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Balanced representations, the asymptotic
Plancherel formula, and Lusztig’s

conjectures for C̃2

Jérémie Guilhot & James Parkinson

Abstract We prove Lusztig’s conjectures P1–P15 for the affine Weyl group of type C̃2 for all
choices of positive weight function. Our approach to computing Lusztig’s a-function is based
on the notion of a “balanced system of cell representations”. Once this system is established
roughly half of the conjectures P1–P15 follow. Next we establish an “asymptotic Plancherel
Theorem” for type C̃2, from which the remaining conjectures follow. Combined with existing
results in the literature this completes the proof of Lusztig’s conjectures for all rank 1 and 2
affine Weyl groups for all choices of parameters.

The theory of Kazhdan–Lusztig cells plays a fundamental role in the representation
theory of Coxeter groups and Hecke algebras. In their celebrated paper [14] Kazhdan
and Lusztig introduced the theory in the equal parameter case, and in [16] Lusztig
generalised the construction to the case of arbitrary parameters. A very specific feature
in the equal parameter case is the geometric interpretation of Kazhdan–Lusztig theory,
which implies certain “positivity properties” (such as the positivity of the structure
constants with respect to the Kazhdan–Lusztig basis). This was proved in the finite
and affine cases by Kazhdan and Lusztig in [15], and the case of arbitrary Coxeter
groups was settled only very recently by Elias and Williamson in [5]. However, simple
examples show that these positivity properties no longer hold for unequal parameters,
hence the need to develop new methods to deal with the general case.

A major step in this direction was achieved by Lusztig in his book on Hecke algebras
with unequal parameters [17, Chapter 14] where he introduced 15 conjectures P1–P15
which capture essential properties of cells for all choices of parameters. In the case
of equal parameters these conjectures can be proved for finite and affine types using
the above mentioned geometric interpretation (see [17]). For arbitrary parameters the
existing state of knowledge is much less complete. A contemporary account of the
theory outlining the state of the art can be found in [2].

Recently in [13] we developed an approach to proving P1–P15 and applied it to the
case G̃2 with arbitrary parameters. This provided the first irreducible affine Coxeter
group, apart from the infinite dihedral group, where Lusztig’s conjectures have been
established for arbitrary (unequal) parameters. Indeed, at the time of writing this
paper, the only cases for which P1–P15 were known to hold (outside of the equal
parameter case) were:

• the quasisplit case where a geometric interpretation is available [17, Chap-
ter 16];
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• finite dihedral type [8] and infinite dihedral type [17, Chapter 17] for arbitrary
parameters;

• universal Coxeter groups for arbitrary parameters [23];
• finite type Bn in the “asymptotic” parameter case [3, 8];
• finite type F4 for arbitrary parameters [8];
• affine type G̃2 for arbitrary parameters [13].

We add that during the process of publishing this paper, Xie [25] announced a proof
of P1–P15 for Coxeter groups whose Coxeter graph is either complete or right angled.

Our approach in [13] hinges on two main ideas:
(a) the notion of a balanced system of cell representations for the Hecke algebra,
(b) the asymptotic Plancherel formula.

In the present paper we develop these ideas in type C̃2. This three parameter case turns
out to be considerably more complicated than the two parameter G̃2 case, and this
additional complexity requires us to take a somewhat more conceptual approach here.

We now briefly describe the ideas (a) and (b) above. Let (W,S) be a Coxeter system
with weight function L : W → N>0 and associated multi-parameter Hecke algebra H
defined over Z[q, q−1]. Let Λ be the set of two-sided cells of W with respect to L, and
recall that there is a natural partial order 6LR on the set Λ. Let (Cw)w∈W denote
the Kazhdan–Lusztig basis of H.

One of the main challenges in proving Lusztig’s conjectures is to compute
Lusztig’s a-function since, in principle, it requires us to have information on all the
structure constants with respect to the Kazhdan–Lusztig basis. In [13] we showed
that the existence of a balanced system of cell representations is sufficient to compute
the a-function. Such a system is a family (πΓ)Γ∈Λ of representations of H, each
equipped with a distinguished basis, satisfying various axioms including

(1) πΓ(Cw) = 0 for all w ∈ Γ′ with Γ′ 6>LR Γ,
(2) the maximal degree of the coefficients that appear in the matrix πΓ(Cw) is

bounded by a constant aπΓ ,
(3) this bound is attained if and only if w ∈ Γ.

This concept is inspired by the work of Geck [8] in the finite dimensional case.
Thus a main part of the present paper is devoted to establishing a balanced system

of cell representations in type C̃2 for each choice of parameters. For this purpose we
use the explicit partition of W into Kazhdan–Lusztig cells that was obtained by the
first author in [12]. It turns out that the representations associated to finite cells
naturally give rise to balanced representations and so most of our work is concerned
with the infinite cells. In type C̃2 there are either 3 or 4 such two-sided cells depending
on the choice of parameters. To each of these two-sided cells we associate a natural
finite dimensional representation admitting an elegant combinatorial description in
terms of alcove paths. Using this description we are able to give a combinatorial proof
of the balancedness of these representations. In fact we study these representations
as representations of the “generic” affine Hecke algebra of type C̃2, thereby effectively
analysing all possible choices of parameters simultaneously.

Once a balanced system of cell representations is established for each choice or
parameters we are able to compute Lusztig’s a-function for type C̃2, and combined
with the explicit partition of W into cells the conjectures P4, P8, P9, P10, P11, P12,
and P14 readily follow.

The second main part of this paper is establishing an “asymptotic” Plancherel
formula for type C̃2, with our starting point being the explicit formulation of the
Plancherel Theorem in type C̃2 obtained by the second author in [20] (this is in turn
a very special case of Opdam’s general Plancherel Theorem [19]). In particular we
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show that in type C̃2 there is a natural correspondence, in each parameter range,
between two-sided cells appearing in the cell decomposition and the representations
appearing in the Plancherel Theorem (these are the tempered representations of H).
Moreover we define a q−1-valuation on the Plancherel measure, and show that in type
C̃2 the q−1-valuation of the mass of a tempered representation is twice the value of
Lusztig’s a-function on the associated cell. This observation allows us to introduce an
asymptotic Plancherel measure, giving a descent of the Plancherel formula to Lusztig’s
asymptotic algebra J . In particular we obtain an inner product on J , giving a satis-
fying conceptual proof of P1 and P7. Moreover we are able to determine the set D of
Duflo involutions, and conjectures P2, P3, P5, P6, and P13 follow naturally.

The remaining conjecture P15 is of a slightly different flavour. In [24] Xie has proved
this conjecture under an assumption on Lusztig’s a-function. We are able to verify
this assumption using our calculation of the a-function and the asymptotic Plancherel
formula, hence proving P15 and completing the proof of all conjectures P1–P15.

We conclude this introduction with an outline of the structure of the paper. In
Section 1 we recall the basics of Kazhdan–Lusztig theory, and we recall the axioms
of a balanced system of cell representations from [13]. Section 2 provides background
on affine Weyl groups, root systems, the affine Hecke algebra, and the combinatorics
of alcove paths. In Section 3 we recall the partition of C̃2 into cells for all choices
of parameters from [12], and introduce some notions such as the generating set of
a two-sided cell, cell factorisation and the ã-function. In Section 4 we define various
representations of the affine Hecke algebra in preparation for the important Sections 5
and 6 where we establish the existence of the a balanced system of cell representations
for each choice of parameters. The main work here is in Section 6, where we conduct
a detailed combinatorial analysis of certain representations associated to the infinite
two-sided cells. In Section 7 we establish connections between the Plancherel Theo-
rem and the decomposition into cells, hence establishing the asymptotic Plancherel
Theorem for type C̃2. The proofs of P1–P15 are given progressively throughout the
paper (see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11, and Theorems 7.7 and 7.13).

1. Kazhdan–Lusztig theory and balanced cell representations
In this section we recall the definition of the generic Hecke algebra and the setup
of Kazhdan–Lusztig theory, including the Kazhdan–Lusztig basis, Kazhdan–Lusztig
cells, and the Lusztig’s conjectures P1–P15. In this section (W,S) denotes an arbitrary
Coxeter system (with |S| < ∞) with length function ` : W → N = {0, 1, 2, . . .}. For
I ⊆ S let WI be the standard parabolic subgroup generated by I.

1.1. Generic Hecke algebras and their specialisations. Let (qs)s∈S be a
family of commuting invertible indeterminates with the property that qs = qs′ when-
ever s and s′ are conjugate in W . Let Rg = Z[(q±1

s )s∈S ]. The generic Hecke algebra of
type (W,S) is the Rg-algebra Hg with basis {Tw | w ∈ W} and multiplication given
by (for w ∈W and s ∈ S)

TwTs =
{
Tws if `(ws) = `(w) + 1
Tws + (qs − q−1

s )Tw if `(ws) = `(w)− 1.
(1)

We set qw := qs1 · · · qsn where w = s1 . . . sn ∈ W is a reduced expression of w. This
can easily be seen to be independent of the choice of reduced expression (using Tits’
solution to the Word Problem).

Let L : W → N be a positive weight function on W . Thus L(w) > 0 for all
w ∈ W different from the identity and L(ww′) = L(w) + L(w′) whenever `(ww′) =
`(w) + `(w′). Let q be an invertible indeterminate and let R = Z[q, q−1] be the ring
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of Laurent polynomials in q. The Hecke algebra of type (W,S,L) is the R-algebra
H = HL with basis {Tw | w ∈W} and multiplication given by (for w ∈W and s ∈ S)

TwTs =
{
Tws if `(ws) = `(w) + 1
Tws + (qL(s) − q−L(s))Tw if `(ws) = `(w)− 1.

(2)

We refer to (Tw)w∈W as the “standard basis” of H. Of course H is obtained from Hg
via the specialisation qs 7→ qL(s), with the multiplicative property of weight functions
ensuring that this specialisation compatible with the fact that qs = qs′ whenever
s and s′ are conjugate in W . For a given weight function L, we denote the above
specialisation by ΘL : Hg → H.

While Kazhdan–Lusztig theory is setup in terms of the specialised algebra H =
HL, we will also need the generic algebra Hg at times in this paper (particularly in
Section 6). We sometimes write Qs = qs − q−1

s , or Qs = qL(s) − q−L(s) depending on
context (particularly in matrices for typesetting purposes). If S = {s0, . . . , sn} we will
also often write, for example, 0121 as shorthand for s0s1s2s1, and thus in the Hecke
algebra T0121 = Ts0s1s2s1 . In particular, note that 1 is shorthand for s1, and therefore
to avoid confusion we denote the identity of W by e.

1.2. The Kazhdan–Lusztig basis. Let L be a positive weight function and let
H = HL. The involution ¯ on R which sends q to q−1 can be extended to an involution
on H by setting ∑

w∈W
awTw =

∑
w∈W

aw T
−1
w−1 .

In [14], Kazhdan and Lusztig proved that there exists a unique basis {Cw | w ∈ W}
of H such that, for all w ∈W ,

Cw = Cw and Cw = Tw +
∑
y<w

Py,wTy where Py,w ∈ q−1Z[q−1].

This basis is called theKazhdan–Lusztig basis (KL basis for short) ofH. The polynomi-
als Py,w are called the Kazhdan–Lusztig polynomials, and to complete the definition we
set Pw,w = 1 and Py,w = 0 whenever y 6< w (here 6 denotes Bruhat order on W ) and
Pw,w = 1 for all w ∈ W . We note that the Kazhdan–Lusztig polynomials, and hence
the elements Cw, depend on the the weight function L (see the following example).

Example 1.1. Let (W,S,L) be a Coxeter group and let J ⊆ S be such that the group
WJ generated by J is finite. Let wJ be the longest element of WJ . The Kazhdan–
Lusztig element CwJ is equal to

∑
w∈WJ

qL(w)−L(wJ )Tw. Indeed, this element has
the required triangularity with respect to the standard basis and it is stable under
the bar involution. Further, if we set CwJ :=

∑
w∈W qwq−1

wJTw ∈ Hg then we have
ΘL(CwJ ) = CwJ for all positive weight functions L on W .

Now assume that S contains two elements s1, s2 such that (s1s2)4 = e. If we set
a = L(s1) and b = L(s2) then we have

C212 =



T212 + q−b (T12 + T21) +
(
q−b−a − q−b+a

)
T2 + q−2bT1

+
(
q−2b−a − q−2b+a)Te if b > a,

T212 + q−a (T21 + T12) + q−2a (T1 + T2) + q−3aTe if a = b,
T212 + q−b (T12 + T21) +

(
q−a−b − q−a+b)T2 + q−2bT1

+
(
q−a − q−a−2b)Te if b < a.

Indeed, the expressions on the right-hand side are stable under the bar involution and
since they have the required triangularity property, they have to be the Kazhdan–
Lusztig element associated to 212. Unlike the case where w = wJ , there is no generic
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element inHg that specialises to C212 ∈ H(W,S,L) for all positive weight functions L.
We also note that when b > a we have P2,212 = q−b−a − q−b+a, showing that the
Kazhdan–Lusztig polynomials can have negative coefficients in the unequal parameter
case.

Let x, y ∈ W . We denote by hx,y,z ∈ R the structure constants associated to the
Kazhdan–Lusztig basis:

CxCy =
∑
z∈W

hx,y,zCz.

Definition 1.2 ([17, Chapter 13]). The Lusztig a-function is the function a : W → N
defined by

a(z) := min{n ∈ N | q−nhx,y,z ∈ Z[q−1] for all x, y ∈W}.

WhenW is infinite it is, in general, unknown whether the a-function is well-defined.
However in the case of affine Weyl groups it is known that a is well-defined, and that
a(z) 6 L(w0) where w0 is the longest element of the underlying finite Weyl group
W0 (see [17]). The a-function is a very important tool in the representation theory
of Hecke algebras, and plays a crucial role in the work of Lusztig on the unipotent
characters of reductive groups.

Definition 1.3. For x, y, z ∈W let γx,y,z−1 denote the constant term of q−a(z)hx,y,z.

The coefficients γx,y,z−1 are the structure constants of the asymptotic algebra J
introduced by Lusztig in [17, Chapter 18].

1.3. Kazhdan–Lusztig cells and associated representations. Define pre-
orders 6L,6R,6LR on W extending the following by transitivity:
x 6L y ⇐⇒ ∃ h ∈ H such that Cx appears in the KL expansion of hCy,
x 6R y ⇐⇒ ∃ h ∈ H such that Cx appears in the KL expansion of hCy,
x 6LR y ⇐⇒ ∃ h, h′ ∈ H such that Cx appears in the KL expansion of hCyh′.
We associate to these preorders equivalence relations ∼L, ∼R, and ∼LR by setting
(for ∗ ∈ {L,R,LR})

x ∼∗ y if and only if x 6∗ y and y 6∗ x.
The equivalence classes of ∼L, ∼R, and ∼LR are called left cells, right cells, and
two-sided cells.

