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Vogan classes in type Bn

Edmund Howse

Abstract Kazhdan and Lusztig have shown how to partition a Coxeter group into cells. In
this paper, we use the theory of Vogan classes to obtain a first characterisation of the left cells
of type Bn with respect to a certain choice of weight function.

1. Introduction
Lusztig has described how to partition a Coxeter group into left, right and two-
sided cells with respect to a weight function [20]. This is done via certain equivalence
relations that are calculated in the corresponding Iwahori–Hecke algebra, and the
resulting cells afford representations of both the group and the algebra. Algebraic
techniques have been developed to reduce the determination of cells to combinatorial
calculations at the level of the group.

These ideas, along with their connections to other areas of mathematics, were first
outlined by Kazhdan and Lusztig [18]. Their paper contains a quintessential result in
the theory of cells – the classification of cells in type An. In this setting, the left cells
afford a complete list of irreducible representations of the corresponding Iwahori–
Hecke algebra, a pair of left cells afford isomorphic representations if and only if
they are contained in the same two-sided cell, and two elements of the group are in
the same left cell if and only if they have the same recording tableaux under the
Robinson–Schensted correspondence.

There is ample motivation then, to have an interest in the theory of cells. One of
the aims of this theory is to classify the cells of finite Coxeter groups.

Only three types of finite irreducible Coxeter groups may have associated Iwahori–
Hecke algebras with unequal parameters; these are type F4, type Bn, and type I2(m),
where m is even. The theory here is more complex than the equal parameter case;
the conditions for determining whether two weight functions are cell-equivalent, that
is, they give rise to the same partition of the Coxeter group into cells, are far from
obvious.

Lusztig comprehensively discussed the cells of type I2(m) in [21], while Geck used a
combination of theoretical considerations and explicit computer calculations to resolve
the case of type F4 in [13]. This leaves the case of type Bn to be considered.
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Denote by Wn the Coxeter group of type Bn. The weighted Coxeter system
(Wn, S,L ) may be concisely described by its Coxeter diagram:

Bn
L

t 4 t t p p p tt s1 s2 sn−1

b a a a

When b/a = 1, the cells of Wn are known following a series of papers of Garfin-
kle [9, 10, 11]. In this case, the left cells may be combinatorially described using domino
tableaux and associated operations. A description of the left cells when b/a ∈ { 1

2 ,
3
2}

is due to Lusztig [20]. The other known case is detailed in papers of Bonnafé and
Iancu [8] and Bonnafé [2]; any weight function such that b/a > n − 1 corresponds
to an “asymptotic” choice of parameters, and the resulting cells are governed by a
generalised Robinson–Schensted correspondence. Further, the left cells afford a com-
plete list of irreducible representations of the Iwahori–Hecke algebra, and two left
cells afford isomorphic representations if and only if they are in the same two-sided
cell. Thus their results are analogous to the aforementioned results of Kazhdan and
Lusztig on cells in type An−1.

An important development in the study of the cells of Wn came in the form of a
number of conjectures by Bonnafé, Geck, Iancu and Lam [7]. These conjectures state
conditions for two weight functions on Wn to be cell-equivalent, as well as a unified
combinatorial description of the left, right and two-sided cells for each of these cases.
Although there are results in this direction due to Bonnafé [4, 5], a proof of these
conjectures remains elusive.

In this paper, our focus is on the left cells ofWn when b/a > n−2. The conjectures
of [7] suggests that the corresponding weight functions belong to one of the following
three classes of cell-equivalence:

• when b/a > n− 1; this is the asymptotic case,
• when b/a = n− 1; which we refer to as the intermediate case,
• when b/a ∈ (n− 2, n− 1); referred to as the sub-asymptotic case.

In the following two sections we recall some necessary background material. In
Section 4 we generalise the notion of the enhanced right descent set of Bonnafé and
Geck [6] to obtain an invariant RL of left cells for finite weighted Coxeter systems.
Section 5 is a collection of technical results for later use. In Section 6, we recall the
concept of Vogan classes from [6], and establish a particular set Ξ of KL-admissible
pairs for use in type Bn, defined exactly when b/a > n− 2.

These KL-admissible pairs describe maps that can be used to determine cellular
information that is common to the three cases mentioned above; Section 7 is dedicated
to understanding this. In the final section, we determine the left Vogan (Ξ,RL )-
classes, which leads to the following result.

Theorem. Suppose (Wn, S,L ) is such that b/a > n − 1. Then two elements of Wn

are in the same left cell if and only if they lie in the same left Vogan (Ξ,RL )-class.

As such, the left Vogan (Ξ,RL )-classes offer a new characterisation of the asymptotic
left cells of Wn, and the first characterisation of the left cells when b/a = n− 1.

2. Kazhdan–Lusztig cells with unequal parameters
Let (W,S) be a Coxeter system, let y, w ∈ W , s, t ∈ S, and denote by ` : W → Z>0
the standard length function. A weight function for W is any map L : W → Z such
that L (yw) = L (y) + L (w) whenever `(yw) = `(y) + `(w). A weight function is
uniquely determined by its values on S; conversely, any function L : S → Z such that
L (s) = L (t) whenever st has odd order extends uniquely to a weight function onW .
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We will assume throughout that L (s) > 0 for all s ∈ S; see Lusztig [20] and
Bonnafé [3] for the original, more general framework.

We will denote by 6 the Bruhat–Chevalley order on W , and write y < w if y 6 w
with y 6= w. If y is a suffix of w, we write y 6e w; see 2.1 of Geck–Pfeiffer [16] for
details.

Let I ⊆ S be non-empty. The parabolic subgroup WI := 〈I〉 has a corresponding
set XI of distinguished left coset representatives. For all w ∈ W , there exist unique
elements x ∈ XI , u ∈ WI such that w = xu; moreover, `(w) = `(x) + `(u). In this
context, we denote:

repI(w) := x, prI(w) := u.

There exists a bijection:
W ←→ XI ×WI ,

w ←→ (repI(w), prI(w)).
The Iwahori–Hecke algebra H := H(W,S,L ) is a deformation of the group algebra

of W over A := Z[v, v−1], the ring of Laurent polynomials with indeterminate v.
The Iwahori–Hecke algebra has an A-basis {Tw : w ∈ W}; multiplication between

basis elements may be described by the formula:

TsTw =
{
Tsw if sw > w,

Tsw + (vL (s) − v−L (s))Tw if sw < w.

We refer to the elements of the set {vL (s) : s ∈ S} as the parameters of the
Iwahori–Hecke algebra. If there exist s, t ∈ S such that vL (s) 6= vL (t) then we say
that H has unequal parameters. Otherwise, we say that we are in the equal parameter
case.

Multiplication in the Kazhdan–Lusztig basis {Cw : w ∈ W} of H (see Kazhdan–
Lusztig [18] and Lusztig [20]) determines the left cells of W as follows. The relation
defined by:

y 6′L w if
{
there exists s ∈ S such that
Cy occurs with non-zero coefficient in CsCw

can be extended to its reflexive, transitive closure – a preorder 6L called the Kazhdan–
Lusztig preorder. The associated equivalence relation onW , denoted ∼L, is defined by:

y ∼L w ⇐⇒ y 6L w and w 6L y.

The resulting equivalence classes are called left cells. Similar definitions exist for the
preorder 6R and right cells, as well as the preorder 6LR and two-sided cells; see
Lusztig [21, 22] for details.

The Coxeter group WI has its own left, right and two-sided cells, arising from
relations denoted ∼L,I , ∼R,I and ∼LR,I respectively.

3. The Coxeter group of type Bn
We retain the notation for the Coxeter group of type Bn from § 1. It is often useful
to identify Wn with the group of signed permutations. The map given by t 7→ (1,−1),
si 7→ (i, i+ 1)(−i,−i− 1) defines an isomorphism between these groups. Thus we can
write w ∈Wn as a sequence w(1), . . . , w(n), where for 1 6 i 6 n we have w(i) = εipi,
with εi ∈ {±1}, and p1, . . . , pn forming a permutation of n.

One benefit of this identification is the use of the following classical result. Let
1 6 i 6 n− 1 and 1 6 j 6 n. Set tj := sj−1 · · · s1ts1 · · · sj−1 = (j,−j).
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Lemma 3.1. Let w ∈Wn. Then:
(i) `(wsi) < `(w) ⇐⇒ w(i+ 1) < w(i),
(ii) `(wtj) < `(w) ⇐⇒ w(j) < 0.

There exists a generalised Robinson–Schensted correspondence from the elements
of Wn to pairs of standard bitableaux of size n with the same shape; see Bonnafé–
Iancu [8] for details. We denote this correspondence

w 7−→
(
An(w), Bn(w)

)
,

and set sh(w) to be the shape of An(w) which is equal to the shape of Bn(w). The
bitableau An(w) is called the insertion bitableau of w, and Bn(w) is called the record-
ing bitableau of w.

In [8, § 1], it is noted that the left cells of (Wn, S,L ) are independent of the
exact value of b/a, provided it is sufficiently large (with respect to n). Such a weight
function is termed an asymptotic weight function. Whenever Wn is equipped with an
asymptotic weight function, we say that we are in the asymptotic case.

Theorem 3.2 (Bonnafé–Iancu, [8, Theorem 7.7]; Bonnafé, [2, Remark 3.7 and Propo-
sition 5.5]).A weight function on Wn is asymptotic if and only if b/a > n− 1. More-
over, let y, w ∈Wn and suppose that we are in the asymptotic case. Then:

(i) y ∼L w ⇐⇒ Bn(y) = Bn(w),
(ii) y ∼R w ⇐⇒ An(y) = An(w),
(iii) y ∼LR w ⇐⇒ sh(y) = sh(w).

We conclude with some additional notation. Denote by `t the function that counts
the number of occurences of the generator t in a reduced expression for w ∈Wn. Let e
be the identity element, and let w0 be the longest word of Wn.

