively. The negative odd evaluations for θ±1 occur once for each
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odd i, and for θ−n they occur twice for each i 6= n mod 2. Thus Proposition 5.4 and
Corollary 5.2 imply

F (D2n; q)/F (D2n−1; q) = (1− qn)2, F (D2n+1; q)/F (D2n; q) = (1 + qn)2.

For the base of this induction, one may use the univariate series for A3 ∼= D3.

Case 5. The remaining possibilities are the five exceptional root systems. For G2,
it is probably easiest to evaluate the series directly either via Proposition 4.1 or the
definition. We leave this to the reader. For Φ = F4, E6, E7, and E8, we will give a
high-level description of the computation.

First, we choose parabolic subsystems ΦJ isomorphic to B3, D5, E6, and E7 (re-
spectively), and generate the ΦJ -dominant portion of the W -orbit of ρ∨ via the algo-
rithm in Remark 5.5. The respective sizes of these sets are 24, 27, 56, and 240.

It is then an easy computation to select from these sets the vectors θ = wρ∨ that
satisfy the perfection constraints of Proposition 5.4(a) (i.e. θ such that 〈θ, αj〉 is odd
and positive for all j ∈ J). One obtains 6, 6, 8, and 32 such vectors, respectively.

Coordinates for the 32 vectors arising in the case of E8 were provided in Table 2.
Once the vectors have been collected, it is a routine application of Proposition 5.4

and Corollary 5.2 to compute F (Φ; q)/F (ΦJ ; q). One obtains

F (F4; q)/F (B3; q) = (1 + p)(1 + pq2)(1− p2q2),
F (E6; q)/F (D5; q) = (1 + q4)(1 + q2 + q4),
F (E7; q)/F (E6; q) = (1− q3)(1− q5)(1− q7),
F (E8; q)/F (E7; q) = (1− q8)(1 + q3)(1 + q5)(1 + q6)(1 + q7). �

Remark 6.2. As mentioned in the introduction, the univariate series F (Φ; q) except
for the case Φ = E8 were determined previously by Brenti and Carnevale in [3] (see
also the references cited there for earlier work in special cases). It is interesting to
note that they give multivariate refinements of the coarse graded series for Bn and
Cn that use 3 and 4 variables, respectively. (See Theorem 5.5 and the first formula
in Theorem 5.7 in [3].) Curiously, their 4 variable series for Cn and our fine graded
series do not record the same information about the distribution of odd inversions.

7. The parabolic series
We now turn our attention to the parabolic series FJ(Φ; q) introduced in Section 4.
We will say that a subsystem ΦJ ⊂ Φ is coherent whenever

(6) FJ(Φ; q) = F (Φ; q)/F (ΦJ ; q)

under the fine grading. Since we have explicit formulas for the full series, we therefore
have explicit formulas for FJ(Φ; q) whenever ΦJ is coherent.

Of course it cannot generally be the case that all subsystems are coherent. For
example, we have previously noted that the quotient F (Φ; q)/F (ΦJ ; q) need not even
be a polynomial in types A and C. If we restrict to the coarse or univariate gradings,
this obstruction is removed (Corollary 5.2); however, we have also seen that the two
sides of (6) need not even have the same degree (Remark 4.3).

On the other hand, we claim that there is a large class of coherent parabolic
subsystems. To describe this class, consider that the height functions in Φ and ΦJ
are compatible, so ΦJ has an even-height root subsystem ΦJ,0 ⊆ Φ0, an even Weyl
group W (ΦJ,0) = WJ ∩W (Φ0), and a WJ -normalizer N(ΦJ,0) = W (ΦJ,0) o Γ(ΦJ,0).
As noted previously, Γ(Φ0) may be identified as the subgroup of N(Φ0) consisting of
elements with no even inversions, so there is an inclusion N(ΦJ,0) ⊆ N(Φ0) if and
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only if Γ(ΦJ,0) ⊆ Γ(Φ0). Moreover, one may test for this inclusion merely by checking
that yαj is odd for all y ∈ Γ(ΦJ,0) and all j /∈ J .