Example 1.4. For y, w ∈ W we write y � w if and only if there exists x, z ∈ W
such that w = xyz and `(w) = `(x) + `(y) + `(y). In this case it is not hard to see,
using the unitriangularity of the change of basis matrix from the standard basis to
the Kazhdan–Lusztig basis, that TxCyTz = Cw+

∑
z<w azCz and therefore w 6LR y.

We denote by Λ the set of all two-sided cells (note that of course Λ depends on the
choice of weight function). Given any cell Γ (left, right, or two-sided) we set

Γ6∗ := {w ∈W | there exists x ∈ Γ such that w 6∗ x}
and we define Γ>∗ , Γ>∗ and Γ<∗ similarly.

To each right cell Υ of W there is a natural right H-module HΥ constructed as
follows. The R-modules

H6RΥ := 〈Cx | x ∈ Υ6R〉 and H<RΥ := 〈Cx | x ∈ Υ<R〉
are right H-modules by definition and therefore the quotient

HΥ := H6RΥ/H<RΥ
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is a right H-module with basis {Cw | w ∈ Υ} where Cw is the class of Cw in HΥ.
Given a left cell (respectively a two-sided cell) we can follow a similar construction to
produce left H-modules (respectively H-bimodules).

1.4. Lusztig conjectures. Define ∆ : W → N and nz ∈ Z \ {0} by the relation

Pe,z = nzq−∆(z) + strictly smaller powers of q.
This is well defined because Px,y ∈ q−1Z[q−1] for all x, y ∈W . Let

D = {w ∈W | ∆(w) = a(w)}.

The elements of D are called Duflo elements (or, somewhat prematurely, Duflo invo-
lutions; see P6 below).

In [17, Chapter 13], Lusztig has formulated the following 15 conjectures, now known
as P1–P15.

P1. For any z ∈W we have a(z) 6 ∆(z).
P2. If d ∈ D and x, y ∈W satisfy γx,y,d 6= 0, then y = x−1.
P3. If x ∈W then there exists a unique d ∈ D such that γx,x−1,d 6= 0.
P4. If z′ 6LR z then a(z′) > a(z). In particular the a-function is constant on

two-sided cells.
P5. If d ∈ D, x ∈W , and γx,x−1,d 6= 0, then γx,x−1,d = nd = ±1.
P6. If d ∈ D then d2 = e (the identity).
P7. For any x, y, z ∈W , we have γx,y,z = γy,z,x.
P8. Let x, y, z ∈ W be such that γx,y,z 6= 0. Then x−1 ∼R y, y−1 ∼R z, and

z−1 ∼R x.
P9. If z′ 6L z and a(z′) = a(z), then z′ ∼L z.
P10. If z′ 6R z and a(z′) = a(z), then z′ ∼R z.
P11. If z′ 6LR z and a(z′) = a(z), then z′ ∼LR z.
P12. If I ⊆ S then the a-function of WI is the restriction to WI of the a-function

of W .
P13. Each right cell Υ of W contains a unique element d ∈ D, and we have

γx,x−1,d 6= 0 for all x ∈ Υ.
P14. For each z ∈W we have z ∼LR z−1.
P15. If x, x′, y, w ∈W are such that a(w) = a(y) then∑

y′∈W
hw,x′,y′ ⊗ hx,y′,y =

∑
y′∈W

hy′,x′,y ⊗ hx,w,y′ in R⊗Z R.

1.5. Balanced system of cell representations. In [13] we introduced the no-
tion of a balanced system of cell representations, inspired by the work of Geck [6, 8]
in the finite case. We recall this theory here.

If S is an R-polynomial ring (including the possibility S = R), we write S60 and S0

for the associated Z[q−1]-polynomial and Z-polynomial subrings of S, respectively. In
particular R60 = Z[q−1] and R0 = Z. Let

sp|q−1=0
: S60 → S0 denote the specialisation at q−1 = 0.

By a matrix representation of H we shall mean a triple (π,M,B) where M is a
right H-module over an R-polynomial ring S, and B is a basis of M. We write (for
h ∈ H and u, v ∈ B)

π(h; B) and [π(h; B)]u,v
for the matrix of π(h) with respect to the basis B, and the (u, v)th entry of π(h; B).

Let deg(f(q)) denote the degree of the Laurent polynomial f(q) ∈ S (note that
degree here refers to degree in q, not degree in the indeterminates of the polynomial
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ring S). A matrix representation (π,M,B) is called bounded if deg([π(Cw; B)]u,v) is
bounded from above (for all u, v ∈ B and all w ∈W ). In this case we call the integer

aπ := max{deg([π(Cw; B)]u,v) | u, v ∈ B, w ∈W}(3)

the bound of the matrix representation and we define the leading matrices by

cπ(w; B) := sp|q−1=0

(
q−aππ(Cw; B)

)
for w ∈W.(4)

Definition 1.5.We say that H admits a balanced system of cell representations if
for each two-sided cell Γ ∈ Λ there exists a matrix representation (πΓ,MΓ,BΓ) defined
over an R-polynomial ring RΓ (where we could have RΓ = R) such that the following
properties hold:

B1. If w /∈ Γ>LR then πΓ(Cw; BΓ) = 0.
B2. The matrix representation (πΓ,MΓ,BΓ) is bounded. Let aπΓ denote the bound.
B3. We have cπΓ(w; BΓ) 6= 0 if and only if w ∈ Γ.
B4. The leading matrices cπΓ(w; BΓ) (w ∈ Γ) are free over Z.
B5. For each z ∈ Γ there exists x, y ∈ Γ such that γ̃x,y,z−1 6= 0, where γ̃x,y,z−1 ∈ Z

is the coefficient of qaπΓ in hx,y,z.
B6. If Γ′ 6LR Γ then aπΓ′ > aπΓ .

The natural numbers (aπΓ)Γ∈Λ are called the bounds of the balanced system of cell
representations.

Remark 1.6.We make the following remarks:
(1) We note that B1 does not depend on the basis BΓ. A representation with

property B1 is called a cell representation for the two-sided cell Γ. It is clear
that the representations associated to cells that we introduced in Section 1.3
are cell representations (see [13, Section 2.1]).

(2) If the basis BΓ of MΓ is clear from context we will sometimes write cπΓ(w)
in place of cπΓ(w; BΓ).

(3) By [13, Corollary 2.4] the axioms B1–B4 and B6 alone imply that the Z-span
JΓ of the matrices cπΓ(w; BΓ) with w ∈ Γ is a Z-algebra, and that

cπΓ(x; BΓ)cπΓ(y; BΓ) =
∑
z∈Γ

γ̃x,y,z−1cπΓ(z; BΓ) for x, y ∈ Γ

with γ̃x,y,z−1 as defined in B5. Hence these integers are the structure constants
of the algebra JΓ.

(4) We note that in (3) and (4) it is equivalent to replace Cw by Tw, because
Cw = Tw +

∑
v<w Pv,wTv with Pv,w ∈ q−1Z[q−1]. However in B1 one cannot

replace Cw by Tw.
(5) Finally we note that we have slightly changed the numbering from [13],

where B5 was denoted B4′, and B6 was denoted B5.

In [13] we showed that the existence of a balanced system of cell representations is
sufficient to compute Lusztig’s a-function. In particular, we have:

Theorem 1.7 ([13, Theorem 2.5 and Corollary 2.6]). Suppose that H admits a balanced
system of cell representations. Then a(w) = aπΓ for all w ∈ Γ. Moreover, for each
Γ ∈ Λ the Z-algebra JΓ spanned by the matrices {cπΓ(w; BΓ) | w ∈ Γ} is isomorphic
to Lusztig’s asymptotic algebra associated to Γ, and γ̃x,y,z = γx,y,z.

Note that the first part of this theorem implies that the bounds aπΓ in Definition 1.5
are in fact unique. That is, if there exist two balanced systems of cell representations
then their bounds coincide.
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2. Affine Weyl groups, affine Hecke algebras, and alcove paths
We begin this section with some basic facts about root systems and Weyl groups. We
then recall the combinatorial language of alcove paths from [21], and the concept of
alcove paths confined to strips from [13]. We also discuss the combinatorics of the
affine Hecke algebra (and extended affine Hecke algebra) of type C̃2.

2.1. Root systems and Weyl groups. Let Φ be the non-reduced root system of
type BC2 in the vector space R2. Thus Φ consists of vectors

Φ = Φ+ ∪ (−Φ+), where Φ+ = {α1, α2, α1 + α2, α1 + 2α2, 2α2, 2(α1 + α2)},
with ‖α1‖ =

√
2, ‖α2‖ = 1, and 〈α1, α2〉 = −1. Let Φ0 and Φ1 be the subsystems

Φ0 = ±{α1, α2, α1 + α2, α1 + 2α2} and Φ1 = ±{α1, 2α2, α1 + 2α2, 2α1 + 2α2}
of types B2 and C2, respectively (see Figure 1).

Let α∨ = 2α/〈α, α〉. The dual root system is
Φ∨ = ±{α∨1 , α∨2 /2, α∨1 + α∨2 /2, α∨1 + α∨2 , α

∨
2 , 2α∨1 + α∨2 }.

The coroot lattice is the Z-lattice Q spanned by Φ∨. Thus
Q = {mα∨1 + nα∨2 /2 | m,n ∈ Z}.

The fundamental coweights ω1 and ω2 are defined by 〈ωi, αj〉 = δi,j , and thus
ω1 = α∨1 + α∨2 /2 and ω2 = α∨1 + α∨2 .

In particular, note that ω1, ω2 ∈ Q. Let Q+ be the cone Z>0ω1 + Z>0ω2 (note that
this notation is non-standard).

For each α ∈ Φ let sα be the orthogonal reflection in the hyperplane Hα = {x ∈
R2 | 〈x, α〉 = 0} orthogonal to α, and for i ∈ {1, 2} let si = sαi . The Weyl group
of Φ is the subgroup W0 of GL(R2) generated by the reflections s1 and s2 (this is a
Coxeter group of type B2 = C2). The Weyl group W0 acts on Q and the affine Weyl
group is W = Q oW0 where we identify λ ∈ Q with the translation tλ(x) = x + λ.
The affine Weyl group is a Coxeter group with generating set S = {s0, s1, s2}, where
s0 = tϕ∨sϕ, with ϕ = 2α1 + 2α2 the highest root of Φ.

For each α ∈ Φ and k ∈ Z let Hα,k = {x ∈ R2 | 〈x, α〉 = k}, and let sα,k be the
orthogonal reflection in the affine hyperplane Hα,k. Explicitly, sα,k(x) = x− (〈x, α〉−
k)α∨. Each affine hyperplane Hα,k with α ∈ Φ+ and k ∈ Z divides R2 into two half
spaces, denoted

H+
α,k = {x ∈ R2 | 〈x, α〉 > k} and H−α,k = {x ∈ R2 | 〈x, α〉 6 k}.

This “orientation” of the hyperplanes is called the periodic orientation (see Figure 1).
If w ∈W we define the linear part θ(w) ∈W0 and the translation weight wt(w) ∈ Q

by the equation
w = twt(w)θ(w).

Let F denote the union of the hyperplanes Hα,k with α ∈ Φ and k ∈ Z. The closures
of the open connected components of R2 \ F are called alcoves (these are the closed
triangles in Figure 1). The fundamental alcove is given by

A0 = {x ∈ R2 | 0 6 〈x, α〉 6 1 for all α ∈ Φ+}.
The hyperplanes bounding A0 are called the walls of A0. Explicitly these walls are
Hαi,0 with i = 1, 2 and Hϕ,1. We say that a face of A0 (that is, a codimension 1 facet)
has type si for i = 1, 2 if it lies on the wallHαi,0 and of type s0 if it lies on the wallHϕ,1.

The affine Weyl group W acts simply transitively on the set of alcoves, and we
use this action to identify the set of alcoves with W via w ↔ wA0. Moreover, we use
the action of W to transfer the notions of walls, faces, and types of faces to arbitrary
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alcoves. Alcoves A and A′ are called s-adjacent, written A ∼s A′, if A 6= A′ and A
and A′ share a common type s face. Thus under the identification of alcoves with
elements of W , the alcoves w and ws are s-adjacent.

2 Affine Weyl groups, affine Hecke algebras, and alcove paths 6

2.1 Root systems and Weyl groups
Let Φ be the non-reduced root system of type BC2 in the vector space R2. Thus Φ consists of vectors

Φ = Φ+ ∪ (−Φ+), where Φ+ = {α1, α2, α1 + α2, α1 + 2α2, 2α2, 2(α1 + α2)},
with ‖α1‖ =

√
2, ‖α2‖ = 1, and 〈α1, α2〉 = −1. Let Φ0 and Φ1 be the subsystems

Φ0 = ±{α1, α2, α1 + α2, α1 + 2α2} and Φ1 = ±{α1, 2α2, α1 + 2α2, 2α1 + 2α2}
of types B2 and C2, respectively.

Let α∨ = 2α/〈α, α〉. The dual root system is

Φ∨ = ±{α∨
1 , α

∨
2 /2, α

∨
1 + α∨

2 /2, α
∨
1 + α∨

2 , α
∨
2 , 2α

∨
1 + α∨

2 }.
The corrot lattice is the Z-lattice Q spanned by Φ∨. Thus

Q = {mα∨
1 + nα∨

2 /2 | m,n ∈ Z}.
The fundamental coweights ω1 and ω2 are defined by 〈ωi, αj〉 = δi,j , and thus

ω1 = α∨
1 + α∨

2 /2 and ω2 = α∨
1 + α∨

2 .

In particular, note that ω1, ω2 ∈ Q. Let Q+ be the cone Z≥0ω1 + Z≥0ω2 (note that this notation is non-standard).

For each α ∈ Φ let sα be the orthogonal reflection in the hyperplane Hα = {x ∈ R2 | 〈x,α〉 = 0} orthogonal to α, and
for i ∈ {1, 2} let si = sαi . The Weyl group of Φ is the subgroup W0 of GL(R2) generated by the reflections s1 and s2
(this is a Coxeter group of type B2 = C2). The Weyl group W0 acts on Q and the affine Weyl group is W = Q ⋊W0

where we identify λ ∈ Q with the translation tλ(x) = x+ λ. The affine Weyl group is a Coxeter group with generating
set S = {s0, s1, s2}, where s0 = tϕ∨sϕ, with ϕ = 2α1 + 2α2 the highest root of Φ.