4. A new descent set for finite Coxeter groups
Let (W,S,L ) be a weighted Coxeter system. The right descent set of w ∈ W is
given by

R(w) := {s ∈ S : `(ws) < `(w)}.
The right descent set is an invariant of the left cells of W (see [20]), so if y ∼L w then
R(y) = R(w). This concept may be refined as in Bonnafé–Geck [6, Example 7.4]. Let

SL := S ∪ {sts : s, t ∈ S, such that L (t) > L (s)}.
Then the enhanced right descent set of w ∈W is

RL (w) := {σ ∈ SL : `(wσ) < `(w)}.
This is again an invariant of left cells. Although this is only a slightly finer invariant
than the right descent set, its strength lies in being fine enough to determine left cells
of dihedral groups with respect to any of the three cell-equivalence classes of weight
functions. It is therefore a useful tool when considering parabolic subgroups of W of
rank 2. In this section, we further refine this concept to obtain an invariant of left cells
of finite weighted Coxeter systems that is sensitive to the choice of weight function.

Definition 4.1. Let (W,S,L ) be a weighted Coxeter system, and let

SL := S ∪

sk · · · s1ts1 · · · sk : L (t) > k ·L (si) and
order(sisi+1) = 3 for 1 6 i 6 k − 1

 .

For w ∈W , let
RL (w) := {σ ∈ SL : `(wσ) < `(w)}.
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Note that RL (w) = R(w) when L is constant on S.

Lemma 4.2. Let W be of type F4, and let L : W → Z be a weight function. Then RL

is an invariant of the left cells of W with respect to L .

Proof. The cell-equivalence classes of weight functions on W are known following
Corollary 4.8 of Geck [13]. The result can then be verified for a representative of each
class with some elementary computer code in conjunction with the Python module
PyCox; see Geck [15]. �

Remark 4.3. For W = Wn and b/a > 1, we have

SL ⊆ {s1, s2, . . . , sn−1, t1, t2, . . . , tn},
and for w ∈Wn, we have

RL (w) = R(w) ∪
{
tk : b

a
> k − 1 and `(wtk) < `(w)

}
.

We set K := {t, s1, . . . , sn−2} so that WK = Wn−1. We may describe the set XK as
the set of all suffixes of the Coxeter word tn = sn−1 · · · s1ts1 · · · sn−1.

From now until the end of this section only, we adopt the setup of Remark 4.3. A
similar setting to this was considered in Pietraho [23, Definition 3.4].

Remark 4.4. Let x ∈ XK and u ∈ WK . Then RL (xu) = RL (u) ∪ A, for some
A ⊆ {sn−1, tn}.

Proposition 4.5. Let y, w ∈Wn. If y ∼L w, then RL (y) = RL (w).

Proof. Fix a weight function L as in Remark 4.3, let y, w ∈ Wn, and suppose that
y ∼L w. Recall that if y ∼L w then R(y) = R(w), and so we only need to evaluate
the membership of tj in RL (y) and RL (w), where j satisfies both 2 6 j 6 n and
b/a > j − 1. Proceed by induction on n.

Suppose n = 2. Then RL coincides with RL , and W2 coincides with W (I2(4)).
The statement is then true by [6, Example 7.4]. Now assume the statement is true for
all r < n. We show that it is true for r = n.

Let 2 6 j 6 n− 1 and suppose b/a > j − 1. Then by Remark 4.4, we have

(1) tj ∈ RL (w) ⇐⇒ tj ∈ RL (prK(w)).
By Geck [12, Theorem 1], y ∼L w implies that prK(y) ∼L,K prK(w). By our in-

duction hypothesis, prK(y) ∼L,K prK(w) implies that RL (prK(y)) = RL (prK(w)).
So if b/a 6 n − 1, then we are done by (1). If not, then it remains to determine the
membership of tn in RL (y) and RL (w).

So, suppose now that b/a > n − 1. Then by [8, Corollary 6.7], we know that
`t(y) = `t(w). By [12, Theorem 1], we have `t(prK(y)) = `t(prK(w)). It follows that
`t(repK(y)) = `t(repK(w)). It remains to observe that tn ∈ RL (w) if and only if
`t(repK(w)) = 1. �

Corollary 4.6. Let (W,S,L ) be a finite weighted Coxeter system. Then RL is an
invariant of its left cells.

Proof. We use the classification of finite irreducible Coxeter groups to reduce to the
case where W is of type Bn, type F4, or type I2(m) with m even. The case of type
F4 was looked at in Lemma 4.2. The case of type I2(m) has been considered in [6,
Example 7.4]. For type Bn, if b/a ∈ (0, 1), then RL = RL , and we are in the
case of [6, Example 7.4] again. Finally, we appeal to Proposition 4.5 to conclude the
proof. �
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From the definition of RL , we see that we can write

Wn =
⊔

I⊆SL

{w ∈Wn : RL (w) = I},

and so RL partitions Wn into up to 22n−1 subsets. However, unlike with R, some
of these subsets will be empty. For instance, if W2 is equipped with an asymptotic
weight function, then RL distinguishes all six of its left cells. On the other hand,
there is no element w ∈W2 such that RL (w) is equal to either {t, s1} or {t2}. These
observations motivate us to work out just how fine an invariant RL is for the left
cells of Wn.
Lemma 4.7. Suppose Wn is equipped with an asymptotic weight function. Then RL

partitions Wn into exactly 2 · 3n−1 non-empty subsets.
Proof. We proceed by induction on n. For the case n = 2, see [6, Example 7.4].

Let x ∈ XK and u ∈ WK . Then by Remark 4.4, RL (xu) is equal to one of the
following:

(i) RL (u), (ii) RL (u) ∪ {sn−1},
(iii) RL (u) ∪ {tn}, (iv) RL (u) ∪ {sn−1, tn}.

Let I ⊆ SL , and consider the sets CI := {u ∈ WK : RL (u) = I} and DI :=
{xu : x ∈ XK , u ∈ CI}. By our inductive hypothesis, RL partitions WK into
exactly 2 · 3n−2 non-empty subsets. It suffices to show that if CI 6= ∅, then RL

partitions DI into exactly three non-empty subsets. So, fix some I ⊆ SL such that
CI 6= ∅, and let u ∈ CI .

First note that e ∈ XK is such that sn−1, tn /∈ RL (eu) for all u ∈ WK , while
tn ∈ XK commutes with all u ∈WK to give sn−1, tn ∈ RL (tnu). We now distinguish
two cases.
Case A. Suppose that tn−1 /∈ I. By Lemma 3.1, we have u(n − 1) > 0. Consider
x = s1 · · · sn−1 ∈ XK . We have xu(n − 1) > 0 and xu(n) = 1, and it follows that
RL (xu) = RL (u) ∪ {sn−1}.

So now suppose there is some x′ ∈ XK such that sn−1 /∈ RL (x′u). Using
Lemma 3.1 and Remark 4.4, we have that x′u(n) > x′u(n − 1) > 0, and so
tn /∈ RL (x′u). Thus if tn−1 /∈ I, then RL (x′u) is not equal to RL (u) ∪ {tn}.
Case B. Suppose that tn−1 ∈ I, and let x = ts1 · · · sn−1 ∈ XK . Via similar consid-
erations to those in Case A, we see that RL (xu) = RL (u) ∪ {tn} while RL (x′u) 6=
RL (u) ∪ {sn−1} for all x′ ∈ XK . �

Corollary 4.8. Suppose b/a ∈ (k, k+1] ⊆ (1, n] for some k ∈ Z. Then RL partitions
Wn into exactly 2n−k · 3k non-empty subsets.

5. The set Zn

In this section, we collect a number of technical results for later use.

5.1. Shape. To any w ∈ Wn we associate the bipartition sh(w) as in § 3. For any
bipartition λ  n, we set Ωλ := {w ∈ Wn : sh(w) = λ}, and for 0 6 q 6 n we set
ζq := (1n−q | 1q)  n. If we are in the asymptotic case, then Ωλ is equal to a two-sided
cell, as in Theorem 3.2 (iii).

Set J := {s1, . . . , sn−1}, and denote by wJ ∈Wn the longest word of the parabolic
subgroup WJ . Then sh(wJ) = ζ0 and sh(wJw0) = ζn. We note that if w ∈Wn is such
that either An(w) = An(wJ) or Bn(w) = Bn(wJ), then w = wJ . By Theorem 3.2,
the element wJ lies in an asymptotic left, right and two-sided cell of cardinality one.
Analogous statements hold for the element wJw0.
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Definition 5.1.

Zn :=
n⊔
q=0

Ωζq
,

Z̃n := Zn r {wJ , wJw0}.

We have Zn = w0Zn and Zn = {w−1 : w ∈ Zn}, as well as analogous statements
for Z̃n.

The cardinality of {Bn(w) : w ∈ Ωζq
} (and of {An(w) : w ∈ Ωζq

}) is
(
n
q

)
. If we

are in the asymptotic case, this is equivalent to saying that Ωζq
contains

(
n
q

)
left

(equivalently, right) cells, each of size
(
n
q

)
. For later use, we may therefore state:

(2)
∣∣{Bn(w) : w ∈ Zn}

∣∣ =
n∑
q=0

(
n

q

)
= 2n.

5.2. Signed permutations. The condition w ∈ Zn is quite a strict one, and in turn
places conditions on the row form of w. Indeed, let us consider w = w(1), . . . , w(n) ∈
Zn as a signed permutation. Then the subsequence x1, . . . , xq of negative integers
must be such that |x1| > |x2| > · · · > |xq|. Similarly, the subsequence y1, . . . , yn−q of
positive integers must be such that y1 > y2 > · · · > yn−q. Further, if y, w ∈ Zn then
Bn(y) = Bn(w) if and only if y(i) and w(i) have the same sign for all 1 6 i 6 n.