Theorem 7.1. If Γ(ΦJ,0) ⊆ Γ(Φ0) (or equivalently, N(ΦJ,0) ⊆ N(Φ0)), then ΦJ is
coherent. That is, we have FJ(Φ; q) = F (Φ; q)/F (ΦJ ; q) under the fine grading.

We know that in many cases, F (Φ; q)/F (ΦJ ; q) is GJ(Φ; q), the sign-twisted series
for the set JW1 of perfect coset representatives (Theorem 5.1). Thus one available
strategy for proving coherence in some cases would be to show FJ(Φ; q) = GJ(Φ; q)
directly.

Lemma 7.2. If JW1 ⊂W (Φ0), then F (Φ; q)/F (ΦJ ; q) = GJ(Φ; q) = FJ(Φ; q̄) under
the fine grading.

Proof. It is clear that F (ΦJ ; q) = F (ΦJ ; y−1q) for any y ∈ JW ∩W (Φ0), so the first
equality is an immediate consequence of Theorem 5.1. For the second, note that

JW1 ⊆ W (Φ0) ∩ JW ⊆ N(Φ0) ∩ JW.

On the other hand, any y ∈ N(Φ0) has the property that y−1αi is odd for all i, and
thus equality occurs throughout. We therefore have

GJ(Φ; q) =
∑

y∈N(Φ0)∩JW

sgn(y)
∏

β∈Φ1(y)

qβ =
∑

y∈N(Φ0)∩WJ

sgn(y)
∏

β∈Φ1(y−1)

qβ .

The only difference between the second sum and the expression for FJ(Φ; q) in Propo-
sition 4.1 is the dependence on the inversion set for y−1 rather than y. However, the
conditions for β to be an inversion for y (i.e. β > 0 and yβ < 0) are also equivalent to
having −yβ be an inversion for y−1. Moreover, β is odd if and only if −yβ is odd, and
the two roots necessarily belong to opposite W (Φ0)-orbits (since y ∈ W (Φ0)). Thus
the above sum is identical to the result of substituting q→ q̄ in Proposition 4.1. �

Proof of Theorem 7.1. By definition, we have

(7) F (Φ; q) =
∑
x∈WJ

∑
y∈WJ

sgn(xy)
∏

β∈Φ1(xy)

qβ .

By Proposition 4.1, this sum may be restricted to those pairs (x, y) with xy ∈ N(Φ0).
Applying Lemma 4.2 to the pair (ΦJ ,Φ∅), we know that the map y 7→ sjy (with j

being the first fault of y relative to ΦJ) is a sign-reversing involution on the members
ofWJ not in N(ΦJ,0). Replacing y with sjy if necessary, we may assume `(sjy) > `(y).
Since `(xy) = `(x) + `(y) for all x ∈W J and y ∈WJ , Lemma 1.1 implies

Φ(xy) = Φ(y) ∪̇ y−1Φ(x),
Φ(xsjy) = Φ(y) ∪̇ {y−1αj} ∪̇ y−1sjΦ(x)

= Φ(y) ∪̇ {y−1αj} ∪̇ ty−1Φ(x),

where t = y−1sjy is the reflection corresponding to the root y−1αj ∈ ΦJ . However, j
is the first fault of y relative to ΦJ , so this is an even root and t belongs toW (ΦJ,0) ⊂
W (Φ0). It follows that for each W (Φ0)-orbit of odd roots, the number of such roots is
the same in y−1Φ(x) and ty−1Φ(x). Furthermore, N(Φ0) includes xsjy = xyt if and
only if it also includes xy. Thus the contributions of xy and xsjy to (7) cancel out
under the fine grading, and we can require y ∈ N(ΦJ,0) in addition to the restriction
xy ∈ N(Φ0).
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Given the hypothesis N(ΦJ,0) ⊂ N(Φ0), our restrictions on x and y can be sepa-
rated into x ∈ N(Φ0), y ∈ N(ΦJ,0). Since Φ1(xy) = Φ1(y) ∪̇ y−1Φ1(x), we obtain

F (Φ; q) =
∑

x∈N(Φ0)∩WJ

∑
y∈N(ΦJ,0)

sgn(xy)
∏

β∈Φ1(xy)

qβ

=
∑

y∈N(ΦJ,0)

(
sgn(y)

∏
β∈Φ1(y)

qβ

)
FJ(Φ; y−1q)

under the fine grading. It therefore suffices to show that

(8) FJ(Φ; q) = FJ(Φ; y−1q) for all y ∈ N(ΦJ,0).