For each α ∈ Φ and k ∈ Z let Hα,k = {x ∈ R2 | 〈x,α〉 = k}, and let sα,k be the orthogonal reflection in the affine
hyperplane Hα,k. Explicitly, sα,k(x) = x− (〈x, α〉 − k)α∨. Each affine hyperplane Hα,k with α ∈ Φ+ and k ∈ Z divides
R2 into two half spaces, denoted

H+
α,k = {x ∈ R2 | 〈x, α〉 ≥ k} and H−

α,k = {x ∈ R2 | 〈x,α〉 ≤ k}.
This “orientation” of the hyperplanes is called the periodic orientation (see Figure 1).

If w ∈W we define the linear part θ(w) ∈W0 and the translation weight wt(w) ∈ Q by the equation

w = twt(w)θ(w).

Let F denote the union of the hyperplanes Hα,k with α ∈ Φ and k ∈ Z. The closures of the open connected components
of R2\F are called alcoves (these are the closed triangles in Figure 1). The fundamental alcove is given by

A0 = {x ∈ R2 | 0 ≤ 〈x, α〉 ≤ 1 for all α ∈ Φ+}.
The hyperplanes bounding A0 are called the walls of A0. Explicitly these walls are Hαi,0 with i = 1, 2 and Hϕ,1. We
say that a face of A0 (that is, a codimension 1 facet) has type si for i = 1, 2 if it lies on the wall Hαi,0 and of type s0 if
it lies on the wall Hϕ,1.

The affine Weyl group W acts simply transitively on the set of alcoves, and we use this action to identify the set of
alcoves with W via w ↔ wA0. Moreover, we use the action of W to transfer the notions of walls, faces, and types of
faces to arbitrary alcoves. Alcoves A and A′ are called s-adjacent, written A ∼s A

′, if A 6= A′ and A and A′ share a
common type s face. Thus under the identification of alcoves with elements of W , the alcoves w and ws are s-adjacent.

α1 = α∨
1
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Fig. 1: Root system of type BC2, periodic orientation, and adjacency types (dotted, dashed, solid = 0,1,2)Figure 1. Root system of type BC2, periodic orientation, and ad-
jacency types (dotted, dashed, solid = 0,1,2)

2.2. Alcove paths. For any sequence ~w = (si1 , si2 , . . . , si`) of elements of S we have

e ∼si1 si1 ∼si2 si1si2 ∼si3 · · · ∼si` si1si2 · · · si` .

In this way, sequences ~w of elements of S determine alcove paths (also called al-
cove walks) of type ~w starting at the fundamental alcove e = A0. We will typi-
cally abuse notation and refer to alcove paths of type ~w = si1si2 · · · si` rather than
~w = (si1 , si2 , . . . , si`). Thus “the alcove path of type ~w = si1si2 · · · si`” is the sequence
(v0, v1, . . . , v`) of alcoves, where v0 = e and vk = si1 · · · sik for k = 1, . . . , `.

Let ~w = si1si2 · · · si` be an expression for w ∈W , and let v ∈W . A positively folded
alcove path of type ~w starting at v is a sequence p = (v0, v1, . . . , v`) with v0, . . . , v` ∈W
such that

(1) v0 = v,
(2) vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , `, and
(3) if vk−1 = vk then vk−1 is on the positive side of the hyperplane separating

vk−1 and vk−1sik .
The end of p is end(p) = v`. Let wt(p) = wt(end(p)) and θ(p) = θ(end(p)). Let

P(~w, v) = {all positively folded alcove paths of type ~w starting at v}.

Less formally, a positively folded alcove path of type ~w starting at v is a sequence of
steps from alcove to alcove in W , starting at v, and made up of the symbols (where
the kth step has s = sik for k = 1, . . . , `):

2 Affine Weyl groups, affine Hecke algebras, and alcove paths 7

2.2 Alcove paths
For any sequence ~w = (si1 , si2 , . . . , siℓ) of elements of S we have

e ∼si1
si1 ∼si2

si1si2 ∼si3
· · · ∼siℓ

si1si2 · · · siℓ .

In this way, sequences ~w of elements of S determine alcove paths (also called alcove walks) of type ~w starting at the
fundamental alcove e = A0. We will typically abuse notation and refer to alcove paths of type ~w = si1si2 · · · siℓ rather
than ~w = (si1 , si2 , . . . , siℓ). Thus “the alcove path of type ~w = si1si2 · · · siℓ ” is the sequence (v0, v1, . . . , vℓ) of alcoves,
where v0 = e and vk = si1 · · · sik for k = 1, . . . , ℓ.

Let ~w = si1si2 · · · siℓ be an expression for w ∈ W , and let v ∈ W . A positively folded alcove path of type ~w starting at v
is a sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ W such that

1) v0 = v,

2) vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

3) if vk−1 = vk then vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

The end of p is end(p) = vℓ. Let wt(p) = wt(end(p)) and θ(p) = θ(end(p)). Let

P(~w, v) = {all positively folded alcove paths of type ~w starting at v}.

Less formally, a positively folded alcove path of type ~w starting at v is a sequence of steps from alcove to alcove in W ,
starting at v, and made up of the symbols (where the kth step has s = sik for k = 1, . . . , ℓ):

−
x xs

+

(positive s-crossing)

−
xs x

+

(positive s-fold)

+
xxs

−

(negative s-crossing)

If p has no folds we say that p is straight. Note that, by definition, there are no “negative” folds.

If p is a positively folded alcove path we define, for each sj ∈ S,

fj(p) = #(positive sj-folds in p).

2.3 Alcove paths confined to strips
Let α′

1 = α1 and α′
2 = 2α2 (these are the simple roots of Φ1). For i ∈ {1, 2} let

Ui = {x ∈ R2 | 0 ≤ 〈x, α′
i〉 ≤ 1}

be the region between the hyperplanes Hα′
i
,0 and Hα′

i
,1. It is also convenient to define U3 = U2.

Let ~w = si1 · · · siℓ be an expression for w ∈ W . Let i ∈ {1, 2, 3}. An i-folded alcove path of type ~w starting at v ∈ Ui is a
sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ Ui such that

1) v0 = v, and vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

2) if vk−1 = vk then either:

(a) vk−1sik /∈ Ui, or

(b) vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

We note that condition 2)(a) can only occur if vk−1 and vk−1sik are separated by either Hα′
i
,0 or Hα′

i
,1.

The end of the i-folded alcove path p = (v0, . . . , vℓ) is end(p) = vℓ. Let

Pi(~w, v) = {all i-folded alcove paths of type ~w starting at v}.

Less formally, i-folded alcove paths are made up of the following symbols, where x ∈ Ui and s ∈ S:

−
x xs

+

(positive s-crossing)

−
xs x

+

(s-fold)

+
xxs

−

(negative s-crossing)

(a) When the alcoves x and xs both belong to Ui

+
xsx

−

(s-bounce)

−
xs x

+

(s-bounce)

(b) When xs lies outside of Ui

We refer to the two symbols in (b) as “s-bounces” rather than folds, since they play a different role in the theory. It
turns out that there is no need to distinguish between “positive” and “negative” s-bounces. We note that bounces only

If p has no folds we say that p is straight. Note that, by definition, there are no
“negative” folds.
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If p is a positively folded alcove path we define, for each sj ∈ S,
fj(p) = #(positive sj-folds in p).

2.3. Alcove paths confined to strips. Let α′1 = α1 and α′2 = 2α2 (these are the
simple roots of Φ1). For i ∈ {1, 2} let

Ui = {x ∈ R2 | 0 6 〈x, α′i〉 6 1}
be the region between the hyperplanes Hα′

i
,0 and Hα′

i
,1. It is also convenient to define

U3 = U2.
Let ~w = si1 · · · si` be an expression for w ∈W . Let i ∈ {1, 2, 3}. An i-folded alcove

path of type ~w starting at v ∈ Ui is a sequence p = (v0, v1, . . . , v`) with v0, . . . , v` ∈ Ui
such that

(1) v0 = v, and vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , `, and
(2) if vk−1 = vk then either:

(a) vk−1sik /∈ Ui, or
(b) vk−1 is on the positive side of the hyperplane separating vk−1 and

vk−1sik .
We note that condition (2)(a) can only occur if vk−1 and vk−1sik are separated by

either Hα′
i
,0 or Hα′

i
,1.

The end of the i-folded alcove path p = (v0, . . . , v`) is end(p) = v`. Let
Pi(~w, v) = {all i-folded alcove paths of type ~w starting at v}.

Less formally, i-folded alcove paths are made up of the following symbols, where
x ∈ Ui and s ∈ S:

2 Affine Weyl groups, affine Hecke algebras, and alcove paths 7

2.2 Alcove paths
For any sequence ~w = (si1 , si2 , . . . , siℓ) of elements of S we have

e ∼si1
si1 ∼si2

si1si2 ∼si3
· · · ∼siℓ

si1si2 · · · siℓ .

In this way, sequences ~w of elements of S determine alcove paths (also called alcove walks) of type ~w starting at the
fundamental alcove e = A0. We will typically abuse notation and refer to alcove paths of type ~w = si1si2 · · · siℓ rather
than ~w = (si1 , si2 , . . . , siℓ). Thus “the alcove path of type ~w = si1si2 · · · siℓ ” is the sequence (v0, v1, . . . , vℓ) of alcoves,
where v0 = e and vk = si1 · · · sik for k = 1, . . . , ℓ.

Let ~w = si1si2 · · · siℓ be an expression for w ∈ W , and let v ∈ W . A positively folded alcove path of type ~w starting at v
is a sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ W such that

1) v0 = v,

2) vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

3) if vk−1 = vk then vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

The end of p is end(p) = vℓ. Let wt(p) = wt(end(p)) and θ(p) = θ(end(p)). Let

P(~w, v) = {all positively folded alcove paths of type ~w starting at v}.

Less formally, a positively folded alcove path of type ~w starting at v is a sequence of steps from alcove to alcove in W ,
starting at v, and made up of the symbols (where the kth step has s = sik for k = 1, . . . , ℓ):

−
x xs

+

(positive s-crossing)

−
xs x

+

(positive s-fold)

+
xxs

−

(negative s-crossing)

If p has no folds we say that p is straight. Note that, by definition, there are no “negative” folds.

If p is a positively folded alcove path we define, for each sj ∈ S,

fj(p) = #(positive sj-folds in p).

2.3 Alcove paths confined to strips
Let α′

1 = α1 and α′
2 = 2α2 (these are the simple roots of Φ1). For i ∈ {1, 2} let

Ui = {x ∈ R2 | 0 ≤ 〈x, α′
i〉 ≤ 1}

be the region between the hyperplanes Hα′
i
,0 and Hα′

i
,1. It is also convenient to define U3 = U2.

Let ~w = si1 · · · siℓ be an expression for w ∈ W . Let i ∈ {1, 2, 3}. An i-folded alcove path of type ~w starting at v ∈ Ui is a
sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ Ui such that

1) v0 = v, and vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

2) if vk−1 = vk then either:

(a) vk−1sik /∈ Ui, or

(b) vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

We note that condition 2)(a) can only occur if vk−1 and vk−1sik are separated by either Hα′
i
,0 or Hα′

i
,1.

The end of the i-folded alcove path p = (v0, . . . , vℓ) is end(p) = vℓ. Let

Pi(~w, v) = {all i-folded alcove paths of type ~w starting at v}.

Less formally, i-folded alcove paths are made up of the following symbols, where x ∈ Ui and s ∈ S:

−
x xs

+

(positive s-crossing)

−
xs x

+

(s-fold)

+
xxs

−

(negative s-crossing)

(a) When the alcoves x and xs both belong to Ui

+
xsx

−

(s-bounce)

−
xs x

+

(s-bounce)

(b) When xs lies outside of Ui

We refer to the two symbols in (b) as “s-bounces” rather than folds, since they play a different role in the theory. It
turns out that there is no need to distinguish between “positive” and “negative” s-bounces. We note that bounces only

(a) When the alcoves x and xs both belong to Ui

2 Affine Weyl groups, affine Hecke algebras, and alcove paths 7

2.2 Alcove paths
For any sequence ~w = (si1 , si2 , . . . , siℓ) of elements of S we have

e ∼si1
si1 ∼si2

si1si2 ∼si3
· · · ∼siℓ

si1si2 · · · siℓ .

In this way, sequences ~w of elements of S determine alcove paths (also called alcove walks) of type ~w starting at the
fundamental alcove e = A0. We will typically abuse notation and refer to alcove paths of type ~w = si1si2 · · · siℓ rather
than ~w = (si1 , si2 , . . . , siℓ). Thus “the alcove path of type ~w = si1si2 · · · siℓ ” is the sequence (v0, v1, . . . , vℓ) of alcoves,
where v0 = e and vk = si1 · · · sik for k = 1, . . . , ℓ.

Let ~w = si1si2 · · · siℓ be an expression for w ∈ W , and let v ∈ W . A positively folded alcove path of type ~w starting at v
is a sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ W such that

1) v0 = v,

2) vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

3) if vk−1 = vk then vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

The end of p is end(p) = vℓ. Let wt(p) = wt(end(p)) and θ(p) = θ(end(p)). Let

P(~w, v) = {all positively folded alcove paths of type ~w starting at v}.

Less formally, a positively folded alcove path of type ~w starting at v is a sequence of steps from alcove to alcove in W ,
starting at v, and made up of the symbols (where the kth step has s = sik for k = 1, . . . , ℓ):

−
x xs

+

(positive s-crossing)

−
xs x

+

(positive s-fold)

+
xxs

−

(negative s-crossing)

If p has no folds we say that p is straight. Note that, by definition, there are no “negative” folds.

If p is a positively folded alcove path we define, for each sj ∈ S,

fj(p) = #(positive sj-folds in p).

2.3 Alcove paths confined to strips
Let α′

1 = α1 and α′
2 = 2α2 (these are the simple roots of Φ1). For i ∈ {1, 2} let

Ui = {x ∈ R2 | 0 ≤ 〈x, α′
i〉 ≤ 1}

be the region between the hyperplanes Hα′
i
,0 and Hα′

i
,1. It is also convenient to define U3 = U2.

Let ~w = si1 · · · siℓ be an expression for w ∈ W . Let i ∈ {1, 2, 3}. An i-folded alcove path of type ~w starting at v ∈ Ui is a
sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ Ui such that

1) v0 = v, and vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

2) if vk−1 = vk then either:

(a) vk−1sik /∈ Ui, or

(b) vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

We note that condition 2)(a) can only occur if vk−1 and vk−1sik are separated by either Hα′
i
,0 or Hα′

i
,1.