Example 5.2.We have y, w ∈ Z7, where:

y =
(

1 2 3 4 5 6 7
−7 −5 6 4 3 −2 1

)
, A7(y) =

1
3
4
6

2
5
7
, B7(y) =

3
4
5
7

1
2
6
,

w =
(

1 2 3 4 5 6 7
−4 −2 7 6 5 −1 2

)
, A7(w) =

3
5
6
7

1
2
4
, B7(w) =

3
4
5
7

1
2
6
.

5.3. Reduced expressions. The forthcoming notation σn,q and pn,q will be crucial
in discussions regarding Zn. First set a0 := e, bn−1, bn := e, and pn,0, pn,n := e, and
then:

• for 1 6 q 6 n, set aq := (t)(s1t) · · · (sq−1 · · · s1t),
• for 0 6 q 6 n− 2, set bq := (sq+1)(sq+2sq+1) · · · (sn−1 · · · sq+1),
• for 0 6 q 6 n, set σn,q := aq · bq,
• for 1 6 q 6 n− 1, set:

pn,q := (sn−qsn−q−1 · · · s1)(sn−q+1sn−q · · · s2) · · · (sn−1sn−2 · · · sq)
= (sn−qsn−q+1 · · · sn−1)(sn−q−1sn−q · · · sn−2) · · · (s1 · · · sq).

Note that aq and bq commute in Wn, with `(σn,q) = `(aq) + `(bq).

Proposition 5.3. Consider the asymptotic two-sided cell Ωζq ⊆ Zn. It contains the
asymptotic left cell

Γq := {πσn,q : π 6e pn,q},
and the following is a complete list of asymptotic left cells contained in Ωζq

:

{Γqτ−1 : τ 6e pn,q}.
Thus,

Ωζq = {πσn,qτ−1 : π, τ 6e pn,q}.
Further, for any 0 6 q 6 n and π, τ 6e pn,q, the expression πσn,qτ−1 is reduced.
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Together with § 5.1, this result implies that pn,q has
(
n
q

)
suffixes.

5.4. Cell decomposition. We now give a pair of basic lemmas with useful corol-
laries.

Lemma 5.4. Let w ∈ Zn. Then:
(i) If wt > w and wt ∈ Zn, then s1 ∈ R(w) and R(wt) = R(w) ∪ {t}r {s1}.
(ii) For 1 6 i 6 n − 2, if wsi > w and wsi ∈ Zn, then si+1 ∈ R(w). We have
R(ws1) = R(w) ∪ {s1} r {t, s2}, and for 2 6 i 6 n − 2 we have R(wsi) =
R(w) ∪ {si}r {si+1}.

(iii) If wsn−1 > w and wsn−1 ∈ Zn, then R(wsn−1) = R(w) ∪ {sn−1}.
(iv) Left-handed versions of the above statements also hold.

Proof. Following the discussion in § 5.2, this may be verified with judicious application
of Lemma 3.1. �

Corollary 5.5. Let y, w ∈ Zn with R(y) = R(w), and let p ∈Wn. Suppose that
yτ−1, wτ−1 ∈ Zn ∀ τ 6e p.

Then we have R(yτ−1) = R(wτ−1) for all τ 6e p.

Lemma 5.6. Let w ∈ Zn, and 1 6 i 6 n − 2. Suppose that siw ∈ Zn with w < siw.
Then w ∼L siw with respect to any choice of parameters.

Proof. Application of Lemma 5.4 (iv) shows that Msi+1
w,siw = 1, and thus w ∼L siw,

with respect to any choice of parameters(1). �

Denote by Sw the set of all s ∈ S such that s occurs in a reduced expression for w
(as in [21, § 9.2]).

Corollary 5.7. Let Γ ⊆ Zn be an asymptotic left cell. Then the cell can be decom-
posed as

Γ = γ1 t γ2

where γ1 and γ2 are each contained within a left cell for all choices of parameters.
Denote by σ the element in Γ of minimal length, and set q = `t(σ). Then we have

γ1 = {πσ : π 6e pn,q and sn−1 /∈ Sπ} = {πσ : π 6e pn−1,q},
γ2 = {πσ : π 6e pn,q and sn−1 ∈ Sπ} = {πχqσ : π 6e pn−1,q−1},

where χq := sn−1 · · · sq.

Proof. We first check that the two descriptions of γ1 and γ2 are consistent. By Propo-
sition 5.3, we may describe the cell Γ as

Γ = {πσ : π 6e pn,q}.
Recall the following reduced expressions for pn,q:

pn,q = (sn−q · · · sn−1)(sn−q−1 · · · sn−2) · · · (s1 · · · sq)
= (sn−q · · · s1)(sn−q+1 · · · s2) · · · (sn−1 · · · sq).

In the first expression, we have moved the lone sn−1 term as far to the left as possible;
in the second, as far to the right as possible. We see that sn−1 /∈ Sπ if and only if
π 6e pn−1,q. Similarly, sn−1 ∈ Sπ if and only if there exists a reduced expression for
π ending in the block sequence χq = sn−1 · · · sq. Now note that

pn,q = pn−1,q−1χq with `(pn,q) = `(pn−1,q−1) + `(χq).

(1) For the definition of M -polynomials, the reader may consult [21, Chapter 6], where they are
denoted by µ.
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Following this, we may apply Lemma 5.6 to see that for i ∈ {1, 2}, if y, w ∈ γi,
then y ∼L w for any choice of parameters. In this result, we note that γ2 = ∅ if
|Γ| = 1. �

5.5. The partition of Zn with respect to RL .

Lemma 5.8. Let w ∈ Zn, and let 1 6 i 6 n− 1. Then:
`(wsi) < `(w) ⇐⇒ `(wti) > `(w).

Proof. The statement follows from Lemma 3.1 and § 5.2. �

Corollary 5.9. Consider (Wn, S,L ) and let y, w ∈ Zn.
(i) If b/a > n− 2, then
RL (y) ∩ {t1, . . . , tn} = RL (w) ∩ {t1, . . . , tn} ⇐⇒ RL (y) = RL (w).

(ii) If b/a ∈ [1, n− 1], then
RL (y) = RL (w) ⇐⇒ R(y) = R(w).

Lemma 5.10. Consider (Wn, S,L ).
(i) If b/a > n−1, then Zn is partitioned by RL into 2n non-empty subsets; these

subsets are exactly the asymptotic left cells.
(ii) Suppose b/a > n − 1, and let T ⊆ {t1, . . . , tn} be arbitrary. Then there ex-

ists a unique left cell Γ ⊆ Zn such that for any w ∈ Γ, we have RL (w) ∩
{t1, . . . , tn} = T .

(iii) If b/a ∈ [1, n−1], then Zn is partitioned by RL (and R) into 2n−1 non-empty
subsets, each of which is the union of exactly two asymptotic left cells.

Proof. We first look at part (i). By Corollary 5.9 (i), we know that RL (y) = RL (w)
if and only if RL (y) ∩ {t1, . . . , tn} = RL (w) ∩ {t1, . . . , tn}. By Lemma 3.1, this is
in turn equivalent to the statement that y(i) and w(i) have the same sign for all
1 6 i 6 n. As was noted in § 5.2, this is if and only if Bn(y) = Bn(w), which is true
if and only if y and w are in the same asymptotic left cell. Recalling (2) from § 5.1
finishes the proof.

Part (ii) follows from part (i), Corollary 5.9 (i), and the fact that the power set of
{t1, . . . , tn} contains 2n elements.

Turning to part (iii), we first prove the statement for b/a ∈ (n − 2, n − 1]. So, let
T ′ ⊆ {t1, . . . , tn−1} be an arbitrary subset. Then

{w ∈ Zn : RL (w) ∩ {t1, . . . , tn−1} = T ′} (with b/a ∈ (n− 2, n− 1])
= {w ∈ Zn : RL (w) ∩ {t1, . . . , tn} = T ′} t {w ∈ Zn : RL (w) ∩ {t1, . . . , tn}
= T ′ t {tn}} (with b/a > n− 1).

The parts of this disjoint union are non-empty by part (ii). So when b/a ∈ (n−2, n−1],
RL partitions Zn into half as many non-empty subsets compared to when b/a > n−1.
Now apply part (i). Corollary 5.9 (ii) then extends the scope of the result to all
b/a ∈ [1, n− 1]. �

Later, it will benefit us to have a description of howRL partitions Zn. Lemma 5.10
indicates that we can split this into two cases. If b/a > n−1, then descriptions of this
partition are given in both Theorem 3.2 (i) and Proposition 5.3. Otherwise, it suffices
to look at how R partitions Zn.

So let I ⊆ S be such that {w ∈ Zn : R(w) = I} is non-empty. This set comprises
exactly two asymptotic left cells. In order to describe all such sets in this form, we
need to show how the left cells “pair up” under R. This has three steps; first finding
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representative pairings, then taking advantage of Corollary 5.5 to “translate” the
resulting sets (pairs of cells) via right multiplication, and finally showing that this
method encompases all elements in Zn. Some notation:

• denote by Γ(w) the asymptotic left cell containing w ∈Wn,
• denote by Γ′(w) the asymptotic right cell containing w ∈Wn,
• set Υ(w) := {z ∈ Zn : R(z) = R(w)} for w ∈ Zn,
• and recall that χq := sn−1 · · · sq.

Let us begin by using Lemma 3.1 to see that R(σn,q) = {t, sq+1, . . . , sn−1}. As
χq+1 6e pn,q+1, Proposition 5.3 indicates that σn,q+1χ

−1
q+1 ∈ Zn, and by applying

Lemma 3.1 again we see that R(σn,q) = R(σn,q+1χ
−1
q+1).

Thus for 0 6 q 6 n− 1, we have:

Υ(σn,q) = Γ(σn,q) t Γ(σn,q+1χ
−1
q+1).

By Proposition 5.3, we know that Γ′(σn,q) = {σn,qπ−1 : π 6e pn,q}. As pn−1,q 6e pn,q
and Γ′(σn,q) ⊆ Zn, we observe that:

{σn,qτ−1 : τ 6e pn−1,q} ⊆ Zn.