Indeed, in that case we could factor FJ(Φ; q) out of the above sum, and Proposition 4.1
would clearly identify the remaining sum as F (ΦJ ; q).

This invariance is immediate whenever y belongs to W (ΦJ,0) (a subgroup of
W (Φ0)), so we may assume y ∈ Γ(ΦJ,0) ⊆ Γ(Φ0) and that y acts nontrivially on
the W (Φ0)-orbits of odd roots. We may also assume ΦJ is proper (otherwise W J is
trivial) and that y ∈ Γ(ΦK,0) for some irreducible component ΦK of ΦJ , since Γ(ΦJ,0)
is generated by such groups. In that case, y may act non-trivially on the orbits of
odd roots in at most one irreducible component of Φ (the one containing ΦK), so we
may further assume that Φ is irreducible. By Proposition 3.2, this is possible only if
Φ ∼= A2n−1 or Cn.

In these cases, there is only one nontrivial element y ∈ Γ(Φ0), and Proposition 3.2
provides an explicit description of it. For A2n−1 and C2n−1, it involves the simple
reflections at both ends of the Dynkin diagram, and thus cannot belong to any proper
parabolic subgroup ofW that is irreducible. For C2n, it is also the nontrivial element of
Γ(ΦJ,0), where ΦJ is the parabolic subsystem spanned by the short simple roots. Thus
the conditions of the previous paragraph may be met only if (Φ,ΦJ) ∼= (C2n, A2n−1).
Since Γ(Φ0) acts on theW (Φ0)-orbits by interchanging opposite pairs (Proposition 3.2
again), proving

(9) FJ(Φ; q) = FJ(Φ; q̄)

in this one case completes the proof of (8).
Our strategy for this case is to show that the conditions of Lemma 7.2 are met;

i.e. that W (Φ0) contains all of the perfect coset representatives. The key point is
that the long roots of C2n are all odd. Thus every y ∈ JW1 has the property that
y−1αi is odd, whether αi is short (i.e. i ∈ J) or αi is long (i.e. i /∈ J). In other
words, JW1 ⊂ N(Φ0), and the only question is whether JW1 (or the entirety of JW )
contains any elements in the nontrivial coset of N(Φ0)/W (Φ0). For this, consider any
y ∈ JW . Using the coordinates for C2n we introduced in Section 2, we claim that either
yε2n = ε2n or yε2n = −ε1. Otherwise, either yε2n = εi for some i < 2n or yε2n = −εi
for some i > 1. In the former case, we have y−1(εi+1−εi) = ±εj−ε2n < 0 for some j,
and in the latter case, we have y−1(εi−εi−1) = −ε2n±εj < 0 for some j. Either way,
we contradict the fact that y ∈ JW and the claim follows. Thus y maps the (odd)
root 2ε2n to either 2ε2n or −2ε1. Both roots belong to the same W (Φ0)-orbit, so this
confirms that every y ∈ JW1 belongs to W (Φ0). Thus Lemma 7.2 implies

FJ(Φ; q̄) = F (Φ; q)/F (ΦJ ; q) = F (C2n; q)/F (A2n−1; q)

under the fine grading. However, one can see from Theorem 6.1 that the right hand
side is invariant under q→ q̄, so the same is true for FJ(Φ; q) and (9) follows. �

Algebraic Combinatorics, Vol. 2 #4 (2019) 638



Odd inversions in Weyl groups

Remarks 7.3.
(a) The irreducible root systems for which Γ(Φ0) is trivial are A2n, E6, E8, F4,

and G2 (see Table 1). Thus the conditions of Theorem 7.1 are easily met
whenever the irreducible components of ΦJ are on this list. Conversely, if Φ
is on this list, then this is the only way to meet the conditions.