The end of the i-folded alcove path p = (v0, . . . , vℓ) is end(p) = vℓ. Let

Pi(~w, v) = {all i-folded alcove paths of type ~w starting at v}.

Less formally, i-folded alcove paths are made up of the following symbols, where x ∈ Ui and s ∈ S:

−
x xs

+

(positive s-crossing)

−
xs x

+

(s-fold)

+
xxs

−

(negative s-crossing)

(a) When the alcoves x and xs both belong to Ui

+
xsx

−

(s-bounce)

−
xs x

+

(s-bounce)

(b) When xs lies outside of Ui

We refer to the two symbols in (b) as “s-bounces” rather than folds, since they play a different role in the theory. It
turns out that there is no need to distinguish between “positive” and “negative” s-bounces. We note that bounces only

(b) When xs lies outside of Ui

Figure 2.

We refer to the two symbols in (b) as “s-bounces” rather than folds, since they
play a different role in the theory. It turns out that there is no need to distinguish
between “positive” and “negative” s-bounces. We note that bounces only occur on
the hyperplanes Hα′

i
,0 and Hα′

i
,1. Moreover, note that there are no folds or crossings

on the walls Hα′
i
,0 and Hα′

i
,1 – the only interactions with these walls are bounces. In

the case i = 1 every bounce has type 1. In the case i = 2, 3 the bounces on Hα′2,0 have
type 2, and those on Hα′2,1 have type 0 (see Figures 1 and 3).

Let p be an i-folded alcove path. For each j ∈ {0, 1, 2} let
fj(p) = #(sj-folds in p) and gj(p) = #(sj-bounces in p).

For i ∈ {1, 2} let Wi = 〈si〉 and let W i
0 denote the set of minimal length coset

representatives for cosets in Wi \W0. Define
θi(p) = ψi(θ(p)) and wti(p) = 〈wt(p), ωi〉,

where ψi : W0 → W i
0 is the natural projection map taking u ∈ W0 to the minimal

length representative of Wiu, and ω1, ω2 are as defined in Section 2.1. For later use,
we also set

θ3 = θ2 and wt3 = wt2 .
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Thus if wt(p) = mα∨1 + nα∨2 /2 then wt1(p) = m and wt2(p) = wt3(p) = n.
Let

τ1 = tω1s1 = s0s1s2 and τ2 = tω1 = s0s1s2s1,

and let τ3 = τ2. Observe that τi preserves Ui. It is not hard to see that for each
p ∈ Pi(~w, u) the path τi(p) obtained by applying τi to each part of p is again a valid
i-folded alcove path starting at τiu (the main point here is that in the case i = 1
the reflection part of τ1 is in the simple root direction α1, and thus sends Φ+ \ {α1}
to itself; in the cases i = 2, 3 the element τ2 = τ3 is a pure translation, and so the
result is obvious). Moreover θi(p) is preserved under the application of τi, and a direct
calculation shows that wti(τki (p)) = k + wti(p).

Note that W i
0 is a fundamental domain for the action of 〈τi〉 on Ui. Let B be any

other fundamental domain for this action. For w ∈ Ui we define wtiB(w) ∈ Z and
θiB(w) ∈ B by the equation

w = τ
wtiB(w)
i θiB(w),

and for i-folded alcove paths p we define

wtiB(p) = wtiB(end(p)) and θiB(p) = θiB(end(p)).

It is easy to see that in the case B = W i
0 these definitions agree with those for wti(p)

and θi(p) made above.

Example 2.1. Figure 3 shows three examples of i-folded alcove paths, with i = 1 in
the first two cases, and i = 2 or i = 3 in the third case.

2 Affine Weyl groups, affine Hecke algebras, and alcove paths 8

occur on the hyperplanes Hα′
i
,0 and Hα′

i
,1. Moreover, note that there are no folds or crossings on the walls Hα′

i
,0 and

Hα′
i,1

– the only interactions with these walls are bounces. In the case i = 1 every bounce has type 1. In the case i = 2, 3
the bounces on Hα′

2,0
have type 2, and those on Hα′

2,1
have type 0 (see Figures 1 and 2).

Let p be an i-folded alcove path. For each j ∈ {0, 1, 2} let

fj(p) = #(sj-folds in p) and gj(p) = #(sj-bounces in p).

For i ∈ {1, 2} let Wi = 〈si〉 and let W i
0 denote the set of minimal length coset representatives for cosets in Wi\W0.

Define
θi(p) = ψi(θ(p)) and wti(p) = 〈wt(p), ωi〉,

where ψi : W0 → W i
0 is the natural projection map taking u ∈ W0 to the minimal length representative of Wiu, and

ω1, ω2 are as defined in Section 2.1. For later use, we also set

θ3 = θ2 and wt3 = wt2.

Thus if wt(p) = mα∨
1 + nα∨

2 /2 then wt1(p) = m and wt2(p) = wt3(p) = n.

Let

τ1 = tω1s1 = s0s1s2 and τ2 = tω1 = s0s1s2s1,

and let τ3 = τ2. Observe that τi preserves Ui. It is not hard to see that for each p ∈ Pi(~w, u) the path τi(p) obtained by
applying τi to each part of p is again a valid i-folded alcove path starting at τiu (the main point here is that in the case
i = 1 the reflection part of τ1 is in the simple root direction α1, and thus sends Φ+\{α1} to itself; in the cases i = 2, 3
the element τ2 = τ3 is a pure translation, and so the result is obvious). Moreover θi(p) is preserved under the application
of τi, and a direct calculation shows that wti(τki (p)) = k + wti(p).

Note that W i
0 is a fundamental domain for the action of 〈τi〉 on Ui. Let B be any other fundamental domain for this

action. For w ∈ Ui we define wtiB(w) ∈ Z and θiB(w) ∈ B by the equation

w = τ
wtiB(w)

i θiB(w),

and for i-folded alcove paths p we define

wtiB(p) = wtiB(end(p)) and θiB(p) = θiB(end(p)).

It is easy to see that in the case B =W i
0 these definitions agree with those for wti(p) and θi(p) made above.

Example 2.1. Figure 2 shows three examples of i-folded alcove paths, with i = 1 in the first two cases, and i = 2 or
i = 3 in the third case. In each case the identity alcove is shaded in dark green. The first and second paths have type
~w = 210121012120 and start at u = e, and the third path has type ~w = 121021210120120 and starts at u = 12.

Fig. 2: i-folded alcove paths

The first and second figures illustrate two choices of fundamental domain B for the action of τ1 on U1 (indicated by
green and red shading). In the first example B = W 1

0 , and we have wt1B(p) = 3 and θ1B(p) = 21. In the second
example B = {e, 2, 0, 20}, and we have wt1B(p) = 2 and θ1B(p) = 0. The third figure illustrates the fundamental domain
B = {12, 2, e, 0} for the action of τ2 = τ3 on U2 = U3. We have wt2B(p) = wt3B(p) = 1 and θ2B(p) = θ3B(p) = 0.

Figure 3. i-folded alcove paths

In each case the identity alcove is shaded in dark green. The first and second
paths have type ~w = 210121012120 and start at u = e, and the third path has type
~w = 121021210120120 and starts at u = 12. The first and second figures illustrate two
choices of fundamental domain B for the action of τ1 on U1 (indicated by green and
red shading). In the first example B = W 1

0 , and we have wt1
B(p) = 3 and θ1

B(p) = 21.
In the second example B = {e, 2, 0, 20}, and we have wt1

B(p) = 2 and θ1
B(p) = 0.

The third figure illustrates the fundamental domain B = {12, 2, e, 0} for the action of
τ2 = τ3 on U2 = U3. We have wt2

B(p) = wt3
B(p) = 1 and θ2

B(p) = θ3
B(p) = 0.

2.4. The affine Hecke algebra of type C̃2. Let (W,S) be the C̃2 Coxeter sys-
tem and let Hg be the associated generic affine Hecke algebra, as in (1). The algebra

Algebraic Combinatorics, Vol. 2 #5 (2019) 979



J. Guilhot & J. Parkinson

Hg is generated by T0 = Ts0 , T1 = Ts1 and T2 = Ts2 subject to the relations (for
i = 0, 1, 2)
T 2
i = 1+QiTi, T0T1T0T1 =T1T0T1T0, T1T2T1T2 =T2T1T2T1, and T0T2 =T2T0,

where qi = qsi and Qi = qi − q−1
i .

Let v ∈ W and choose any expression v = si1 · · · si` (not necessarily reduced).
Consider the associated straight alcove path (v0, v1 . . . , v`), where v0 = e and vk =
si1 · · · sik . Let ε1, . . . , ε` be defined using the periodic orientation on hyperplanes as
follows:

εk =
{

+1 if vk−1
−|+ vk (that is, a positive crossing)

−1 if vk −|+ vk−1 (that is, a negative crossing).
It is easy to check (using Tits’ solution to the Word Problem) that the element

Xv = T ε1si1 . . . T
ε`
si`
∈ Hg

does not depend on the particular expression v = si1 · · · si` we have chosen (see [11]).
If λ ∈ Q we write

Xλ = Xtλ ,

and it follows from the above definitions that
Xv = Xtwt(v)θ(v) = Xwt(v)Xθ(v) = Xwt(v)T−1

θ(v)−1(5)

(the second equality follows since twt(v) is on the positive side of every hyperplane
through wt(v), and the third equality follows since Xu = T−1

u−1 for all u ∈ W0).
Moreover since Xv = Tv +(lower terms) the set {Xv | v ∈W} is a basis of Hg, called
the Bernstein–Lusztig basis.

Let Rg[Q] be the free Rg-module with basis {Xλ | λ ∈ Q}. We have a natural
action of W0 on Rg[Q] given by wXλ = Xwλ. We set

Rg[Q]W0 = {p ∈ Rg[Q] | w · p = p for all w ∈W0}.

It is a well-known result that the centre of Hg is Z(Hg) = Rg[Q]W0 .
The combinatorics of positively folded alcove paths encode the change of basis from

the standard basis (Tw)w∈W of Hg to the Bernstein–Lusztig basis (Xv)v∈W . This is
seen by taking u = e in the following proposition (see [21, Theorem 3.3], or [13,
Proposition 3.2]).

Proposition 2.2 (cf. [21, Theorem 3.3]). Let w, u∈W , and let ~w be any reduced ex-
pression for w. Then

XuTw =
∑

p∈P(~w,u)

Q(p)Xend(p) where Q(p) =
2∏
j=0

(qj − q−1
j )fj(p).

Let
X1 = Xα∨1 and X2 = Xα∨2 /2.

We have X1 = T−1
2 T0T1T

−1
0 T2T1 and X2 = T−1

1 T0T1T2. Note that Xω1 = X1X2 and
Xω2 = X1X

2
2 .

The Bernstein relations are (for λ ∈ Q)

T−1
1 Xλ −Xs1λT−1

1 = Q1
Xλ −Xs1λ

X1 − 1
and

T−1
2 Xλ −Xs2λT−1

2 = (Q2 + Q0X2)X
λ −Xs2λ

X2
2 − 1 .
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Note that Xλ −Xsiλ = Xsiλ(X〈λ,αi〉α∨i − 1) is indeed divisible by Xα∨i − 1 because
〈λ, αi〉 ∈ Z for all λ ∈ Q.

For later reference we record the following complete set of relations for Hg in the
Bernstein–Lusztig presentation. Let Y1 = Xω1 and Y2 = Xω2 . Then

T 2
1 = 1+(qa −q−a)T1 T 2

2 = 1+(qb−q−b)T2 T1T2T1T2 =T2T1T2T1 Y1Y2 =Y2Y1

T−1
1 Y1 =Y −1

1 Y2T1 T−1
2 Y2 =Y 2

1 Y
−1

2 T2 +Q0Y1 T−1
1 Y2 =Y2T

−1
1 T−1

2 Y1 =Y1T
−1
2

Remark 2.3. Let L : W → N>0 be the weight function with L(s1) = a, L(s2) = b,
and L(s0) = c, and let H be the associated affine Hecke algebra, as in (2). The results
of the above section of course apply equally well to H after applying the specialisation
ΘL. For example, Proposition 2.2 applies with the obvious modification

Q(p) = (qa − q−a)f1(p)(qb − q−b)f2(p)(qc − q−c)f0(p).

2.5. The extended affine Hecke algebra. If q0 = q2 (or, in the specialisation,
c = b) one can slightly enlarge the affine Hecke algebra as follows. Let

P = Zω1 + Zω2/2 = Zα∨1 /2 + Zα∨2 /2 and P+ = Z>0ω1 + Z>0ω2/2.

The Weyl group W0 acts on P , and the extended affine Weyl group is

W̃ = P oW0 ∼= W o (P/Q).

Note that P/Q ∼= Z2. Let σ ∈ W̃ be the nontrivial element of P/Q. Then σsiσ−1 =
sσ(i) for each i = 0, 1, 2, where σ(i) denotes the nontrivial diagram automorphism of
(W,S).

The length function onW is extended to W̃ by setting `(wσ) = `(w) for all w ∈ W̃ .
Thus the length 0 elements of W̃ are precisely the elements e and σ.

Under the assumption q0 = q2 we have Rg = Z[q1, q2, q−1
1 , q−1

2 ]. The extended affine
Hecke algebra is the algebra H̃g over Rg with basis {Tw | w ∈ W̃} and multiplication
(for u, v, w ∈W and s ∈ S) given by

TuTv = Tuv if `(uv) = `(u) + `(v)
TwTs = Tws + (qs − q−1

s )Tw if `(ws) = `(w)− 1.

The definition of the Bernstein–Lusztig basis {Xv | v ∈ W̃} can be extended to H̃g by
considering W̃ as 2 sheets of W , and an alcove path of type ~w = si1 · · · sikσ consists
of an ordinary alcove path of type si1 · · · sik followed by a jump to the σ-sheet of W̃
(see [21]). The centre of H̃g is Rg[P ]W0 .

The Hecke algebra Hg (with q0 = q2) is naturally a subalgebra of H̃g. Indeed H̃g
is generated by T0, T1, T2, and the additional element

Tσ = Xω2/2T−1
2 T−1

1 T−1
2 .

2.6. Schur functions. The following Schur functions will play a role later. Let
λ ∈ Q. The Schur function sλ(X) ∈ Z[Q]W0 is the polynomial

sλ(X) =
∑
w∈W0

w

(
Xλ∏

α∈Φ+
0

(1−X−α∨)

)
.(6)

Let λ ∈ P . The dual Schur function s′λ(X) ∈ Z[P ]W0 is the polynomial

s′λ(X) =
∑
w∈W0

w

(
Xλ∏

α∈Φ+
1

(1−X−α∨)

)
.(7)
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In particular we have
sω1(X) = Xω1 +X−ω1 +Xω1−ω2 +X−ω1+ω2

sω2(X) = 1 +Xω2 +X−ω2 +X2ω1−ω2 +X−2ω1+ω2

s′ω1
(X) = 1 +Xω1 +X−ω1 +Xω1−ω2 +X−ω1+ω2

s′ω2/2(X) = Xω2/2 +X−ω2/2 +Xω1−ω2/2 +X−ω1+ω2/2.