Similarly, we have Γ′(σn,q+1) = {σn,q+1π
−1 : π 6e pn,q+1}. Noting that pn,q+1 =

pn−1,qχq+1 with `(pn,q+1) = `(pn−1,q) + `(χq+1), we also observe that:

{σn,q+1χ
−1
q+1τ

−1 : τ 6e pn−1,q} ⊆ Zn.

These two observations allow us to apply Corollary 5.5 (setting y = σn,q, w =
σn,q+1χ

−1
q+1 and p = pn−1,q) to see that for all 0 6 q 6 n − 1 and all τ 6e pn−1,q we

have:
Υ(σn,qτ−1) = Γ(σn,qτ−1) t Γ(σn,q+1χ

−1
q+1τ

−1).
Sets procured in this way are non-empty, mutually distinct and contained in Zn.

Recalling from § 5.4 that the number of suffixes of pn,q is
(
n
q

)
, we see that the number

of sets that we have obtained is 2n−1, which by Lemma 5.10 (ii) is the number of non-
empty sets that R partitions Zn into. We therefore obtain Proposition 5.11 parts (i)
and (ii) below.

There is a more straightforward description of these sets. Using the braid relations
for Wn, we can verify that for 0 6 q 6 n− 1, we have

sn−q−1 · · · s1 · t · pn,q = pn,q+1 · t · s1 · · · sq.

Denote this element by Πn,q, and note that both of these expressions are reduced.

Proposition 5.11. Let w ∈ Zn.
(i) There exists 0 6 q 6 n− 1 and τ 6e pn−1,q such that:

Υ(w) = Υ(σn,qτ−1) = Γ(σn,qτ−1) t Γ(σn,q+1χ
−1
q+1τ

−1),

(ii) Zn =
n−1⊔
q=0

⊔
τ 6e pn−1,q

Υ(σn,qτ−1).

For 0 6 q 6 n− 1 and τ 6e pn−1,q, we have:
(iii) Υ(σn,qτ−1) = {πσn,qτ−1 : π 6e Πn,q},

(iv) |Υ(σn,qτ−1)| =
(
n

q

)
+
(

n

q + 1

)
.

Proof. Verifying that the descriptions of Υ(σn,qτ−1) in parts (i) and (iii) are equivalent
is done in an entirely similar way to verifying the asymptotic left cell decomposition
in the proof of Corollary 5.7. For part (iv), consider the decomposition of Υ(σn,qτ−1)
in part (i) into asymptotic cells. �
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6. An extension of the generalised τ-invariant in type Bn
A classical pair of results in the theory of Kazhdan–Lusztig cells with equal parameters
are as follows: if two elements of a Coxeter group lie in the same left cell then they
have the same generalised τ -invariant, and two such elements remain equivalent under
∼L after a ∗-operation has been applied to them; see Vogan [25, § 3] or [18, § 4].
The theory of ∗-operations and the generalised τ -invariant has been substantially
generalised in [6], providing compatibility with unequal parameters as well as the
framework for maps richer than the traditional ∗-operations. In this section, we recall
some definitions and results from [6], and introduce new ones.

6.1. Vogan classes. Let (W,S,L ) be a weighted Coxeter system. We denote by
[Γ] the H-module afforded by a left cell Γ ⊆W ; see [20, § 6] for details.

Definition 6.1 (Bonnafé–Geck, [6, Definition 6.1]).A pair (I, δ) consisting of a non-
empty subset I ⊆ S and a left cellular map δ : WI → WI is called KL-admissible.
We recall that this means that the following conditions are satisfied for every left cell
Γ ⊆WI (with respect to L |WI

):
(A1) δ(Γ) also is a left cell.
(A2) The map δ induces an HI-module isomorphism [Γ] ∼= [δ(Γ)].

We say that (I, δ) is strongly KL-admissible if, in addition to (A1) and (A2), the
following condition is satisfied:
(A3) We have u ∼R,I δ(u) for all u ∈WI .

If I ⊆ S and if δ : WI →WI is a map, we obtain a map δL : W →W by
δL(xu) := xδ(u) for all x ∈ XI and u ∈WI .

The map δL is called the left extension of δ to W . However, by abuse of notation, we
will often use δ to refer to δL where the meaning is clear.

Theorem 6.2 (Bonnafé–Geck, [6, Theorem 6.2]). Let (I, δ) be a (strongly) KL-
admissible pair. Then (S, δL) is (strongly) KL-admissible.

This theorem brings us to consider strongly KL-admissible pairs that give us as
much information about the cells of W as possible; to this end, we introduce an
additional condition.

(B) If u, v ∈WI are such that u ∼R,I v, then there exists some k ∈ Z>0 such that
u = δk(v).

Definition 6.3.We say that a pair (I, δ) is maximally KL-admissible if condi-
tions (A1), (A2), (A3) and (B) hold.

Example 6.4. Consider Wn equipped with any weight function, and let J :=
{s1, . . . , sn−1}, so that WJ

∼= Sn. The cells of Sn are described by the Robinson–
Schensted correspondence; see [18, § 5] or Ariki [1].

Let λ ` n be a partition, and Ωλ be the two-sided cell of WJ such that sh(w) = λ
for any w ∈ Ωλ. Fix an arbitrary total order on the left cells contained in Ωλ; say
Γ1 < Γ2 < · · · < Γk.

We now define a map ελ : Ωλ → Ωλ. Let 1 6 i 6 k − 1. For any w ∈ Γi, set ελ(w)
to be equal to the unique element w′ ∈ Γi+1 such that w ∼R,J w′. For w ∈ Γk, set
ελ(w) to be equal to the unique element w′ ∈ Γ1 such that w ∼R,J w′, as in Figure 1.

This map can be then extended to the rest of the group by setting:

ε′λ(w) =
{
ελ(w) if w ∈ Ωλ,
w otherwise.
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Figure 1. A two-sided cell Ωλ ⊆ Sn with left cells given by rows,
and right cells by columns. The map ελ is indicated by the arrows.

Finally, we can define a map ε : WJ → WJ by taking the composition of all maps
ε′λ : WJ →WJ over the indexing set {λ : λ ` n}.

We know that ε satisfies condition (A2) by [14, Example 2.6]. From the construc-
tion, we can see that (J, ε) is maximally KL-admissible, and well-defined up to the
choice of total ordering on left cells in each two-sided cell.

Example 6.5. Consider (Wn, S,L ) and set K := {t, s1, . . . , sn−2} so that WK =
Wn−1. Suppose that the restriction of L to WK is an asymptotic weight function for
WK . Then the left, right and two-sided cells of WK are determined by the generalised
Robinson–Schensted correspondence, as in Theorem 3.2. Now we can proceed analo-
gously to Example 6.4 to obtain a map ψ : WK → WK . Both [14, Theorem 6.3] and
[6, Example 6.8] tell us that ψ satsifies condition (A2). The resulting pair (K,ψ) is
maximally KL-admissible.

Recall from Theorem 3.2 that b/a > n− 1 is the optimal lower bound for a weight
function onWn to result in asymptotic cells. Thus, the maximally KL-admissible pair
(K,ψ) is well-defined (up to a choice of total ordering on left cells in two-sided cells)
with respect to any L : Wn → Z>0 such that b/a > n− 2.

Conversely, if b/a 6 n−2, then L |WK
is not an asymptotic weight function forWK .

Without a suitable analogue of [14, Theorem 6.3], we cannot readily produce a non-
trivial map ψ′ : K → K such that (K,ψ′) is a KL-admissible pair with respect to L ′.

From now until the end of this section we fix an arbitrary weighted Coxeter system
(W,S,L ), as well as a map ρ : W → E (where E is a fixed set) such that the fibres
of ρ are (possibly empty)(2) unions of left cells.

Definition 6.6 (Bonnafé–Geck, [6, § 7]). Let ∆ be a collection of KL-admissible
pairs with respect to (W,S,L ). We define by induction on n a family of equivalence
relations ≈∆,ρ

n on W as follows. Let y, w ∈W .
• For n = 0, we write y ≈∆,ρ

0 w if ρ(y) = ρ(w).
• For n > 1, we write y ≈∆,ρ

n w if y ≈∆,ρ
n−1 w and δL(y) ≈∆,ρ

n−1 δ
L(w) for all

(I, δ) ∈ ∆.
We write y ≈∆,ρ w if y ≈∆,ρ

n w for all n > 0. The equivalence classes under this
relation are called the left Vogan (∆, ρ)-classes.

Theorem 6.7 (Bonnafé–Geck, [6, Theorem 7.2]). Let y, w ∈W . Then
y ∼L w ⇒ y ≈∆, ρ w.

(2) In [6, § 7], the condition that ρ is surjective is not necessary.
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6.2. Orbits. In the case of equal parameters, the ∗-orbit of an element w is the set
consisting of w and all elements that can be reached from w by a sequence of ∗-
operations. As shown in [18], the ∗-orbit of w is contained in the right cell containing
w. Theorem 6.2 offers an analogue of this result in the more general framework of
strongly KL-admissible pairs.

Let ∆ be a collection of strongly KL-admissible pairs, and y, w ∈ W . If y can be
reached from w via a sequence of applications of maps δL such that (I, δ) ∈ ∆, then
we write y ∆←→ w, and we denote by OrbR∆(w) the set of all elements related to w in
this way. We refer to this set as the ∆-orbit of w, and it is a subset of the right cell
containing w. By Theorem 6.2 and Theorem 6.7 respectively, we have:

y−1 ∆←→ w−1 ⇒ y ∼L w ⇒ y ≈∆, ρ w.

Hence left Vogan (∆, ρ)-classes are unions of left cells, which are in turn unions of
inverses of ∆-orbits.