(b) It follows in particular that the parabolic subsystems of A2n whose irreducible
components all have even rank are coherent. Conversely, it is easy to see from
Theorem 6.1 that there are no other parabolic subsystems of A2n with this
property. Indeed, these are the only cases for which F (ΦJ ; q) is a divisor of
F (Φ; q).

(c) In the case Φ = Bn, the nontrivial element in Γ(Φ0) is the short simple
reflection. Thus Theorem 7.1 in this case implies that a parabolic subsystem
of Bn is coherent if each of its irreducible components contain either the short
simple root or an even number of long simple roots.

(d) It seems likely that the converse of Theorem 7.1 is true; i.e. ΦJ is coherent
if and only if Γ(ΦJ,0) ⊆ Γ(Φ0). We have confirmed this for all Φ of rank at
most 8, and the argument in (b) confirms it for A2n.

It appears that there is potential for a very general factorization theorem involving
nearly all of the parabolic series FJ(Φ; q). For example, Brenti and Carnevale have
proved explicit product formulas for all of the univariate parabolic series FJ(An; q)
and FJ(Bn; q) (see Corollary 4.3 and Theorem 5.4 in [4]); the latter was also obtained
independently by Landesman [8]. These formulas are clearly expressible as products
of cyclotomic polynomials, so they support the following:

Conjecture 7.4. If Φ is irreducible, then the univariate series FJ(Φ; q) is a product
of cyclotomic polynomials unless

(a) Φ ∼= D2n and I ) J ⊇ K, where ΦK ∼= A⊕n+1
1 , or

(b) Φ ∼= E7 and I ) J ⊇ K, where ΦK ∼= A1 ⊕D4, or
(c) Φ ∼= E8 and I ) J ⊇ K, where ΦK ∼= D6.

Note that in each of (a)–(c), the subset K ⊂ I is uniquely determined.
We have confirmed the above conjecture for all root systems of rank at most 8, so

the only open cases involve Cn and Dn. Note that Brenti and Carnevale have explicit
evaluations of the series FJ(Dn; q) for the cases with |J | = 1, two cases with |J | = 2,
and some conjectured evaluations in a few cases with |J | 6 3 (see Sections 5–6 of [2]);
all are consistent with the above conjecture.

Remarks 7.5.
(a) One way to prove that FJ(Φ; q) factors into cyclotomic polynomials would be

to show that it is a divisor of F (Φ; q). (And empirically, it does not seem to
matter whether we use the fine, coarse, or univariate gradings: for ranks up
through 8, all three gradings share the same divisibility properties.) We will
not attempt to formulate a comprehensive conjecture, but it appears that
(i) FJ(Φ; q) is always a divisor of F (Φ; q) under the fine grading for A2n or

Bn, and
(ii) among the classical cases, a sufficient condition for divisibility is that

Γ(Φ0) ∩WJ is trivial. Unfortunately, this condition is not sufficient for
the exceptional cases.

(b) An even stronger divisibility condition would be for

HJ(Φ; q) := F (Φ; q)
FJ(Φ; q)F (ΦJ ; q)
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to be a polynomial. If we assume Φ is irreducible and restrict to the coarse
grading, so that F (ΦJ ; q) is assured to be a divisor of F (Φ; q) (Corollary 5.2),
the only examples we have found where FJ(Φ; q) divides F (Φ; q) butHJ(Φ; q)
fails to be a polynomial involve Dn for n > 7 and violate the condition in (a);
i.e. Γ(Φ0) ∩WJ is nontrivial.

Remark 7.6. It would be natural to investigate the analogue of FJ(Φ; q) in which the
sum over W J is replaced with a sum over JW . However, these series do not appear
to offer as much potential for factorization theorems. For example, when Φ = F4
or E6, the univariate series factors into a product of cyclotomic polynomials only in
the trivial case (i.e. J = I) and in the case J = ∅ (which coincides with the full series
F (Φ; q)). Out of the 64 choices for J available with Φ = C6 and 128 with D7, only 6
in each case yield series that factor into cyclotomic polynomials.