3. Kazhdan–Lusztig cells in type C̃2

Let W be a Coxeter group of type C̃2 with weight diagram

i i ic a b

s0 s1 s2
That is, L(s1) = a, L(s2) = b, and L(s0) = c. In this section we recall the decompo-
sition of W = C̃2 into cells for all choices of parameters (a, b, c) ∈ N3. We then study
the properties of this partition and introduce various notions such as the generating
set of a two-sided cell, cell factorisations and the ã-function. The ã-function is defined
using the values of Lusztig a-function in finite parabolic subgroups of W and as a
consequence of the main result of this paper, it turns out that a = ã, and thus the
table listed in Section 3.5 in fact records the values of Lusztig’s a-function (however,
of course, this cannot be assumed at this stage).

3.1. Partition of C̃2 into cells. A positive weight function L on W is completly
determined by its values L(s1) = a, L(s2) = b and L(s0) = c on the set S of generators.
If the triplet (a, b, c) ∈ N>0 admits a common divisor d then the algebra H defined
with respect to (a, b, c) is easily seen to be isomorphic to the one defined with respect
to (a/d, b/d, c/d). Therefore the Hecke algebra H defined with respect to (a, b, c) only
depends on the ratios b/a and c/a, and hence also the decomposition into cells depends
only on these ratios. Thus we set

r1 = b

a
and r2 = c

a

In this paper, many notions will depend on the choice of parameters and, as far
as Kazhdan–Lusztig theory is concerned, it is equivalent to fix a weight function L, a
triplet (a, b, c) ∈ N3 or a pair (r1, r2) ∈ Q2. Given D ⊂ Q2

>0, we write
• (a, b, c) ∈ D for (a, b, c) ∈ N3 to mean (b/a, c/a) ∈ D;
• L ∈ D for a weight function L to mean (L(s2)/L(s1), L(s0)/L(s1)) ∈ D.

In a similar spirit, when considering a statistic F that depends on the choice of
parameters (for instance the partition into cells), we will write F (L), or F (a, b, c) or
F (r1, r2) to mean that we consider the statistic F with respect to the weight function
L, the triplet (a, b, c) ∈ N3 or the pair (r1, r2) ∈ Q2

>0. Furthermore, if F (r1, r2) =
F (r′1, r′2) whenever (r1, r2) and (r′1, r′2) belong to a subset D ⊂ Q2

>0, we will also
write F (D) to denote the common value of F on D.

The partition of W into cells has been obtained by the first author in [12]. Even
though there are an infinite number of positive weight functions on W , there are only
a finite number of partitions of W into cells (as conjectured by Bonnafé in [1]). In
order to describe these partitions we first need to define a set R of subsets of Q2

>0 on
which the partition into cells will be constant.

We define open subsets A1, . . . , A10 of Q2
>0 in Figure 4. Write Ai′ = A′i for the

region Ai reflected in the line r1 = r2 (we call this the “dual” region). For “adjacent”
regions Ai and Aj (respectively Ai and A′i), let Ai,j (respectively Ai,i′) be the line
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segment Ai ∩Aj (respectively Ai ∩Ai′) with the endpoints removed. This partitions
the set {(x1, x2) ∈ Q2

>0 | x2 6 x1} into 30 regions:
• A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 (open subsets of Q2),
• A1,1′ , A2,2′ , A5,5′ , A1,2, A2,3, A3,4, A4,5, A3,6, A6,7, A4,7, A7,8, A5,8, A7,9,
A9,10, A8,10 (open intervals),

• P1 = (1/2, 1/2), P2 = (1, 1), P3 = (3/2, 1/2), P4 = (2, 1), and P5 = (3, 1)
(points).

The set Q2
>0 is so partitioned into 55 regions (20 open subsets, 27 open intervals, and

8 points). Let R be the set of all such regions and let R◦ = {Ai, A′i | 1 6 i 6 10}.

3 Kazhdan-Lusztig cells in type C̃2 11

3.1 Partition of C̃2 into cells
A positive weight function L on W is completly determined by its values L(s1) = a, L(s2) = b and L(s0) = c on the
set S of generators. If the triplet (a, b, c) ∈ N>0 admits a common divisor d then the algebra H defined with respect to
(a, b, c) is easily seen to be isomorphic to the one defined with respect to (a/d, b/d, c/d). Therefore the Hecke algebra
H defined with respect to (a, b, c) only depends on the ratios b/a and c/a, and hence also the decomposition into cells
depends only on these ratios. Thus we set

r1 =
b

a
and r2 =

c

a

In this paper, many notions will depend on the choice of parameters and, as far as Kazhdan-Lusztig theory is concerned,
it is equivalent to fix a weight function L, a triplet (a, b, c) ∈ N3 or a pair (r1, r2) ∈ Q2. Given D ⊂ Q2

>0, we write

• (a, b, c) ∈ D for (a, b, c) ∈ N3 to mean (b/a, c/a) ∈ D;

• L ∈ D for a weight function L to mean (L(s2)/L(s1), L(s0)/L(s1)) ∈ D.

In a similar spirit, when considering a statistic F that depends on the choice of parameters (for instance the partition
into cells), we will write F (L), or F (a, b, c) or F (r1, r2) to mean that we consider the statistic F with respect to the
weight function L, the triplet (a, b, c) ∈ N3 or the pair (r1, r2) ∈ Q2

>0. Furthermore, if F (r1, r2) = F (r′1, r
′
2) whenever

(r1, r2) and (r′1, r
′
2) belong to a subset D ⊂ Q2

>0, we will also write F (D) to denote the common value of F on D.

The partition of W into cells has been obtained by the first author in [11]. Even though there are an infinite number of
positive weight functions on W , there are only a finite number of partitions of W into cells (as conjectured by Bonnafé
in [1]). In order to describe these partitions we first need to define a set R of subsets of Q2

>0 on which the partition into
cells will be constant.

We define open subsets A1, . . . , A10 of Q2
>0 in Figure 3. Write Ai′ = A′

i for the region Ai reflected in the line r1 = r2 (we
call this the “dual” region). For “adjacent” regions Ai and Aj (respectively Ai and A′

i), let Ai,j (respectively Ai,i′) be the
line segment Ai∩Aj (respectively Ai∩Ai′) with the endpoints removed. This partitions the set {(x1, x2) ∈ Q2

>0 | x2 ≤ x1}
into 30 regions:

• A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 (open subsets of Q2),

• A1,1′ , A2,2′ , A5,5′ , A1,2, A2,3, A3,4, A4,5, A3,6, A6,7, A4,7, A7,8, A5,8, A7,9, A9,10, A8,10 (open intervals),

• P1 = (1/2, 1/2), P2 = (1, 1), P3 = (3/2, 1/2), P4 = (2, 1), and P5 = (3, 1) (points).

The set Q2
>0 is so partitioned into 55 regions (20 open subsets, 27 open intervals, and 8 points). Let R be the set of all

such regions and let R◦ = {Ai, A
′
i | 1 ≤ i ≤ 10}.

A1

A2 A3

A4

A5

A6

A7

A8

A9

A10

r1

r2

1

1

2

2

Fig. 3: Regions of R2

For any region D ∈ R, the decomposition of W into right cells and two-sided cells is the same for all choices of
parameters (r1, r2) ∈ D. In Figure 4, we represent Λ(D) for all D ∈ R such that D ⊂ {(x1, x2) ∈ Q2

>0 | x2 ≤ x1}. The
alcoves with the same colour lie in the same two-sided cell and the right cells in a given two-sided cell are the connected
components. The Hasse diagram on the right of each partition describes the two-sided order on the two-sided cells, going
from the highest cell at the top to the lowest one at the bottom. Finally to obtain the decomposition and the two-sided
order for a region included in {(x1, x2) ∈ Q2

>0 | x2 > x1} one simply applies the diagram automorphism σ to the partition
for the dual region. Hence the partition of C̃2 into two-sided cells and right cells is known for all choices of parameters.

Figure 4. Regions of R2

For any region D ∈ R, the decomposition of W into right cells and two-sided cells
is the same for all choices of parameters (r1, r2) ∈ D. In Figure 5, we represent Λ(D)
for all D ∈ R such that D ⊂ {(x1, x2) ∈ Q2

>0 | x2 6 x1}. The alcoves with the same
colour lie in the same two-sided cell and the right cells in a given two-sided cell are the
connected components. The Hasse diagram on the right of each partition describes
the two-sided order on the two-sided cells, going from the highest cell at the top to
the lowest one at the bottom. Finally to obtain the decomposition and the two-sided
order for a region included in {(x1, x2) ∈ Q2

>0 | x2 > x1} one simply applies the
diagram automorphism σ to the partition for the dual region. Hence the partition of
C̃2 into two-sided cells and right cells is known for all choices of parameters.

Corollary 3.1. Conjecture P14 holds.

Proof. One directly checks that each two-sided cell is invariant under inversion. �

3.2. Semicontinuity conjecture. The parameters (r1, r2) ∈ Q2
>0 are called

generic if there exists an open subset O of R2 that contains (r1, r2) and such that for
all (r′1, r′2) ∈ O ∩ Q2

>0 we have Λ(r1, r2) = Λ(r′1, r′2). According to Figure 4, we see
that the generic parameters for W are exactly those that lie in some Ai or A′i. For
D ∈ R we set RD := {A ∈ R◦ | D ⊆ A}. For example,

RP2 = {A2, A3, A4, A5, A2′ , A3′ , A4′ , A5′}.

In [1], Bonnafé has conjectured that the partition of an arbitrary Coxeter group
into cells satisfies certain “semicontinuity properties”. The basic idea of his conjecture
is that the partition for all parameters can be determined from the knowledge of the
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A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A1,1′ A2,2′ A5,5′ A1,2 A2,3

A3,4 A4,5 A3,6 A6,7 A4,7

A7,8 A5,8 A7,9 A9,10 A8,10

P1: (q2, q, q) P2: (q, q, q) P3: (q2, q3, q) P4: (q, q2, q) P5: (q, q3, q)

= Γ0

= Γ1

= Γ2

= Γ3

= Γ4

= Γ5

= Γ6

= Γ7

= Γ8

= Γ9

= Γ10

= Γ11

= Γ12

= Γ13

Fig. 4: Decomposition of C̃2 into cells for r2 ≤ r1

Corollary 3.1. Conjecture P14 holds.

Proof. One directly checks that each two-sided cell is invariant under inversion.

3.2 Semicontinuity conjecture
The parameters (r1, r2) ∈ Q2

>0 are called generic if there exists an open subset O of R2 that contains (r1, r2) and such
that for all (r′1, r′2) ∈ O ∩ Q2

>0 we have Λ(r1, r2) = Λ(r′1, r
′
2). According to Figure 4, we see that the generic parameters

for W are exactly those that lie in some Ai or A′
i. For D ∈ R we set RD := {A ∈ R◦ | D ⊆ A}. For example,

RP2 = {A2, A3, A4, A5, A2′ , A3′ , A4′ , A5′}.

In [1], Bonnafé has conjectured that the partition of an arbitrary Coxeter group into cells satisfies certain “semicontinuity
properties”. The basic idea of his conjecture is that the partition for all parameters can be determined from the knowledge
of the partition for generic parameters. More precisely the partition Λ(D) for D ∈ R is the finest partition of W that

Figure 5. Decomposition of C̃2 into cells for r2 6 r1

partition for generic parameters. More precisely the partition Λ(D) for D ∈ R is the
finest partition of W that satisfies the following property:

For all A ∈ RD, and for all Γ ∈ Λ(A), there exists a cell Γ′ ∈ Λ(D) such that Γ ⊆ Γ′.

In the case of C̃2 the conjecture is known to hold (by direct inspection using
Figure 5). Thus it is (retrospectively) sufficient to know Λ(A) for all A ∈ R◦ to
determine Λ(D) for all D ∈ R (in fact, using the diagram automorphism σ it is enough
to know Λ(Ai) for all 1 6 i 6 10). The most striking example of the semicontinuity
phenomenon is when D = P2 (the equal parameter case) where one has to look at the
partition of W into cells for parameters in the regions A2, A2′ , A3, A3′ , A4, A4′ , A5
and A5′ to determine the partition into cells. As a result, all finite cells get absorbed
into the infinite cells.
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3.3. Generating sets of two-sided cell. Recall the definition of � in Exam-
ple 1.4. Given a subset C of W we denote by C+ the set that consists of all ele-
ments w ∈W that satisfy u � w for some u ∈ C. By inspection of Figure 5 we see that
for all D ∈ R and all Γ ∈ Λ(D) there exists a minimal subset JΓ(D) of W such that

Γ = JΓ(D)+ −
⋃

Γ′<LRΓ
Γ′.

We call this set the generating set of Γ. We have for all D ∈ R and all Γ ∈ Λ(D)
(1) JΓ(D) ⊆

⋃
I(SWI ;

(2) the elements of JΓ are involutions;
(3) if D ∈ R◦ then |JΓ(D)| = 1;
(4) we have

JΓ(D) ⊆
⋃

A∈RD

⋃
Γ′∈Λ(A),Γ′∩Γ6=∅

JΓ′(A)

where the inclusion can be strict (see the example D = P2 below);
(5) the set {Cw | w ∈ JΓ(D)} generates the module H6LRΓ;
(6) Γ1 6LR Γ2 if and only if JΓ2(D)+ ∩ Γ1 6= ∅.