Since inverses of ∆-orbits play an important role later, we also define:

OrbL∆(w) := {y ∈W : y−1 ∆←→ w−1} = {y−1 ∈W : y ∈ OrbR∆(w−1)}.

The superscripts are chosen so that OrbR∆(w) is contained in the right cell containing
w, and OrbL∆(w) is contained in the left cell containing w.

Suppose that every (I, δ) ∈ ∆ is such that the map δ has finite order. It follows
that each δ is a bijection and that the corresponding left extension δL is a bijection
of finite order. So

V∆ := 〈 δL : (I, δ) ∈ ∆ 〉
is a group of permutations of the elements of W , and the orbit of w ∈W with respect
to V∆ is precisely the ∆-orbit of w.

6.3. KL-admissible pairs. The following lemma lists some properties of KL-
admissible pairs.

Lemma 6.8.All sets of KL-admissible pairs mentioned will be with respect to
(W,S,L ).

(i) If (I, δ) is a strongly KL-admissible pair, then ∆ := {(I, δ)} may be replaced
by a collection ∆′ of strongly KL-admissible pairs, where each (I ′, δ′) ∈ ∆′ is
such that WI′ is an irreducible Coxeter group, and for all y, w ∈W we have:
• y ∆←→ w ⇒ y

∆′←→ w
• y ≈∆′, ρ w ⇒ y ≈∆, ρ w.

(ii) Suppose that (I, δ) is strongly KL-admissible and (I ′, δ′) is maximally KL-
admissible, with I ⊆ I ′. Then for all y, w ∈W , we have:
• y {(I,δ)}←→ w ⇒ y

{(I′,δ′)}←→ w
• y ≈{(I′,δ′)}, ρ w ⇒ y ≈{(I,δ)}, ρ w.

(iii) Suppose that W has a complete list WI1 , . . . ,WId
of distinct irreducible par-

abolic subgroups of rank |S| − 1, and for each WIi
there is a corresponding

maximally KL-admissible pair (Ii, δi). Set Ξ := {(Ii, δi) : 1 6 i 6 d}, and
let ∆ be any other set of strongly KL-admissible pairs (such that(3) for any
(I, δ) ∈ ∆ we have I 6= S). Then for all y, w ∈W , we have:
• y ∆←→ w ⇒ y

Ξ←→ w
• y ≈Ξ, ρ w ⇒ y ≈∆, ρ w.

(3) Vogan classes are a tool for inductively obtaining cellular information from parabolic sub-
groups. It makes sense, therefore, to restrict ourselves with the condition I 6= S.
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Proof. We begin by noting that in all three parts, the first claim implies the second
by Definition 6.6. We prove only part (iii).

Assume towards a contradiction that we have two elements y, w ∈ W in the same
∆-orbit but not in the same Ξ-orbit. So there is some (I, δ) ∈ ∆ such that we have
y ∈ OrbR{(I,δ)}(w) but not y ∈ OrbRΞ (w). We have y = (δL)k(w) for some k ∈ Z>0;
by the definition of the left extension of a map we must have repI(y) = repI(w).
Using part (i), it will suffice if we assume that WI is irreducible, and thus lies in some
parabolic subgroup of rank |S| − 1. So consider some (I ′, δ′) ∈ Ξ with I ⊆ I ′, and
apply part (ii) to obtain the contradiction. �

Conventions. For the rest of this paper, we shall only work with weight functions
L : Wn → Z such that b/a > n− 2. We also establish the following notation:

• let (J, ε) be as in Example 6.4,
• let (K,ψ) be as in Example 6.5,
• and set Ξ := {(J, ε), (K,ψ)}.

Further, we will take ρ = RL from now on.

The pair (J, ε) does not depend on our choice of weight function (the Iwahori–
Hecke algebra of symmetric group does not admit unequal parameters), while we
have mentioned in Example 6.5 that the pair (K,ψ) is well-defined (up to a choice of
ordering on the left cells) for any L such that b/a > n− 2.

A corollary to Lemma 6.8 (ii) is that the Ξ-orbits (and thus, left Vogan (Ξ, ρ)-
classes) are independent of the choice of total ordering placed on the left cells in
Examples 6.4 and 6.5.

Noting that Ξ satisfies the conditions in Lemma 6.8 (iii) motivates this particular
choice of set of KL-admissible pairs.

As the maps ε and ψ have finite order, VΞ is a group of permutations of the elements
of Wn.

7. Determining Ξ-orbits
This section will be used to describe the decomposition of Wn into Ξ-orbits. The
key to this is relating the group VΞ to (generalised) Knuth relations, and thus to
(bi)tableaux and cells. For w ∈ Sn, denote by (P (w), Q(w)) the application of the
Robinson–Schensted algorithm.

7.1. Generalised Knuth relations. Let w = w(1), . . . , w(n) ∈ Wn be a signed
permutation. We define the following relations, being modified versions of the ones
found in 5.1.4 of Knuth [19] and [8, § 3].

For 1 6 i 6 k− 2: if w(i+ 1) < w(i) < w(i+ 2) or w(i+ 2) < w(i) < w(i+ 1), then
set w′ := wsi+1 and say that w and w′ differ by a relation of type Ik.

For 1 6 i 6 k− 2: if w(i+ 1) < w(i+ 2) < w(i) or w(i) < w(i+ 2) < w(i+ 1), then
set w′ := wsi and say that w and w′ differ by a relation of type IIk.

For 1 6 i 6 k − 1: if the sign of w(i) and w(i + 1) differ, then set w′ := wsi and
say that w and w′ differ by a relation of type IIIk.

If two (signed) permutations y, w are linked by a series of Knuth relations of, say,
types Ik and IIk, then we denote this by y ∼Ik, IIk

w. We may now state two important
results in this context.

Theorem 7.1 (Knuth, [19, Theorem 6]). Let u, v ∈ W (An−1). Then u ∼In, IIn
v if

and only if P (u) = P (v).

Proposition 7.2 (Bonnafé–Iancu, [8, Proposition 3.8]). Let y, w ∈ Wn. Then
y ∼In, IIn, IIIn

w if and only if An(y) = An(w).
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We will determine to what degree we can recover the Knuth relations using only
the maps εL and ψL.

Lemma 7.3. Let w ∈ Wn, and denote u := prJ(w). Then w(i) > w(j) if and only if
u(i) > u(j), for 1 6 i, j 6 n.

Proof. We identify x := repJ(w). Let p1, p2, . . . , pq be the increasing sequence
comprising the q = `t(w) negative entries in the row form of w, and similarly
m1, m2, . . . , mn−q the increasing sequence comprising the positive entries. Set r1 := t
and recursively define ri+1 := siri = si · · · s1t. Then from § 4.1 of [8], we have

x = r|pq|· · · r|p1| =
(

1 2 · · · q q + 1 · · · n− 1 n
p1 p2 · · · pq m1 · · · mn−q−1 mn−q

)
.

We can read off from this that the element x has the property of preserving the
ordering of the row form of u under left multiplication; that is to say u(i) > u(j) if
and only if xu(i) > xu(j). �

Lemma 7.4. Let w ∈Wn and denote u := prK(w). Then
(i) w(i) > w(j) if and only if u(i) > u(j), for 1 6 i, j 6 n− 1,
(ii) w(j) > 0 if and only if u(j) > 0, for 1 6 j 6 n− 1.

Proof. Let k = w(n). There exists a unique x ∈ XK such that x(n) = k, and so
x = repK(w). Denote by sgn(z) the sign of z ∈ Z. Then we have

x =
(

1 2 · · · |k| − 1 |k| · · · n− 1 n
1 2 · · · |k| − 1 |k|+ 1 · · · n k

)
,

and in turn,

w(i) =


u(i) if 1 6 |u(i)| 6 |k| − 1,
u(i) + sgn(u(i)) if |k| 6 |u(i)| 6 n− 1,
k if i = n.

.

Parts (i) and (ii) follow from this formula and Lemma 3.1. �

Lemma 7.5. Let y, w ∈Wn.
(i) If y ∼In, IIn w then repJ(y) = repJ(w).
(ii) If y ∼In−1, IIn−1, IIIn−1 w, then repK(y) = repK(w).

Corollary 7.6. Let y, w ∈Wn. Then
(i) w = εk(y) for some k ∈ Z if and only if y ∼In, IIn

w,
(ii) w = ψk(y) for some k ∈ Z if and only if y ∼In−1, IIn−1, IIIn−1 w.

Proof. We prove only part (i). Suppose w = εk(y). By the definition of the left
extension of a map (see § 6.1), we have repJ(y) = repJ(w). Now set u := prJ(y),
v := prJ(w), and x := repJ(y) = repJ(w). Then

∃ k ∈ Z : v = εk(u) ⇐⇒ u ∼R,J v by property (B)
⇐⇒ P (u) = P (v) [18, § 5]
⇐⇒ u ∼In, IIn

v Theorem 7.1
⇐⇒ xu ∼In, IIn

xv.

For the last equivalence, the forward implication is given by Lemma 7.3, while the
converse uses Lemma 7.5 (i) as well. �

The following result is due to Welsh through private communication.
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Lemma 7.7 (Welsh). Let w = w(1), . . . , w(n) ∈ Wn r Zn be a signed permutation
such that w(n − 1) and w(n) have opposing signs. Then the element w′ = wsn−1 is
connected to w by a sequence of Knuth relations of types In, IIn and IIIn−1.

Proof. Denote by wn−1 := w(n − 1), wn := w(n), by x1, . . . , xf the subsequence of
negative entries in w(1), . . . , w(n − 2), and by y1, . . . , yg the subsequence of positive
entries. Suppose that wn−1 < 0 < wn, so that we have

w ∼IIIn−1 x1, . . . , xf , wn−1, y1, . . . , yg, wn.

If we had instead wn < 0 < wn−1, then we would repeatedly use relations of type
IIIn−1 to move all of the positive entries to the left, and then proceed with an analo-
gous argument to the following.