8. A unified presentation of the univariate factorization
There is a uniform way to present the product formula for the univariate series F (Φ; q)
that involves data attached to a root system canonically associated to Φ. To construct
this second root system, we will need to work on the dual side with the co-root
system Φ∨.

Recall that the longest element w0 of W induces a diagram automorphism of Φ
and Φ∨ via β 7→ −w0β. Let σ denote the induced map on the index set I for the
simple roots and co-roots, and I/σ the set of σ-orbits on I. For each σ-orbit J , define

α∨J :=
∑
j∈J

α∨j =
{

α∨j if j ∈ J and σ(j) = j,

α∨j + α∨σ(j) if j ∈ J and σ(j) 6= j,

and let sJ denote the longest element of WJ . It is easy to check that either
(i) sJ is a simple reflection and α∨J ∈ Φ∨ is simple, or
(ii) sJ is a product of two commuting simple reflections and α∨J /∈ Φ∨, or
(iii) sJ is the non-simple reflection in a copy of A2 and α∨J ∈ Φ∨ has height 2.

Note that (iii) occurs only if Φ∨ has an irreducible component of type A with even
rank. Indeed, this is the only circumstance in which σ reverses an edge of the diagram.

Since conjugation by w0 acts as a diagram automorphism of any σ-stable parabolic
subgroup WJ , it follows that the longest element of any such WJ belongs to Z(w0),
the centralizer of w0. In particular, for each σ-orbit J , we have sJ ∈ Z(w0).

Lemma 8.1. The centralizer Z(w0) is generated by {sJ : J ∈ I/σ}.

Proof. Consider that the −w0-orbits {β∨,−w0β
∨} in Φ∨ are permuted by Z(w0) and

that each orbit consists of all positive or all negative co-roots. Therefore if wα∨j < 0
for some w ∈ Z(w0), then the same is true for every index in the σ-orbit J of j, and
thus w must be the longest element in its WJ -coset. Hence `(wsJ) = `(w)− `(sJ) and
it follows by induction that every member of Z(w0) has a length-additive expression
as a product of elements chosen from {sJ : J ∈ I/σ}. �

Let V±1 denote the ±1-eigenspaces for the action of w0 on the ambient space V that
contains Φ and Φ∨. Since w0 is an involution, V is the direct sum of these eigenspaces.
Moreover, it is easy to see that {α∨J : J ∈ I/σ} is a basis for V−1; the parameter

k := |I/σ| = dimV−1

will be important in what follows. Given that some of the generators sJ may be
products of two commuting reflections as in (ii), it is clear that sJ need not be a
reflection, and Z(w0) need not be a reflection subgroup ofW . However as a centralizer,
Z(w0) acts naturally on the eigenspaces of w0, including V−1.
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Lemma 8.2. The centralizer Z(w0) acts faithfully on V−1. Moreover, the generator sJ
acts on V−1 as a reflection through the hyperplane orthogonal to α∨J .

Proof. In case the σ-orbit J is of type (i) or (iii), sJ acts on V as a reflection through
the hyperplane orthogonal to α∨J . Since α∨J ∈ V−1, it restricts to a hyperplane reflection
on V−1 as well. If J is of type (ii), so that sJ is a product of two commuting simple
reflections, say sisj , then the −1-eigenspace of sJ on V is spanned by α∨i and α∨j , but
the intersection of this space with V−1 is spanned by α∨J = α∨i + α∨j , so again it acts
as a hyperplane reflection on V−1. If some w ∈ Z(w0) acts trivially on V−1, it cannot
have any inversions (as a member of W ); otherwise, the proof of Lemma 8.1 shows
that it would have to invert the simple co-roots α∨j for all j in some σ-orbit J , and
thus it would have to act nontrivially on α∨J ∈ V−1. Hence the action is faithful. �

Define Φ∨/σ to be the set of −w0-orbit sums in Φ∨; i.e.

(10) Φ∨/σ := {β∨ : w0β
∨ = −β∨} ∪ {β∨ − w0β

∨ : w0β
∨ 6= −β∨}.