Of course, it is also possible to have |JΓ(D)| = 1 for some D /∈ R◦. When |JΓ(D)| = 1,
we will denote by wΓ the element of this set (or simply wi if Γ = Γi). In the table
below, we give the elements wi for all Aj ∈ R and Γi ∈ Λ(Aj).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Γ0 1212 1212 1212 1212 1212 1212 1212 1212 1212 1212
Γ1 1 20 20 20 20 212 212 212 212 212
Γ2 101 101 101 2 2 101 2 2 2 2
Γ3 1010 1010 1010 1010 1010 1010 1010 1010 20 20
Γ4 e e e e e e e e e e

Γ5 0 0 0 0 010 0 0 010 0 010
Γ6 2 2 212 212 212 − − − − −
Γ7 − − − 101 − 101 1 101 1
Γ8 − − − − − − − − 1010 1010
Γ9 20 − − − − − − − − −
Γ10 − 1 2 − − 2 − − − −
Γ11 − − − − − 20 20 20 − −
Γ12 121 121 1 1 0 1 1 0 1 0

Table 1. The set JΓi(Aj) = {wi} for generic parameters

The set JΓ(D) when Γ ∈ Λ(D) and D /∈ R◦ can be obtained by first computing the
right-hand side J of (4) and then taking the minimal subset Jmin such that J ⊂ J+

min.
For instance, if D = P2 and Γ = Γ2 then the right-hand side of (4) is

J = {s0, s1, s2, s1s2s1, s2s1s2, s1s0s1, s0s1s0}

and thus JΓ2(P2) = {s0, s1, s2} since s1 ≺ s1s2s1, s2s1s2, s0s1s0, s0s1s0.
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3.4. Cell factorisations. When the set JΓ(D) contains a unique element then
the two-sided cell Γ admits a cell factorisation. We refer to [13, §4] for a detailed
description of this concept in type G2. To illustrate cell factorisation here, consider
the lowest two-sided cell Γ0 in the regime r2 < r1. In this case we see that JΓ0(r1, r2) =
{w0} where w0 = s1s2s1s2. By direct inspection of Figure 5 we have the following
representation of elements of Γ0:

• Each right cell Υ ⊆ Γ0 contains a unique element wΥ of minimal length.
• The element w0 is a suffix of each wΥ. Let uΥ = w0w−1

Υ and B0 = {uΥ | Υ ⊆
Γ0}.

• We have
Γ0 = {u−1w0tλv | u, v ∈ B0, λ ∈ Q+}.

Moreover, each w ∈ Γ0 has a unique expression in the form w = u−1w0tλv with
u, v ∈ B0 and λ ∈ Q+, and this expression is reduced (that is, `(w) = `(u−1) +
`(w0) + `(tλ) + `(v)). This expression is called the cell factorisation of w ∈ Γ0.

In the infinite cells Γ = Γi with i = 1, 2, 3 cell factorisation (if it exists) takes a
similar form:

• Each right cell Υ ⊆ Γ contains a unique element wΥ of minimal length.
• The element wΓ is a suffix of each wΥ and we set uΥ = wΓw−1

Υ and BΓ =
{uΥ | Υ ⊆ Γ}.

• There exists tΓ ∈W such that

Γ = {u−1wΓtnΓv | u, v ∈ BΓ, n ∈ N},

and moreover each w ∈ Γ has a unique expression in this form, and this
expression is reduced.

The specific cell factorisations that we require will be introduced at the appropriate
time. Here we give one example for illustration. Consider Γ = Γ1(r1, r2) with r2 <
r1 − 1. Then the set JΓ(r1, r2) contains a unique element wΓ = s2s1s2. Therefore this
cell admits a cell factorisation, and we have

tΓ = 012, and BΓ = {e, 0, 01, 010}.

We represent this factorisation in Figure 6. The set of grey alcoves together with the
black alcove A0 on the left hand side is B−1

Γ , and the small diagram on the right hand
side illustrates BΓ. The connected sets of dark blue (respectively light blue) alcoves
are the sets of the form {u−1wΓt

n
Γv | u, v ∈ BΓ} where n is odd (respectively even).

There are also cases where there is a kind of “generalised” cell factorisation that
involves the extended affine Weyl group. Specifically, these cases are Γ0 with r2 = r1,
the cell Γ2 in the case r2 = r1 and r2 < 1, and the cell Γ2 in the case r2 = r1 and
r2 > 1. We will discuss these factorisations at the appropriate time.

All finite cells except for Γ13 admit a cell factorisation. In these cases tΓ = e, and
each element of the cell has a unique expression in the form u−1wΓv with u, v ∈ BΓ and
wΓ ∈ JΓ. For example, if Γ = Γ12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2 then JΓ = {s1s2s1}
and BΓ = {e, s0}, and if Γ = Γ11 with (r1, r2) ∈ A6 ∪ A7 ∪ A8 ∪ A6,7 ∪ A7,8 then
JΓ = {s0s2} and BΓ = {e, s1, s1s0}.

Suppose that Γ is a cell admitting a cell factorisation. If w ∈ Γ is written as
w = u−1wΓtnΓv with u, v ∈ BΓ and n ∈ N we write

uw = u, vw = v, and τw = n

(and in the case of Γ0 we have w = u−1wΓtλv and τw = λ). Let x, y ∈ Γ. With these
notations, we have for all generic parameters:

x ∼L y ⇐⇒ vx = vy and x ∼R y ⇐⇒ ux = uy.
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• We have
Γ0 = {u−1w0tλv | u, v ∈ B0, λ ∈ Q+}.

Moreover, each w ∈ Γ0 has a unique expression in the form w = u−1w0tλv with u, v ∈ B0 and λ ∈ Q+, and this expression
is reduced (that is, ℓ(w) = ℓ(u−1) + ℓ(w0) + ℓ(tλ) + ℓ(v)). This expression is called the cell factorisation of w ∈ Γ0.

In the infinite cells Γ = Γi with i = 1, 2, 3 cell factorisation (if it exists) takes a similar form:

• Each right cell Υ ⊆ Γ contains a unique element wΥ of minimal length.
• The element wΓ is a suffix of each wΥ and we set uΥ = wΓw

−1
Υ and BΓ = {uΥ | Υ ⊆ Γ}.

• There exists tΓ ∈ W such that
Γ = {u−1wΓt

n
Γv | u, v ∈ BΓ, n ∈ N},

and moreover each w ∈ Γ has a unique expression in this form, and this expression is reduced.

The specific cell factorisations that we require will be introduced at the appropriate time. Here we give one example for
illustration. Consider Γ = Γ1(r1, r2) with r2 < r1 − 1. Then the set JΓ(r1, r2) contains a unique element wΓ = s2s1s2.
Therefore this cell admits a cell factorisation, and we have

tΓ = 012, and BΓ = {e, 0, 01, 010}.

We represent this factorisation in Figure 5. The set of grey alcoves together with the black alcove A0 on the left hand
side is B−1

Γ , and the small diagram on the right hand side illustrates BΓ. The connected sets of dark blue (respectively
light blue) alcoves are the sets of the form {u−1wΓt

n
Γv | u, v ∈ BΓ} where n is odd (respectively even).

Fig. 5: Cell factorisation of Γ1 in the case r2 < r1 − 1.

There are also cases where there is a kind of “generalised” cell factorisation that involves the extended affine Weyl group.
Specifically, these cases are Γ0 with r2 = r1, the cell Γ2 in the case r2 = r1 and r2 < 1, and the cell Γ2 in the case r2 = r1
and r2 > 1. We will discuss these factorisations at the appropriate time.

All finite cells except for Γ13 admit a cell factorisation. In these cases tΓ = e, and each element of the cell has a unique
expression in the form u−1wΓv with u, v ∈ BΓ and wΓ ∈ JΓ. For example, if Γ = Γ12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2

then JΓ = {s1s2s1} and BΓ = {e, s0}, and if Γ = Γ11 with (r1, r2) ∈ A6 ∪ A7 ∪ A8 ∪ A6,7 ∪ A7,8 then JΓ = {s0s2} and
BΓ = {e, s1, s1s0}.
Suppose that Γ is a cell admitting a cell factorisation. If w ∈ Γ is written as w = u−1wΓt

n
Γv with u, v ∈ BΓ and n ∈ N

we write
uw = u, vw = v, and τw = n

(and in the case of Γ0 we have w = u−1wΓtλv and τw = λ). Let x, y ∈ Γ. With these notations, we have for all generic
parameters:

x ∼L y ⇐⇒ vx = vy and x ∼R y ⇐⇒ ux = uy.

3.5 The ã-function
A useful auxiliary notion is the ã-function, defined as follows. The values of the a-function are explicitely known for
finite dihedral groups (see, for example, [12, Table 1]) and Lusztig’s conjectures have been verified in this case (see [8,
Proposition 5.1]). Therefore, for all choices of parameters, we can define a-functions ak : WIk → N (k = 0, 1, 2) where
Ik := S\{k}, however we emphasise that it is not clear that ak is the restriction of a to WIk ; this is the content of P12.
It turns out, by direct observation, that if u, v ∈ Γ lie in a common two-sided cell, with u ∈ WIj and v ∈ WIk for
j, k ∈ {0, 1, 2}, then aj(u) = ak(v). These observations, together with the fact that every two-sided cell intersects a finite
parabolic subgroup, allows us to define a function ã :W → N (for each choice of parameters) by

ã(w) = ak(u) whenever w ∈ Γ ∈ Λ(r1, r2) and u ∈ Γ ∩WIk .

By definition ã is constant on each two-sided cell Γ, and therefore we write ã(Γ) for the value of ã on any element of Γ,
thereby considering ã as a function ã : Λ(r1, r2) → N. We remark that ã is a deacreasing function on the set Λ. Indeed
it is not hard to check that ã(Γ) ≥ ã(Γ′) whenever Γ ≤LR Γ′. Finally, the values of ã are “generically invariant” on the
regions D ∈ R as shown in the following proposition.

Figure 6. Cell factorisation of Γ1 in the case r2 < r1 − 1.

3.5. The ã-function. A useful auxiliary notion is the ã-function, defined as follows.
The values of the a-function are explicitely known for finite dihedral groups (see, for
example, [13, Table 1]) and Lusztig’s conjectures have been verified in this case (see [8,
Proposition 5.1]). Therefore, for all choices of parameters, we can define a-functions
ak : WIk → N (k = 0, 1, 2) where Ik := S \ {k}, however we emphasise that it is not
clear that ak is the restriction of a to WIk ; this is the content of P12. It turns out, by
direct observation, that if u, v ∈ Γ lie in a common two-sided cell, with u ∈ WIj and
v ∈ WIk for j, k ∈ {0, 1, 2}, then aj(u) = ak(v). These observations, together with
the fact that every two-sided cell intersects a finite parabolic subgroup, allows us to
define a function ã : W → N (for each choice of parameters) by

ã(w) = ak(u) whenever w ∈ Γ ∈ Λ(r1, r2) and u ∈ Γ ∩WIk .

By definition ã is constant on each two-sided cell Γ, and therefore we write ã(Γ) for the
value of ã on any element of Γ, thereby considering ã as a function ã : Λ(r1, r2)→ N.
We remark that ã is a deacreasing function on the set Λ. Indeed it is not hard to
check that ã(Γ) > ã(Γ′) whenever Γ 6LR Γ′. Finally, the values of ã are “generically
invariant” on the regions D ∈ R as shown in the following proposition.

Proposition 3.2. Let A ∈ R◦ and Γ ∈ Λ(A). There exists a unique triple
(x1, x2, x3) ∈ Z3 such that

ã(Γ) = x1a+ x2b+ x3c for all (a, b, c) ∈ A.
Furthermore, if D ∈ R is such that D ⊆ A, then for all Γ′ ∈ Λ(D) such that Γ ⊆ Γ′
we have

ã(Γ′) = x1a+ x2b+ x3c for all (a, b, c) ∈ D.

Proof. This can deduced from the values of the a-function in dihedral groups: see, for
example, [13, Table 1]. �

Since the values of ã-function will play a crucial role in the reminder of the paper,
we record these values in the table below.

Table 2 only lists the values of ã(Γk) for (a, b, c) such that (r1, r2) ∈ Ai for some
1 6 i 6 10. The remaining cases can also be computed using Proposition 3.2. However
we now explain another method to deduce these values (essentially due to semiconti-
nuity).
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Γ0 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b 2a+2b
Γ1 a b+c b+c b+c b+c −a+2b −a+2b −a+2b −a+2b −a+2b
Γ2 2a−c 2a−c 2a−c b b 2a−c b b b b

Γ3 2a+2c 2a+2c 2a+2c 2a+2c 2a+2c 2a+2c 2a+2c 2a+2c b+c b+c

Γ4 0 0 0 0 0 0 0 0 0 0
Γ5 c c c c −a+2c c c −a+2c c −a+2c
Γ6 b b −a+2b −a+2b −a+2b − − − − −
Γ7 − − − 2a−c a − 2a−c a 2a−c a

Γ8 − − − − − − − − 2a+2c 2a+2c
Γ9 b+c − − − − − − − − −
Γ10 − a b − − b − − − −
Γ11 − − − − − b+c b+c b+c − −
Γ12 2a−b 2a−b a a c a a c a c

Table 2. The values of ã(Γi) for (b/a, c/a) ∈ Aj

• Firstly, if r2 > r1 then ã(Γk(a, b, c)) = ã(Γk(a, c, b)).
• Secondly, suppose that (r1, r2) ∈ D and 1 6 k 6 13. Let A ∈ RD and let

Γ ∈ Λ(A) be such that Γ ⊆ Γk. Then

ã(Γk(a, b, c)) = lim
(a′,b′,c′)→(a,b,c)
(b′/a′,c′/a′)∈A

ã(Γ(a′, b′, c′))

Thus, for example, to compute ã(Γ2) in the equal parameter case (r1, r2) = (1, 1) we
choose any A ∈ RP2 (for example, A = A2) and any cell Γ ∈ Λ(A) with Γ ⊆ Γ2(1, 1)
(for example, Γ ∈ {Γ2(A2),Γ5(A2),Γ6(A2),Γ10(A2),Γ12(A2)}) and take the limit as
(a, b, c)→ (a, a, a) in the associated ã(Γ) value from Table 2. Thus we conclude that
ã(Γ2(1, 1)) = a.

4. Representations of H
Let (W,S) be the Coxeter group of type C̃2 and let L : W → N be a positive weight
function. In this section we construct representations of H that will ultimately be used
to produce a balanced system of cell representations for each parameter regime. In
fact it is convenient to define representations of the generic Hecke algebra Hg of type
C̃2, from which representations of H are obtained by the specialisation ΘL. In what
follows we will use the same notations (eg, πi) for the representations of Hg and H.

4.1. The diagram automorphism. Let σ be the nontrivial diagram automorphism
of (W,S). Then σ induces a ring automorphism of Rg by swapping q0 and q2, and it
is easy to check that the formula( ∑

w∈W
awTw

)σ
=
∑
w∈W

aσwTwσ for aw ∈ Rg

defines an involutive automorphism of Hg.
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Suppose that (π,M) be a right Hg-module over a ring S = Rg[ζ±1
1 , . . . , ζ±1

n ], where
ζ1, . . . , ζn are invertible pairwise commuting indeterminates. The diagram automor-
phism σ of (W,S) gives rise to a “σ-dual” representation (πσ,M) of Hg by

πσ(h) = π(hσ)σ,

where the outer σ is the homomorphism of EndS(M) induced by σ.
This construction will allow us to concentrate on the case c 6 b for much of what

follows, with the c > b case dealt with by replacing each representation with its σ-dual.