Suppose that we do not have y1 > y2 > · · · > yg > wn. Then there exists a maximal
index k such that yk < yk+1, with the convention yg+1 := wn. If yk < wn, then it is
straightforward to prove the lemma.

So assume that yk > wn. Let j ∈ {k + 1, . . . , g} be the unique index such that
yj > yk > yj+1. If two elements differ only by the block sequences yk, . . . , yg, wn and
yk+1, . . . , yj−1, yk, yj+1, . . . , yg, wn, yj , then they are linked by a sequence of relations
of types In and IIn. We use this in the second and fifth statements of the following.
We have:

w ∼IIIn−1 x1 · · ·xfwn−1y1 · · · yk−1ykyk+1 · · · yj−1yjyj+1 · · · ygwn
∼In, IIn

x1 · · ·xfwn−1y1 · · · yk−1yk+1 · · · yj−1ykyj+1 · · · ygwnyj
∼IIIn−1 x1 · · ·xfy1 · · · yk−1yk+1 · · · yj−1ykyj+1 · · · ygwnwn−1yj

∼In
x1 · · ·xfy1 · · · yk−1yk+1 · · · yj−1ykyj+1 · · · ygwnyjwn−1

∼In, IIn
x1 · · ·xfy1 · · · yk−1ykyk+1 · · · yj−1yjyj+1 · · · ygwnwn−1

∼IIIn−1 w1 · · ·wn−2wnwn−1 = w′.

Now suppose instead that y1 > y2 > · · · > yg > wn. As w /∈ Zn, by § 5.2 we cannot
have x1 < x2 < · · · < xf < wn−1. With similar arguments to the above, the result
holds. �

Recall from Corollary 7.6 that if y ∼In, IIn w, then we have w = εk1(y) for some
k1 ∈ Z, and if y ∼IIIn−1 w, then we have w = ψk2(y) for some k2 ∈ Z. So under the
hypothesis of Lemma 7.7, we know that w can be transformed into w′ = wsn−1 by
applying a combination of the maps ε and ψ suitably. In other words, if w /∈ Zn and
w ∼IIIn

wsn−1, then wsn−1 ∈ OrbRΞ (w).

7.2. Ξ-orbits. We begin by showing how Wn r Z̃n is partitioned into Ξ-orbits. Let
y, w ∈Wn. Then:

(3) y
Ξ←→ w ⇒ An(y) = An(w).

Indeed, Ξ-orbits are subsets of asymptotic right cells by Theorem 6.2, and so (3)
follows by the characterisation of these cells in Theorem 3.2 (ii).

A converse to (3) exists if we assume that y, w ∈WnrZ̃n. Combining our discussion
of the elements wJ and wJw0 in § 5.1 with Proposition 7.2, it suffices to show that
for y, w ∈WnrZn, if y ∼In, IIn, IIIn w then y and w lie in the same Ξ-orbit. However,
this follows from Corollary 7.6 and Lemma 7.7, yielding the following result.

Proposition 7.8. Suppose (Wn, S,L ) is such that b/a > n− 2, and let y, w ∈Wn r
Z̃n. Then

y
Ξ←→ w ⇐⇒ An(y) = An(w).

We now consider how Z̃n is partitioned into Ξ-orbits.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1048



Vogan classes in type Bn

Lemma 7.9. Suppose (Wn, S,L ) is such that b/a > n − 2, and let y, w ∈ Z̃n. Then
we may have An(y) = An(w) without w ∈ OrbRΞ (y). Indeed, let 1 6 q 6 n− 1, and let
Tq be any standard bitableau of shape (1n−q | 1q). Then the set Γ′(Tq) := {w ∈ Wn :
An(w) = Tq} is equal to the union of exactly two Ξ-orbits.

Proof. Consider w = w(1), . . . , w(n) ∈ Γ′(Tq) as a signed permutation, and note that
q = `t(w). As in § 5.2, we write x1, . . . , xq for the (increasing) subsequence of negative
integers in the row form of w, and y1, . . . , yn−q for the (decreasing) subsequence of pos-
itive integers. Schensted [24, Theorems 1 and 2] motivates the following observations.

• Suppose w(n) > 0; that is, w(n) = yn−q. Then by Lemma 7.3, prJ(w) has a
longest increasing subsequence of length q+1, and a longest decreasing subse-
quence of length n− q. By Lemma 7.4 (ii), we note that `t(w) = `t(prK(w)).

• Suppose w(n) < 0; that is, w(n) = xq. Then by Lemma 7.3, prJ(w)
has a longest increasing subsequence of length q, and a longest decreas-
ing subsequence of length n − q + 1. By Lemma 7.4 (ii), we note that
`t(w) = `t(prK(w)) + 1.

We denote r := n − q and xi := |xi| for reasons of typesetting. Applying the
generalised Robinson–Schensted insertion algorithm, we see that:

An(w) =

yr

yr−1

...

y1

xq

xq−1

...

x1

.

Now we use our observations to deduce the contents of Figure 2.
We have a disjoint union of non-empty sets Γ′(Tq) = γ′1 t γ′2, where
• γ′1 := {w ∈Wn : An(w) = Tq and w(n) > 0},
• γ′2 := {w ∈Wn : An(w) = Tq and w(n) < 0}.

By noting that Γ′(Tq) coincides with an asymptotic right cell, we see that this de-
composition may be identified with that in (a right-handed version of) Corollary 5.7.
Let y, w ∈ Γ′(Tq). Then using Figure 2, we deduce that the following four statements
are true if and only if y, w ∈ γ′i for some i ∈ {1, 2}:

(i) An−1(prK(y)) = An−1(prK(w)), (ii) y {(K,ψ)}←→ w,

(iii) P (prJ(y)) = P (prJ(w)), (iv) y {(J,ε)}←→ w.

This proves the lemma, as well as Proposition 7.10 (iii). �

Proposition 7.10. Suppose (Wn, S,L ) is such that b/a > n− 2.
(i) The number of Ξ-orbits that comprise Wn is YBT +2n−2, where YBT is the

number of standard bitableaux of size n.
(ii) Let w ∈Wn.

• If w ∈Wn r Z̃n then

OrbRΞ (w) = {w′ ∈Wn : An(w) = An(w′)}.

• If w ∈ Z̃n and w(n) > 0, then

OrbRΞ (w) = {w′ ∈Wn : An(w) = An(w′) and w′(n) > 0}.
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An−1(prK(w)) =

y′r−1

y′r−2

...

y′1

x′q

x′q−1

...

x′1

, where if w(i) = xj (resp. yj),
then x′j := prK(w)(i) (resp. y′j),

⇐⇒ w(n) > 0

⇐⇒ P (prJ(w)) =
x′′1 x′′2 · · · x′′q y′′r

y′′r−1

y′′r−2

...

y′′1

,

where if w(i) = xj (resp. yj),
then x′′j := prJ(w)(i) (resp. y′′j ).

We also have:

.

An−1(prK(w)) =

y′r

y′r−1

...

y′1

x′q−1

x′q−2

...

x′1

, where if w(i) = xj (resp. yj),
then x′j := prK(w)(i) (resp. y′j),

⇐⇒ w(n) < 0

⇐⇒ P (prJ(w)) =
x′′1 x′′2 · · · x′′q

y′′r

y′′r−1

...

y′′1

,

where if w(i) = xj (resp. yj),
then x′′j := prJ(w)(i) (resp. y′′j ).

Figure 2. Two collections of equivalent statements pertaining to the
proof of Lemma 7.9.
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• If w ∈ Z̃n and w(n) < 0, then
OrbRΞ (w) = {w′ ∈Wn : An(w) = An(w′) and w′(n) < 0}.

(iii) If w ∈ Zn, then
OrbRΞ (w) = OrbR{(J,ε)}(w) = OrbR{(K,ψ)}(w).

Proof. Part (ii) follows from Proposition 7.8 and the proof of Lemma 7.9, while part (i)
holds by part (ii) and application of (2) from § 5.1. �

An immediate consequence of this is that w ∈ Wn r Z̃n if and only if the Ξ-orbit
containing w coincides with the asymptotic right cell containing w.

As noted in § 6.3, Ξ satisfies the conditions in Lemma 6.8; together with this result
we confirm the conjecture mentioned at the end of [6, Example 6.8].

A table comparing the number of Ξ-orbits to the number of asymptotic and inter-
mediate right cells of Wn is given in Figure 3.

cells
b
a = n− 1 b

a > n− 1

n = 2 4 6
3 16 20
4 68 76
5 296 312
6 1352 1384
7 6448 6512

Ξ-orbits
b
a > n− 2

8
26
90
342
1446
6638

Figure 3. On the left, the number of left/right cells of Wn with
respect to the given weights. On the right, the number of Ξ-orbits
that comprise Wn.

7.3. The property (?). We require a final discussion regarding bipartitions and
Ξ-orbits before moving on to Vogan (Ξ,RL )-classes.

If π is a partition of n with conjugate denoted π′, and λ = (λ+ | λ−) =
(λ+

1 , . . . , λ
+
f | λ

−
1 , . . . , λ

−
g )  n is a bipartition of n, then λ′ := ((λ−)′ | (λ+)′) is

the conjugate bipartition of λ. If we write λ = (λ1, . . . , λf+g) where λi = λ+
i for

1 6 i 6 f and λf+j = λ−j for 1 6 j 6 g, then we can define:
I(λ) := S r {t, sλ1 , sλ1+λ2 , . . . , sλ1+λ2+···+λf+g−1}.

Set q := λ1 + · · · + λf , denote by wI(λ) the longest word of WI(λ), and by wq the
longest word of Wq. Then we set

wλ := wI(λ)wq.