It is clear that Φ∨/σ is a union of Z(w0)-orbits and that it contains each α∨J .
The following result is well-known; we include a proof for the sake of completeness.

Proposition 8.3. The orbit sums Φ∨/σ form a crystallographic root system in V−1
of (full) rank k with base {α∨J : J ∈ I/σ}. Hence Z(w0) is isomorphic to the Weyl
group W (Φ∨/σ) via a map in which sJ acts as the reflection corresponding to α∨J .

Proof. Let Σ = {α∨J : J ∈ I/σ}. By Lemma 8.2, it suffices to confirm that
(a) every member of Φ∨/σ is in the nonnegative or nonpositive Z-span of Σ,
(b) every Z(w0)-orbit in Φ∨/σ meets Σ, and
(c) no nontrivial rescaling of Φ∨/σ intersects Φ∨/σ (i.e. Φ∨/σ is reduced).

Given a −w0-orbit O = {β∨,−w0β
∨}, we may exchange β∨ and O with w0β

∨ and
−O if necessary so that β∨ > 0. In that case, β∨ and −w0β

∨ must have nonnegative
integer coordinates with respect to the simple roots of Φ∨, so the same is true for the
Σ-coordinates of the orbit sum, proving (a).

Since w0 ∈ Z(w0) inverts all co-roots, there must be an element w ∈ Z(w0) and
a generator sJ such that wO is a positive orbit and sJwO is negative. However,
sJ inverts only the roots in the subsystem Φ∨J ; in most cases, this forces wO to be
{α∨j : j ∈ J} and the corresponding orbit sum to be α∨J . The one exception occurs
when the σ-orbit J is of type (iii), in which cases there are two positive −w0-orbits in
Φ∨J : one singleton and one doubleton. However they both have sum α∨J , so (b) follows
either way. (This also shows that the union in (10) need not be disjoint.)

Finally, suppose Φ∨/σ and kΦ∨/σ had a nontrivial intersection for some scalar
k > 1. In that case, (b) would force some Z(w0)-orbit in Φ∨/σ to have Σ-coordinates
in kZ, contradicting the fact that the orbit must include some α∨J . �

Now let L∨0 denote the kernel of the parity morphism ZΦ∨ → Z/2Z in which every
simple co-root is odd; this is the co-root counterpart to the lattice L0 we introduced
in (1). Having constructed a root system Φ∨/σ contained in ZΦ∨, it follows that

(Φ∨/σ)0 := L∨0 ∩ (Φ∨/σ)

is a root subsystem of Φ∨/σ. Note that if w0 acts as −1 on Φ∨, the involution σ is
trivial, Φ∨/σ = Φ∨, and (Φ∨/σ)0 = L∨0 ∩Φ∨ is the even-height root subsystem of Φ∨.

It is important to note that in general, some of the simple roots of Φ∨/σ may be
“even” (i.e. members of L∨0 ) and thus part of (Φ∨/σ)0. That is, the parity that L∨0
induces on Φ∨/σ need not be the one that declares all of its simple roots to be odd.
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Example 8.4. Consider Φ = An, with the diagram numbered 1−2− · · ·−n. Here, the
action of σ is such that σ(i) = n+ 1− i. If n = 2r, the simple roots of Φ∨/σ are

α∨r + α∨r+1, α∨r−1 + α∨r+2, . . . , α∨1 + α∨2r.

The first one is of type (iii) while the others are of type (ii) and thus longer, and it is
not hard to check that the root system they generate is isomorphic to Br. Moreover,
all of these roots are in L∨0 , so we have Φ∨/σ = (Φ∨/σ)0 ∼= Br. On the other hand, if
n = 2r − 1, the simple roots of Φ∨/σ are

α∨r , α∨r−1 + α∨r+1, . . . , α∨1 + α∨2r−1.

The first one is again short, but it is of type (i) and has odd height in Φ∨. Thus
Φ∨/σ ∼= Br, but in this case (Φ∨/σ)0 ∼= Dr contains only the long roots. (In the
somewhat degenerate case Φ = A1, one should recognize that (Φ∨/σ)0 ∼= D1 is an
empty root system.)