4.2. The principal series representation. Let ζ1 and ζ2 be commuting in-
determinates, and let M0 be the 1-dimensional right Rg[Q] module over the ring
Rg[ζ1, ζ2, ζ−1

1 , ζ−1
2 ] with generator ξ0 and Rg[Q]-action given by linearly extending

ξ0 ·Xµ = ξ0 ζ
µ where ζµ = ζm1 ζ

n
2 if µ = mα∨1 + nα∨2 /2.

Let (π0,M0) be the induced right Hg-module. That is,

M0 = IndHgRg[Q](M0) = M0 ⊗Rg [Q] Hg.

We sometimes write π0 = πζ0 when the dependence on ζ = (ζ1, ζ2) requires emphasis.
Note that {ξ0⊗Xu | u ∈W0} is a basis ofM0. More generally, if B is a fundamental

domain for the action of Q on W then it is clear that

B = {ξ0 ⊗Xu | u ∈ B}

is a basis of M0. We will often write π0(Tw; B) in place of π0(Tw;B), even though
strictly speaking B is not a basis ofM0 (cf. notation in Section 1.5).

We have the following important alcove path interpretation of the matrix coeffi-
cients [π0(Tw; B)]u,v, as in [13].

Theorem 4.1. Let B be a fundamental domain for the action of Q on W . For u, v ∈ B
we have

[π0(Tw; B)]u,v =
∑

{p∈P(~w,u)|θB(p)=v}

Q(p)ζwtB(p), where Q(p) =
2∏
j=0

(qj − q−1
j )fj(p)

and where ~w is any reduced expression for w.

For example, the matrices for π0(T0) with respect to the “standard basis” B = W0
and Lusztig’s “box basis” B = B0 are

π0(T0;W0) =



0 0 0 0 0 ζ1ζ2 0 0
0 0 0 0 ζ2 0 0 0
0 0 0 0 0 0 0 ζ1ζ2
0 0 0 0 0 0 ζ2 0
0 ζ−1

2 0 0 Q0 0 0 0
ζ−1
1 ζ−1

2 0 0 0 0 Q0 0 0
0 0 0 ζ−1

2 0 0 Q0 0
0 0 ζ−1

1 ζ−1
2 0 0 0 0 Q0


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and

π0(T0; B0) =



0 1 0 0 0 0 0 0
1 Q0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 Q0 0 0 0
0 0 0 1 0 Q0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 Q0


,

where we order

W0 = (e, 1, 2, 12, 21, 121, 212, 1212) and B0 = (e, 0, 01, 012, 010, 0102, 01021, 010210).

Remark 4.2. Suppose that q0 = q2. The representation π0 can be extended to the
extended affine Hecke algebra H̃g as follows. Introduce an indeterminate ζ1/2

1 with
(ζ1/2

1 )2 = ζ1. Let M0 be the 1-dimensional right Rg[P ] module with ξ0 ·Xµ = ξ0 ζ
µ,

where if µ = mα∨1 /2+nα∨2 /2 then ζµ = (ζ1/2
1 )mζn2 . Let (π0,M0) be the induced right

H̃g module. Then the restriction of π0 to Hg agrees with the representation defined
above.

4.3. Induced representations. Let Hi (i = 1, 2) be the subalgebra of Hg gen-
erated by Ti, X1 and X2. Let ζ be an invertible indeterminate. Let M1 be the 1-
dimensional (right) H1-module over the ring Rg[ζ, ζ−1] generated by ξ1 with

ξ1 · T1 = ξ1(−q−1
1 ) ξ1 ·X1 = ξ1(q−2

1 ) ξ1 ·X2 = ξ1(−q1ζ),

and for j ∈ {2, 3} let Mj be the 1-dimensional (right) H2-module over the ring
Rg[ζ, ζ−1] generated by ξj with

ξ2 · T2 = ξ2(−q−1
2 ) ξ2 ·X1 = ξ2(q0q2ζ) ξ2 ·X2 = ξ2(q−1

0 q−1
2 )

ξ3 · T2 = ξ3(−q−1
2 ) ξ3 ·X1 = ξ3(−q−1

0 q2ζ) ξ3 ·X2 = ξ3(−q0q−1
2 ).

One uses the formulae in Section 2.4 to check that the above formulae do indeed
define representations of H1 and H2.

Let (πj ,Mj) with j = 1, 2, 3 be the representationsM1 = IndHgH1
(M1) andMj =

IndHgH2
(Mj) for j = 2, 3. Then eachMj is a 4-dimensional (right) Hg-module. Indeed

{ξi ⊗Xu | u ∈ W i
0} is a basis ofMi (where we set W 3

0 = W 2
0 ). More generally, if B

is a fundamental domain for the action of τi on Ui (see Section 2.3) then

B = {ξi ⊗Xu | u ∈ B}

is a basis ofMi.
If p is an i-folded alcove path we define

Qi(p) =


(−q−1

1 )g1(p)∏2
j=0(qj − q−1

j )fj(p) if i = 1
(−q−1

2 )g2(p)(−q−1
0 )g0(p)∏2

j=0(qj − q−1
j )fj(p) if i = 2

(−q−1
2 )g2(p)qg0(p)

0
∏2
j=0(qj − q−1

j )fj(p) if i = 3.
(8)

We note that the action of τi on the set of i-folded alcove paths preserves Qi.
We have the following analogue of Theorem 4.1, giving a combinatorial formula for

the matrix entries of πi(Tw; B) (i = 1, 2, 3) in terms of i-folded alcove paths.
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Theorem 4.3. Let w ∈ W , i ∈ {1, 2, 3}, and let B be a fundamental domain for the
action of τi on Ui. Then

[πi(Tw; B)]u,v =
∑

{p∈Pi(~w,u)|θiB(p)=v}

Qi(p)ζwtiB(p),

where ~w is any choice of reduced expression for w.

Proof. The proof is by induction, exactly as in [13, Theorem 7.2, Corollary 7.3]. �

For example, using the “standard basis” B = W i
0 we have

π1(T0;W 1
0 ) =


0 0 ζ 0
0 0 0 ζ
ζ−1 0 Q0 0
0 ζ−1 0 Q0

 π2(T0;W 2
0 ) =


0 0 0 ζ
0 − 1

q0
0 0

0 0 − 1
q0

0
ζ−1 0 0 Q0



π1(T1;W 1
0 ) =


− 1

q2
0 0 0

0 Q1 1 0
0 1 0 0
0 0 0 − 1

q2

 π2(T1;W 2
0 ) =


Q1 1 0 0
1 0 0 0
0 0 Q1 1
0 0 1 0



π1(T2;W 1
0 ) =


Q2 1 0 0
1 0 0 0
0 0 Q2 1
0 0 1 0

 π2(T2;W 2
0 ) =


− 1

q2
0 0 0

0 Q2 1 0
0 1 0 0
0 0 0 − 1

q2



π3(T0;W 2
0 ) =


0 0 0 ζ
0 q0 0 0
0 0 q0 0
ζ−1 0 0 Q0



π3(T1;W 2
0 ) =


Q1 1 0 0
1 0 0 0
0 0 Q1 1
0 0 1 0



π3(T2;W 2
0 ) =


− 1

q2
0 0 0

0 Q2 1 0
0 1 0 0
0 0 0 − 1

q2

 .

4.4. Square integrable representations. The representations in this section
will play a role in the analysis of the finite cells. It turns out that they are also
“square integrable representations” (of certain natural C-algebra specialisations of
Hg), although this fact will not be particularly important in this paper.

Define 1-dimensional representations πi, 4 6 i 6 9, of Hg by

(π4(T0), π4(T1), π4(T2)) = (−q−1
0 ,−q−1

1 ,−q−1
2 )

(π5(T0), π5(T1), π5(T2)) = (q0,−q−1
1 ,−q−1

2 )
(π6(T0), π6(T1), π6(T2)) = (−q−1

0 ,−q−1
1 , q2)

(π7(T0), π7(T1), π7(T2)) = (−q−1
0 , q1,−q−1

2 )
(π8(T0), π8(T1), π8(T2)) = (q0, q1,−q−1

2 )
(π9(T0), π9(T1), π9(T2)) = (q0,−q−1

1 , q2)
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We now define 3-dimensional representations π10 and π11. These representations were
constructed as modules HΥ for some right cell Υ, however since we now consider them
as representations of the generic Hecke algebra Hg we will simply provide explicit
matrices, from which the defining relations are easily checked. In the case π10 we
require two choices of basis for our applications, and we write the resulting matrices
as π10( · ;A) and π10( · ;B). In the case π11 we require three choices of basis, and we
write the resulting matrices as π11( · ;A), π11( · ;B), and π11( · ;C). The third case only
occurs for the specialised algebras with q0 = q1, and indeed the matrices provided for
this case below only give a representation of Hg under the specialisation q0 = q1.

π10(T0;A) =

−q−1
0 0 0

1 q0 0
0 0 −q−1

0

 π10(T0;B) =

−q−1
0 0 0

0 −q−1
0 0

0 1 q0


π10(T1;A) =

q1 µ0,1 µ1,2
0 −q−1

1 0
0 0 −q−1

1

 π10(T1;B) =

−q−1
1 0 0

1 q1 µ0,1
0 0 −q−1

1


π10(T2;A) =

−q−1
2 0 0

0 −q−1
2 0

1 0 q2

 π10(T2;B) =

q2 µ1,2 0
0 −q−1

2 0
0 0 −q−1

2



π11(T0;A) =

q0 µ0,1 0
0 −q−1

0 0
0 1 q0

 π11(T0;B) =

q0 0 0
0 −q−1

0 0
0 1 q0


π11(T1;A) =

−q−1
1 0 0

1 q1 0
0 0 −q−1

1

 π11(T1;B) =

−q−1
1 0 0

1 q1 µ0,1
0 0 −q−1

1


π11(T2;A) =

q2 µ1,2 ν
0 −q−1

2 0
0 0 −q−1

2

 π11(T2;B) =

q2 µ1,2 ν′

0 −q−1
2 0

0 0 −q−1
2



π11(T0;C) =

q1 1 0
0 −q−1

1 0
0 1 q1


π11(T1;C) =

−q−1
1 0 0

1 q1 1
0 0 −q−1

1


π11(T2;C) =

q2 µ1,2
q2
1

q2
+ q2

q2
1

0 −q−1
2 0

0 0 −q−1
2



where µi,j = qiq−1
j + q−1

i qj , and

ν = −q0q−1
1 q−1

2 + q0q1q−1
2 + q−1

0 q−1
1 q2 − q−1

0 q1q2,

ν′ = q−1
0 q1q−1

2 + q0q1q−1
2 + q−1

0 q−1
1 q2 + q0q−1

1 q2.
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Similarly we define a 2-dimensional representation π12, equipped with two choices
of basis, by

π12(T0;A) =
(
−q−1

0 0
1 q0

)
π12(T1;A) =

(
q1 µ0,1
0 −q−1

1

)
π12(T2;A) =

(
−q−1

2 0
0 −q−1

2

)
π12(T0;B) =

(
q0 µ0,1
0 −q−1

0

)
π12(T1;B) =

(
−q−1

1 0
1 q1

)
π12(T2;B) =

(
−q−1

2 0
0 −q−1

2

)
.

We will sometimes write πAi in place of πi( · ;A), and similarly for πBi and πCi .

4.5. A generic version of axiom B1. The aim of this section is to show that the
representations πi defined above “generically” satisfy B1 for the cell Γi. Our first task
is to define some specific elements in Hg that specialise to Kazhdan–Lusztig elements.
As we have seen in Example 1.1, this can easily be done when w is the longest element
of some parabolic subgroup. In this section, we extend this construction to all elements
in the sets JΓ.

Let D ∈ R and w ∈ JΓ(D) where Γ ∈ Λ(D). Then either w is the longest element
of some parabolic subgroup WI or it is of the form w = sts where L(s) > L(t) for all
weight functions L ∈ D. In the first case we set

C(w;D) =
∑
y∈WI

q−1
w qyTy

and in the second case we set
C(w;D) = Tsts+q−1

s (Tts + Tst)+
(
q−1
s q−1

t − q−1
s qt

)
Ts+q−2

s Tt+
(
q−2
s q−1

t − q−2
s qt

)
Te.

Proposition 4.4. For all D ∈ R, Γ ∈ Λ(D) and w ∈ JΓ(D) we have
Θr1,r2(C(w;D)) = Cw for all (r1, r2) ∈ D.

Here, the element Cw on the right-hand side is computed with respect to the parameters
(r1, r2).

Proof. This is a consequence of Example 2.12 in [7]. �

To D ∈ R and Γ ∈ Λ(D) we associate the set of representations RepD(Γ) of Hg
defined by

RepD(Γ) = {πi | ∃A ∈ RD such that Γi ∈ Λ(A) and Γi ∩ Γ 6= ∅}.
Note that the condition Γi ∩ Γ 6= ∅ is equivalent to Γi ⊆ Γ by the semicontinuity
conjecture.

Example 4.5.When D lies inR◦, we get RepD(Γi) = {πi}. Next assume that D = P2
(the equal parameter case) and that Γ = Γ2(D). In this case we find that RepD(Γ2) =
{π2, π5, π6, π7, π10, π12}.

We prove the following theorem by explicit computations, however we note that
the conceptual reason why such a result holds, at least for finite cells, is that the
representations we constructed above are the natural cell modules of the specialised
Hecke algebras (cf. Section 1.3).

Theorem 4.6. Let D ∈ R and let Γi,Γj ∈ Λ(D). We have
Γi 6>LR Γj =⇒ π(C(w;D)) = 0 for all π ∈ RepD(Γj) and w ∈ JΓi(D).