Thus R(wI(λ)) = I(λ), and if b/a > q− 1, then RL (wλ)∩ {t1, . . . , tn} = {t1, . . . , tq}.
With the notation of § 5, we have w(q|n−q) = σn,q ∈ Ωζq

.
Note that sh(wλ) = λ′, and so wλ′ ∈ Ωλ. We are interested in whether or not an

element z ∈Wn has the property:
(?) ∃ ν ∈ VΞ : ν(z) ∈ OrbLΞ(wsh(z)′).
For such an element z, it follows from Proposition 7.10 (ii) that there exists some
ẑ ∈ OrbLΞ(z) such that ν(ẑ) = wsh(z)′ ; this ẑ is the unique element in the intersection
of OrbLΞ(z) with OrbRΞ (wsh(z)′).
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Remark 7.11. From Proposition 7.10, we can state that w ∈ Wn satisfies (?) if and
only if w ∈Wn r Z̃n or w ∈ Z̃n, w(n) > 0 and w−1(n) > 0.

Remark 7.12. Let y, w ∈WnrZ̃n. By Propositions 7.8 and 7.2 respectively, we have:

y
Ξ←→ w ⇐⇒ An(y) = An(w) ⇐⇒ y ∼In, IIn, IIIn w.

8. Vogan (Ξ,RL )-classes when b/a > n− 2
In this section, we prove the main result of the paper. To do this, we begin by stating
two results of Bonnafé from [4]. Recall that χq := sn−1 · · · sq.

Proposition 8.1 (Bonnafé, [4, Proposition 4.1]). Let 0 6 q 6 n, let α, β 6e pn,q and
let σ, σ′ ∈WSr{t,sq} be such that σ ∼L σ′. Assume that b/a > n− 1. Then

αaqσβ
−1 ∼L aqσ

′β−1.

Proposition 8.2 (Bonnafé, [4, Proposition 6.1]). Let 0 6 q 6 n− 1 and assume that
b/a 6 n− 1. Then

s1 · · · sq · σn,q ∼L σn,q+1χ
−1
q+1.

Note that these two results of Bonnafé’s are valid simultaneously if and only if
b/a = n− 1.

Lemma 8.3. Suppose (Wn, S,L ) is such that b/a > n − 1 and y, w ∈ Zn. Then the
following are equivalent:

(i) y ≈Ξ,RL

w,
(ii) y ∼L w,
(iii) RL (y) = RL (w).

Proof. We have (ii) implies (i) by Theorem 6.7, while Definition 6.6 shows that (i)
implies (iii). If b/a > n− 1, then (iii) implies (ii) by Lemma 5.10 (i). If b/a = n− 1,
then we have RL (y) = RL (w) if and only if R(y) = R(w) by Corollary 5.9 (ii). So,
it remains to prove that when b/a = n− 1, R(y) = R(w) implies that y ∼L w.

We have seen in Lemma 5.10 (iii) and the subsequent discussion in § 5.5 that
Υ(w) := {z ∈ Zn : R(z) = R(w)} comprises exactly two asymptotic left cells, a
decomposition which we denote by Υ(w) = Γ1tΓ2. Our first step will be to show that

(4) y ∼L w when b

a
> n− 1 ⇒ y ∼L w when b

a
= n− 1.

Following our discussion of the elements wJ and wJw0 in § 5.1, we can assume
y, w ∈ Z̃n when proving (4).

Suppose y, w ∈ Γ ⊆ Z̃n, where Γ is an asymptotic left cell. We can decompose Γ as
Γ = γ1 t γ2, where the disjoint union is as in Corollary 5.7. Let q = `t(y) = `t(w). By
Corollary 5.7, the sets γ1 and γ2 are subsets of left cells with respect to any choice of
parameters; in particular, they must be subsets of left cells when b/a = n − 1. Thus
to prove (4), it suffices to show that there exist representatives y′ ∈ γ1 and w′ ∈ γ2
such that y′ ∼L w′ when b/a = n − 1. So set y′ := σn,qθ

−1 where θ 6e pn,q is such
that y′ ∈ γ1, and set w′ := χqy

′ ∈ γ2. Let bq be as in § 5.3.
We now apply Proposition 8.1 with α = χq, β = θ and σ = σ′ = bq to see that

y′ ∼L w′ when b/a = n− 1; (4) is now proved.
By Proposition 5.11 (i), we know that the sets Γ1 and Γ2 are of the form

Γ(σn,qτ−1) and Γ(σn,q+1χ
−1
q+1τ

−1) respectively for some 0 6 q 6 n − 1 and
τ 6e pn−1,q, which we fix for the remainder of this proof. Thus it remains to show
that σn,qτ−1 ∼L σn,q+1χ

−1
q+1τ

−1 when b/a = n − 1. Indeed, the following holds for
b/a ∈ (n− 2, n− 1], resulting in Corollary 8.4.
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By Corollary 5.7, we have σn,q ∼L s1 · · · sqσn,q for all choices of parameters.
Then by Proposition 8.2, we have σn,q ∼L σn,q+1χ

−1
q+1. Recall that if y ∼L w, then

ν(y) ∼L ν(w) for all ν ∈ VΞ.
Consider Γ′(σn,q), and the corresponding subset γ1 as in (a right-handed version

of) Corollary 5.7. Compare γ1 with the description of Ξ-orbits in Proposition 7.10 (ii)
to see that

σn,q
Ξ←→ σn,qτ

−1 if and only if τ 6e pn−1,q.

Now we use Proposition 7.10 (iii) to reduce this statement to

σn,q
{(I,δ)}←→ σn,qτ

−1 if and only if τ 6e pn−1,q,

where (I, δ) ∈ Ξ. By the same results, we have

σn,q+1χ
−1
q+1

{(I,δ)}←→ σn,q+1χ
−1
q+1τ

−1 if and only if τ 6e pn−1,q.

It may be verified that prI(σn,q) = prI(σn,q+1χ
−1
q+1) for (I, δ) ∈ Ξ. It now fol-

lows that ν(σn,q) = σn,qτ
−1 if and only if ν(σn,q+1χ

−1
q+1) = σn,q+1χ

−1
q+1τ

−1. Thus
σn,qτ

−1 ∼L σn,q+1χ
−1
q+1τ

−1, as needed. �

Corollary 8.4.No asymptotic left cell contained in Zn is a left cell with respect to
b/a ∈ (n− 2, n− 1].

We will write ≈ for ≈Ξ,RL in proofs for cleaner notation. Remark 7.11 describes
the scope of the following result.

Lemma 8.5. Suppose (Wn, S,L ) is such that b/a > n− 2. Let y, w ∈Wn be elements
satisfying (?) with `t(y) = `t(w). Then

y ≈Ξ,RL

w ⇒ y ∈ OrbLΞ(w).

We note that the following proof is adapted from part of Ariki’s proof of Theorem
A in [1, § 3.4], who in turn remarks to have adapted an argument from the proof of
Jantzen [17, Satz 5.25].

Proof. Denote q := `t(y) = `t(w). Let λ, µ  n be such that sh(y) = λ′ and sh(w) =
µ′. Let α, β ∈ VΞ be such that α(y) ∈ OrbLΞ(wλ) and β(w) ∈ OrbLΞ(wµ). Let ŷ, ŵ ∈Wn

be the unique elements in the intersection of OrbLΞ(y) with OrbRΞ (wλ) and OrbLΞ(w)
with OrbRΞ (wµ) respectively. Note that α(ŷ) = wλ and β(ŵ) = wµ.

As ŷ ∈ OrbLΞ(y) and ŵ ∈ OrbLΞ(w), we have y ∼L ŷ and w ∼L ŵ. Applying
Theorem 6.7, we see that

ŷ ≈ y ≈ w ≈ ŵ.

We apply the generalised Robinson–Schensted algorithm to the first q entries of
the row forms of α(ŵ) and β(ŷ); that is, their negative entries. Our focus will first
be on the recording bitableaux of α(ŵ), with that of β(ŷ) being obtained in a similar
fashion.

As ŷ ≈ ŵ and α(ŷ) = wλ, we have RL (α(ŵ)) = RL (α(ŷ)) = RL (wλ). So by
Lemma 3.1, the first λ+

1 entries in the row form of α(ŵ) form an increasing sequence
(of negative integers), the next λ+

2 entries form an increasing sequence, and so on. So
the first column of the second tableau of Bn(α(ŵ)) is a column of length at least λ+

1 .
As sh(α(ŵ)) = sh(w) = µ′, the length of this first column equals µ+

1 .
Similarly, the length of the first column of the second tableau of Bn(β(ŷ)) is a

column of length at least µ+
1 , and equal to λ+

1 . Combining these observations indicates
that λ+

1 = µ+
1 .

We continue in this way, noting that bumping between the columns during the
algorithm produces a contradiction to the previous statements. We thus determine
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that λ+ = µ+. By similarly working with the remaining n−q entries in the row forms
of α(ŵ) and β(ŷ) – that is, the positive entries – we determine that λ− = µ−. Thus
λ = µ, and we have:

Bn(α(ŵ)) = Bn(wλ) = Bn(wµ) = Bn(β(ŷ)).

As β(ŷ) ∈ OrbRΞ (wλ), we have An(β(ŷ)) = An(wλ) by Proposition 7.10 (ii). Simi-
larly, α(ŵ) ∈ OrbRΞ (wµ), and so An(α(ŵ)) = An(wµ). Now that we know the recording
and insertion bitableaux of α(ŵ) and β(ŷ), we can determine these elements; we have:

α(ŵ) = β(ŷ) = wλ = wµ = α(ŷ) = β(ŵ).

Thus ŷ = ŵ, and so y ∈ OrbLΞ(w) as needed. �

Lemma 8.6. Suppose (Wn, S,L ) is such that b/a > n − 2. Let y, w ∈ Wn r Zn with
`t(y) 6= `t(w). Then y and w do not lie in the same left Vogan (Ξ,RL )-class.

Proof. Suppose, towards a contradiction, that y ≈ w. As `t(y) 6= `t(w) and RL (y) =
RL (w), we must have b/a ∈ (n − 2, n − 1] and `t(y) = `t(w) ± 1. Without loss of
generality, we will assume that `t(y) = q and `t(w) = q + 1 for some 0 6 q 6 n− 1.