Φ Φ0 Φ∨/σ (Φ∨/σ)0 k

A2n−1 An−1 ⊕An−1 Bn Dn n

A2n An ⊕An−1 Bn Bn n

B2n Bn ⊕Dn C2n A2n−1 2n
B2n+1 Bn ⊕Dn+1 C2n+1 A2n 2n+ 1
C2n A2n−1 B2n Bn ⊕Dn 2n
C2n+1 A2n B2n+1 Bn ⊕Dn+1 2n+ 1
D2n Dn ⊕Dn D2n Dn ⊕Dn 2n
D2n+1 Dn ⊕Dn+1 C2n Cn ⊕ Cn 2n
E6 A5 ⊕A1 F4 B4 4
E7 A7 E7 A7 7
E8 D8 E8 D8 8
F4 C3 ⊕A1 F4 C3 ⊕A1 4
G2 A1 ⊕A1 G2 A1 ⊕A1 2

Table 3. Listings of Φ0, Φ∨/σ, (Φ∨/σ)0, and k = dimV−1.

In Table 3, we list the isomorphism classes of Φ0, Φ∨/σ, and (Φ∨/σ)0 as well as the
parameter k = dimV−1 (the rank of Φ∨/σ) for each irreducible Φ.

To place the following result in its proper context, recall that for any finite reflec-
tion group action, such as W acting on V , there is a canonically associated multiset
of positive integers d1, . . . , dm (where m = dimV ). These are the degrees of a homo-
geneous set of free generators for the W -invariants in the symmetric algebra S(V ).
(The existence of such generators is Chevalley’s Theorem; e.g. see [5, §3.5].)

Theorem 8.5. If a1, . . . , ak are the degrees of the free generating invariants for the
action of W ((Φ∨/σ)0) on S(V−1), then

F (Φ; q) =
k∏
i=1

(1− qai).

Proof. It suffices to prove this when Φ is irreducible. In such cases, we may obtain the
univariate series F (Φ; q) by specializing Theorem 6.1. On the product side, one may
use Table 3 to determine the degrees a1, . . . , ak. Since the components of (Φ∨/σ)0 are
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always of classical type, one only needs to know that the degrees of the generating
invariants for the action on the span of such a component are as follows:

An : 2, 3, . . . , n+ 1,
Bn, Cn : 2, 4, 6, . . . , 2n,

Dn : n, 2, 4, 6, . . . , 2n− 2.
It should be noted that the rank r of (Φ∨/σ)0 may be less than k, in which case the
action of W ((Φ∨/σ)0) on the span of (Φ∨/σ)0 accounts for only r of the k generating
invariants in S(V−1). In such cases, the remaining k− r generators all have degree 1.
(This happens when Φ ∼= A1, C2, or Bn.) �

Remarks 8.6.
(a) Let G = W ((Φ∨/σ)0). The Hilbert series for the G-invariants is

H(S(V−1)G; q) =
k∏
i=1

1
1− qai

,

so an equivalent formulation of Theorem 8.5 is the identity
F (Φ; q)H(S(V−1)G; q) = 1.

(b) The degrees of the generating invariants also appear in Chevalley’s formula for
the (untwisted) Poincaré series P (W ; q) =

∑
w∈W q`(w) for any Weyl group

W (e.g. see [5, §3.15]). Thus another way to formulate Theorem 8.5 is the
identity

(11) F (Φ; q)
(1− q)k = P (W ((Φ∨/σ)0); q).

It should be stressed that the length function here is the one intrinsic to
the Weyl group of the root system (Φ∨/σ)0. It is not the same as the length
functions for the Weyl groups of Φ∨/σ or Φ (although the proof of Lemma 8.1
shows that the latter two are related). Note also that the factor (1 − q)−k
and the right hand side of (11) may be interpreted as the Hilbert series for
S(V−1) and its associated co-invariant algebra, respectively.

(c) It would be interesting to develop a multivariate refinement of Theorem 8.5
for either the coarse or fine gradings of F (Φ; q). In this context it should be
noted that Macdonald has given a coarse refinement of P (W ; q) for any Weyl
group W [9].
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