As y satisfies (?) by Remark 7.11, there exists some α ∈ VΞ such that α(y) ∈
OrbLΞ(wsh(y)′). Thus RL (α(y))∩{t1, . . . , tn} = {t1, . . . , tq}, and so α(y)(i) < 0 if and
only if i ∈ {1, . . . , q}. By Remark 7.12, we have

α(y) Ξ←→ α(y) · sq
Ξ←→ · · · Ξ←→ α(y) · sqsq+1 · · · sn−1.

Choose γ ∈ VΞ such that γ(y) = α(y)·sqsq+1 · · · sn−1. ThenRL (γ(y))∩{t1, . . . , tn} =
{t1, . . . , tq−1}. On the other hand, the set RL (γ(w)) ∩ {t1, . . . , tn} must contain at
least q elements. As RL (γ(y)) 6= RL (γ(w)) implies that y 6≈ w, a contradiction is
reached. �

Finally, we need to show that Zn is closed under ≈Ξ,RL.

Lemma 8.7. Suppose (Wn, S,L ) is such that b/a > n − 2. Let y ∈ Zn and w ∈ Wn.
Then

y ≈Ξ,RL

w ⇒ w ∈ Zn.

Proof. If w does not satisfy (?), then w ∈ Z̃n by Remark 7.11, and we are done. So
we may assume from now on that w satisfies (?).

Case A. Suppose that y satisfies (?); there exists some α ∈ VΞ such that α(y) ∈
OrbLΞ(wsh(y)′). Following Lemma 8.5, we may assume that `t(y) 6= `t(w). Thus b/a ∈
(n− 2, n− 1] and `t(y) = `t(w)± 1.
Subcase I. Suppose that `t(y) = q for some 0 6 q 6 n− 1 and that `t(w) = q + 1.

If q = n − 1, there are sufficient conditions on y for us to identify it; we have
y = σn,n−1. Thus RL (w) = RL (σn,n−1). We know that `t(w) = n, so we have
enough information to apply Lemma 3.1 and determine that w = σn,n ∈ Zn.

If 0 6 q 6 n−2, then we haveRL (α(w))∩{t1, . . . , tn} = {t1 . . . , tq} and α(w)(n) <
0 < α(w)(n−1). Suppose, towards a contradiction, that w 6∈ Zn. By Remark 7.12, we
may choose some γ ∈ VΞ such that γ(w) = α(w)·sn−1. The setRL (γ(w))∩{t1, . . . , tn}
contains q + 1 elements, while RL (γ(y)) ∩ {t1, . . . , tn} contains at most q elements.
Thus y 6≈ w.
Subcase II. Suppose that `t(y) = q for some 1 6 q 6 n and that `t(w) = q − 1.

We note that if `t(y) > `t(w) and RL (α(y)) = RL (α(w)), then we must have
q = n, and so y = σn,n. Now apply Lemma 3.1 to see that if `t(w) = n − 1 and
RL (α(w)) = RL (σn,n) then we must have w = σn,n−1 ∈ Zn.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1054



Vogan classes in type Bn

Case B. Suppose that y does not satisfy (?). By Remark 7.11, this assumption pre-
cludes the possibility of either `t(y) = 0 or `t(y) = n.
Subcase I. Suppose that `t(y) = `t(w); denote this value by q.

As w satisfies (?), there exists some β ∈ VΞ such that β(w) ∈ OrbLΞ(wsh(w)′). As
y ≈ w and β(w)(n) > 0, it must be the case that β(y)(n) > 0. By Proposition 7.10 (ii),
we have:

(5) ν(y)(n) > 0 for all ν ∈ VΞ.

Suppose now, towards a contradiction, that w /∈ Zn. By Remark 7.12, we may apply a
particular sequence of generalised Knuth relations of type IIIn to β(w) while remaining
in OrbRΞ (w); let γ ∈ VΞ be such that γ(w) = β(w) · sqsq+1 · · · sn−1. Then we have
β(w)(j) < 0 if and only if j ∈ {1, . . . , q}, and γ(w)(j) < 0 if and only if j ∈ {1, . . . , q−
1, n}. As y ≈ w and q 6 n − 1, we must also have γ(y)(j) < 0 if and only if
j ∈ {1, . . . , q − 1, n}. However, this contradicts (5).
Subcase II. Suppose that `t(y) 6= `t(w). Let q := `t(y), so that y ∈ Ωζq

.
From Proposition 5.3, we observe that Ωζq contains a unique shortest word and

a unique longest word; they are σn,q and λn,q := pn,qσn,qp
−1
n,q respectively. From

Proposition 7.10, we determine that:

∃ ν ∈ VΞ : Bn(ν(y)) = Bn(σn,q) ⇐⇒ y(n) > 0,(6)
∃ ν ∈ VΞ : Bn(ν(y)) = Bn(λn,q) ⇐⇒ y(n) < 0.(7)

Subsubcase (i). Suppose that we are in the setting of (6).
Further suppose that q = n − 1. As RL (y) = RL (w), we have `t(w) = n.

Note that RL (y) ∩ {t1, . . . , tn} = RL (w) ∩ {t1, . . . , tn} = {t1, . . . , tn−1}, and
RL (σn,n−1) ∩ {t1, . . . , tn} = {t1, . . . , tn−1}. As y, σn,n−1 ∈ Zn, by Corollary 5.9 (i)
we have RL (w) = RL (σn,n−1). We note that `t(w) = n, and so we have enough
information to apply Lemma 3.1 and determine that w = σn,n ∈ Zn.

We may now suppose that 1 6 q 6 n − 2. As RL (ν(y)) = RL (σn,q), we see
that RL (ν(y)) ∩ {t1, . . . , tn} = RL (ν(w)) ∩ {t1, . . . , tn} = {t1, . . . , tq}. This forces
`t(w) = q + 1 and ν(w)(n) < 0. Assume, towards a contradiction, that w 6∈ Zn.
By Remark 7.12, we may choose some γ ∈ VΞ such that γ(w) = ν(w) · sn−1. The
set RL (γ(w)) ∩ {t1, . . . , tn} contains q + 1 elements, while RL (γ(y)) ∩ {t1, . . . , tn}
contains at most q elements. Thus y 6≈ w.
Subsubcase (ii). Suppose that we are in the setting of (7).

Then RL (ν(y))∩ {t1, . . . , tn} = RL (λn,q)∩ {t1, . . . , tn} = {tn−q+1, . . . , tn−1} and
ν(y)(n) < 0. If `t(w) = q+1 thenRL (ν(w))∩{t1, . . . , tn} contains at least q elements,
in contradiction to the previous statement. So we may assume that `t(w) = q − 1.

Suppose that q = 1. Then the conditions on y are sufficient to determine that
Bn(y) = Bn(λn,1). Thus RL (w) = RL (λn,1) = {s1, . . . , sn−1}. As `t(w) = 0, appli-
cation of Lemma 3.1 shows that w = σn,0 ∈ Zn.

So we may now assume that 2 6 q 6 n − 1. We have RL (ν(w)) ∩ {t1, . . . , tn} =
{tn−q+1, . . . , tn−1} and ν(w)(n) > 0. Assume, towards a contradiction, that w 6∈ Zn.
Then by Remark 7.12, we may choose some map γ ∈ VΞ such that γ(w) = ν(w) ·
sn−1. It remains to note that RL (γ(w)) ∩ {t1, . . . , tn} contains q − 2 elements, while
RL (γ(y)) ∩ {t1, . . . , tn} contains at least q − 1 elements. �

Theorem 8.8. Suppose (Wn, S,L ) is such that b/a > n− 1. Then

y ∼L w ⇐⇒ y ≈Ξ,RL

w.

Proof. This follows from Lemmas 8.3, 8.5, 8.6 and 8.7. �
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Using the results of this section, we may now give a combinatorial description of the
left Vogan (Ξ,RL )-classes for b/a > n − 2. The classes differ depending on whether
b/a > n− 1 or b/a ∈ (n− 2, n− 1], and they do so precisely on Zn.

If b/a > n− 1, then we obtain a description of Zn using Proposition 5.3. If b/a ∈
(n−2, n−1], it is sufficient to determine the classes for a representative in this interval.
So take b/a = n−1, and look to the decomposition of Zn given in Proposition 5.11 (ii).

Corollary 8.9. If y, w ∈Wn r Zn and b/a > n− 2, then

y−1 Ξ←→ w−1 ⇐⇒ y ∼L w ⇐⇒ Bn(y) = Bn(w) ⇐⇒ y ≈Ξ,RL

w.

If b/a ∈ (n− 2, n− 1] we have:

Zn =
n−1⊔
q=0

⊔
τ 6e pn−1,q

{π · σn,q · τ−1 : π 6e Πn,q = sn−q−1 · · · s1 · t · pn,q}.

Each term of the disjoint union is a left Vogan (Ξ,RL )-class, and a left cell if b/a =
n− 1.

If b/a > n− 1 we have:

Zn =
n⊔
q=0

⊔
τ 6e pn,q

{π · σn,q · τ−1 : π 6e pn,q}.

Each term of the disjoint union is both a left Vogan (Ξ,RL )-class and a left cell.
Further, for b/a > n− 2, Zn is closed under the relation ≈Ξ,RL.

From this, we may infer some information about the intermediate two-sided cells
of Wn.

Corollary 8.10. Let Ω ⊆ Wn be an asymptotic two-sided cell. Then Ω is contained
within an intermediate two-sided cell. Further, Zn is contained within an intermediate
two-sided cell of Wn.

We may also characterise the asymptotic left cells that change when passing to the
intermediate or sub-asymptotic case.

Corollary 8.11. Let Γ ⊆ Wn be an asymptotic left cell. Then Γ is also a left cell
with respect to b/a ∈ (n− 2, n− 1] if and only if Γ ⊆Wn r Zn.
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