Proof. The representations πi, the cells, the two-sided order 6LR and the sets JΓ(D)
are known explicitly. The proof of this theorem is therefore a matter of computations.
Let us give some examples here. For all parameters inA1, . . . , A10, the generating set of
the lowest two-sided cell Γ0 is always {w0} and we have C(w0;D) =

∑
y∈W0

q−1
w qyTy.
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Next if πi is such that i 6= 0 then we can find parameters (r1, r2) ∈ Aj such that
Γ0 6>LR Γi and so we should have

πi(C(w0;D)) = 0 for all i 6= 0.
This is easily checked using the matrices of the representations πi. Next let us look at
the case A1 ∈ R◦. According to the two-sided order given in Figure 5, we should have

• πi(C(w0;A1)) = 0 for all i ∈ {3, 2, 12, 1, 9, 5, 6, 4};
• πi(C(s1s0s1s0;A1)) = 0 for all i ∈ {2, 12, 1, 9, 5, 6, 4};
• πi(C(s1s0s1;A1)) = 0 for all i ∈ {12, 1, 9, 5, 6, 4};
• πi(C(s1s2s1;A1)) = 0 for all i ∈ {1, 9, 5, 6, 4};
• πi(C(s1;A1)) = 0 for all i ∈ {9, 5, 6, 4};
• πi(C(s2s0;A1)) = 0 for all i ∈ {5, 6, 4};
• π4(C(s2;A1)) = π4(C(s0;A1)) = 0

and this can again be easily verified. �

From the properties (5) and (6) of the sets JΓ, we see that this theorem can be
interpreted as a generic version of B1.

5. Finite cells
In this section we construct balanced representations for each finite cell. Recall that
constructing such a system requires us to associate not only a representation to each
two-sided cell, but also a distinguished basis of that representation.

Theorem 5.1. Each finite two-sided cell Γ admits a representation πΓ equipped with
a basis B satisfying B1–B5 with aπΓ = ã(Γ). Moreover, in all cases where the finite
cell Γ admits a cell factorisation we have

cπΓ(w;B) = ±Euw,vw for all w ∈ Γ.(9)

Proof. For the moment exclude the cell Γ13 from consideration. For all other finite cells
we take πΓ to be the cell moduleHΥ where Υ is any right cell contained in Γ, equipped
with the natural Kazhdan–Lusztig basis. The matrices for πΓ have been computed
using the CHEVIE package [9, 18] in GAP3 [22]. For 4 6 i 6 9 we have πΓi = πi (these
representations are 1-dimensional, and hence have unique representing matrices). For
i ∈ {10, 11, 12} we have the following explicit matrices:

πΓ10 =
{
πA10 if (r1, r2) ∈ A2 ∪A2,2′

πB10 if (r1, r2) ∈ A3 ∪A6 ∪A3,6

πΓ11 =


πA11 if (r1, r2) ∈ A8

πB11 if (r1, r2) ∈ A6 ∪A7 ∪A6,7

πC11 if (r1, r2) ∈ A7,8

πΓ12 =
{
πA12 if (r1, r2) ∈ X
πB12 if (r1, r2) ∈ Y

where X = {(r1, r2) ∈ R2
>0 | r2 < r1, r2 < 1, r1 6= 1} and Y = {(r1, r2) ∈ R2

>0 |
r2 < r1, r2 > 1} (note that if (r1, r2) ∈ A7,8 then c = a and hence πC11 is indeed a
representation). It is then immediate that B1 is satisfied. However we note that B1
also follows from Theorem 4.6 (without needing to know that the representations
above are the cell modules).

Next we claim that B2 and B3 hold, with aΓ = ã(Γ) (with the latter in Table 2). The
basic approach is as follows. By B1 we know that πi(Cw) = 0 whenever w /∈ (Γi)>LR.
Thus it is sufficient to look at those w with w ∈ (Γi)>LR, and by Remark 1.6 we
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can work with the matrices πi(Tw) instead of πi(Cw). We use the Hasse diagrams in
Figure 5 to compute the set (Γi)>LR. In the case that (Γi)>LR is a union of finite cells
(and hence is a finite set) we verify B2 and B3 directly by computing the matrices
πi(Tw) for each w ∈ (Γi)>LR. For example, consider the case Γ10 with (r1, r2) ∈
A3∪A6∪A3,6. Then Γ>LR = Γ4∪Γ5∪Γ12∪Γ10, and by computing matrices we have

max{deg[πB10(Tw)]i,j | 1 6 i, j 6 3} =


0 if w ∈ Γ4

c if w ∈ Γ5

a if w ∈ Γ12

b if w ∈ Γ10.

Since a < b and c < b whenever (r1, r2) ∈ A3 ∪ A6 ∪ A3,6 the axioms B3 and B4
follow. The case (r1, r2) ∈ A2 ∪A2,2′ is similar.

More interestingly, sometimes (Γi)>LR contains an infinite cell. These cases are
outlined below (we note that this situation did not occur in type G̃2; see [13]).

(1) Let Γ = Γ5(r1, r2). Then Γ>LR contains the infinite cell Γ2 in the case
(r1, r2) ∈ A5,5′ . The elements of Γ2 are {u−10(1210)kv | u, v ∈ {e, 1}, k >
0} ∪ {u−12(1012)kv | u, v ∈ {e, 1}, k > 0}. For (r1, r2) ∈ A5,5′ we have b = c
and c > a, and thus if u, v ∈ {e, 1} we have

deg π5(u−12(1012)kv) = deg π5(u−10(1210)kv)
6 c− 2ak − bk + ck = c− 2ak < c.

Thus deg π5(Tw) < c < 2c− a = ãΓ5 for all w ∈ Γ2. The analysis for the cells
Γi with 6 6 i 6 9 is similar.

(2) Let Γ = Γ11(r1, r2). Then Γ>LR contains the infinite cell Γ2 in the cases
(r1, r2) ∈ A7 ∪ A8 ∪ A6,7 ∪ A7,8. In the regime (r1, r2) ∈ A7 ∪ A8 ∪ A7,8
the cell Γ2(r1, r2) admits a cell factorisation with BΓ2 = {e, 1, 10, 101},
t2 = tΓ2 = 1012 and w2 = wΓ2 = 2. If (r1, r2) ∈ A6,7 we have
Γ2(r1, r2) = Γ2(A7) ∪ {101}, and so we can use the cell factorisation in
A7 to describe all but one element of Γ2.

Let us consider one case in detail (the remaining cases are similar).
Suppose that (r1, r2) ∈ A7,8 (thus c = a and 2a < b < 3a). Let z = q4a−2b.
By diagonalising πC11(t2) we obtain

πC11(tn2 ) = (−1)nq(−3a+b)n

−zφn−1(z) −q3a−2bφn(z) −q2a−2bφn(z)
0 q(−4a+2b)n 0

q2aφn(z) qaφn(z) φn+1(z)


where φn(z) = 1−zn

1−z with φ−1(z) = −z−1. Since 4a−2b < 0 for (r1, r2) ∈ A7,8
we have

φn(z) = 1 + z + · · ·+ zn−1 ∈ Z[q−1] for n > 0.
It is then a straightforward (although somewhat tedious) exercise to show
that the degrees of the matrix entries of πC11(w) are strictly bounded by a+ b
for all elements w = u−1w2tn2 v ∈ Γ2.

(3) Let Γ = Γ12(r1, r2). Then Γ>LR contains the infinite cell Γ1 in the case
(r1, r2) ∈ A1. For (r1, r2) ∈ A1 the cell Γ1 admits a cell factorisation with
BΓ1 = {e, 0, 2, 02}, t1 = tΓ1 = 021, and w1 = wΓ1 = 1. We compute

πA12(w1t2n
1 ) = (−1)nq−2nb

(
qa µ0,1
0 −q−a

)
,

πA12(w1t2n+1
1 ) = (−1)nq−(2n+1)b

(
−qc 0

1 q−c
)
.
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It is then easy to compute πA12(Tw) for all w = u−1w1tn1 v with n ∈ N and
u, v ∈ BΓ1 , and the result follows.

Thus B1, B2, and B3 hold for all cells Γi with 4 6 i 6 12. Moreover, these cells
admit cell factorisations, and the leading matrices are easily computed directly,
verifying that (9) holds. For the cells Γi with 4 6 i 6 9 the sign in (9) is easily
computed (since the associated representations are 1-dimensional). In the remaining
cases we have the + sign except for the case π12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2 in
which case we have the − sign.

It is thus clear, from (9), that B4 holds. To verify B5 for the cell Γ = Γi we note
that if w = u−1wΓv then

cπΓ(u−1wΓu)cπΓ(w) = ±Eu,uEu,v = ±Eu,v = ±cπΓ(w).
This completes the analysis for the finite cells Γi with 4 6 i 6 12.

We now consider the remaining cell Γ = Γ13. This cell appears for (r1, r2) ∈ A2,3 ∪
A4,5∪A7,8∪A9,10∪P4∪P5. We first consider the cases (r1, r2) ∈ A4,5∪A7,8∪A9,10∪
P4 ∪ P5 (these are precisely the parameters with r2 6 r1 and r2 = 1). In these cases
Γ13 = Υ1∪Υ2 is a union of two right cells Υ1 = {0, 01, 010} and Υ2 = {1, 10, 101}. Let

πΓ = π5 ⊕ π7 ⊕ πB12.

By Theorem 4.6, we can see that πΓ satisfies B1.
Next we note that B2 and B3, with aπΓ = a, hold by an easy direct calculation (note

that Γ>LR = Γ4∪Γ13 is finite). Moreover the leading matrices are computed directly as
cπΓ(0) = E11 + E33 cπΓ(01) = 2E34 cπΓ(010) = −E11 + E33

cπΓ(1) = E22 + E44 cπΓ(10) = E43 cπΓ(101) = −E22 + E44,

and hence B4 holds. Let d1, d2 ∈ Γ13 be the elements d1 = 0 and d2 = 1 (these turn
out to be the Duflo involutions; see Theorem 7.8). Then the formulae above give

cπΓ(di)cπΓ(w) = cπΓ(w) for all w ∈ Υi, i ∈ {1, 2},
and hence B5 holds.

Finally consider (r1, r2) ∈ A2,3. In this case Γ = Υ1 ∪ Υ2 ∪ Υ3 is a union
of right cells Υ1 = {1, 10, 12, 121, 1210}, Υ2 = {2, 21, 212, 210}, and Υ3 =
{01, 010, 012, 0121, 01210}. Let

πΓ = π6 ⊕ πA12 ⊕ πB10.

Once again, Theorem 4.6 yields that πΓ satisfies B1. Moreover B2 and B3 hold by
direct calculation with aπΓ = a, and the leading matrices are computed as

cπΓ(1) = E22 + E55 cπΓ(10) = E23 + E56

cπΓ(12) = E54 cπΓ(121) = −E22 + E55

cπΓ(1210) = −E23 + E56 cπΓ(2) = E11 + E44

cπΓ(21) = 2E45 cπΓ(212) = −E11 + E44

cπΓ(210) = 2E46 cπΓ(01) = E32 + E65

cπΓ(010) = E33 + E66 cπΓ(012) = E64

cπΓ(0121) = −E32 + E65 cπΓ(01210) = −E33 + E66

and B4 follows. Let d1 = 1, d2 = 2, and d3 = 01 (again, these turn out to be the
Duflo involutions; see Theorem 7.8). Then the formulae above give

c(di)c(w) = c(w) for all w ∈ Υi, i ∈ {1, 2, 3}
and hence B5 holds, completing the proof. �
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6. Infinite cells
In this section we construct balanced representations for the infinite cells Γi with
i ∈ {0, 1, 2, 3} for all choices of parameters. The results of this section, along with
Theorem 5.1, give the following:

Theorem 6.1. For each choice of parameters (a, b, c) ∈ Z3
>0 there exists a balanced

system of cell representations (πΓ)Γ∈Λ for H with bounds aπΓ = ã(Γ).

Proof. By Theorem 5.1 and Theorems 6.4, 6.5, 6.15, 6.16, 6.17, 6.21 and 6.22 below we
have a system (πΓ)Γ∈Λ for each parameter range satisfying B1–B5 with aπΓ = ã(Γ).
Then B6 follows from the fact that ã(Γ′) > ã(Γ) whenever Γ′ 6LR Γ (see Table 2). �

Thus, combined with Theorem 1.7 we can compute Lusztig’s a-function. In fact,
we have:

Corollary 6.2. Table 2 (and the discussion immediately following the table) gives
the values of Lusztig’s a-function for all choices of parameters. Moreover, the conjec-
tures P4, P9, P10, P11, and P12 hold.

Proof. It follows from Theorems 1.7 and 6.1 that Lusztig’s a-function is given by Ta-
ble 2. Conjectures P4, P9, P10, P11 and P12 are then easily checked using the explicit
values of the a-function. In fact, due to the logical dependencies amongst the conjec-
tures established in [17, Chapter 14] it is sufficient to prove P4, P10, and P12, which
are obvious from the explicit values of the a-function and the explicit decomposition
ofW into right cells given in Figure 5. Then P10⇒ P9 and P4+P9+P10⇒ P11. �

Of course it remains to exhibit balanced systems for the infinite cells. We undertake
this rather intricate task in the present section. Let us begin by noting the following
immediate consequence of Theorem 4.6.

Corollary 6.3. Let i ∈ {0, 1, 2, 3}. The representation πi satisfies B1 for the cell Γi.

6.1. The lowest two-sided cell. Suppose first that c 6= b. It is sufficient to
consider the case c < b, for if c > b one can apply the diagram automorphism σ. In
the case c < b the lowest two-sided cell Γ0 admits a cell factorisation

Γ0 = {u−1w0tλv | u, v ∈ B0, λ ∈ Q+}
where B0 = {e, 0, 01, 012, 010, 0102, 01021, 010210} and if w = u−1w0tλv is written in
this form we define uw = u, vw = v, and τw = λ.

Since B0 is a fundamental domain for the action of Q onW the set B0 = {ξ0⊗Xu |
u ∈ B0} is a basis of M0. The proof of the following theorem is very similar to [13,
Section 6] with only some minor adjustments, and so we will only sketch the argument.

Theorem 6.4. Let c < b. The representation π0, equipped with the basis B0 = {ξ0 ⊗
Xu | u ∈ B0}, satisfies B1–B5 for the lowest two-sided cell Γ0, with aπ0 = 2a + 2b.
Moreover, the leading matrices of π0 are

cπ0(w; B0) = sτw(ζ)Euw,vw for w ∈ Γ0,

where sλ(ζ) is the Schur function defined in (6).

Proof. We have already verified B1 in Corollary 6.3. To verify B2 we note that
degQ(p) 6 max{2a+2b, 2a+2c} for all positively folded alcove paths, and so for c < b
we have degQ(p) 6 2a+2b (see [13, Lemma 6.2]). Thus B2 follows from Theorem 4.1.

Axiom B3 is verified as in [13, Theorem 6.6], with one additional ingredient: If
deg(Q(p)) = 2a + 2b then necessarily p has no folds on type 0-walls (for otherwise
the degree is bounded by 2a+ b+ c < 2a+ 2b). The only simple hyperplane direction
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available in the “box” B0 is a type 0-wall, and thus if p is a maximal path of type
u−1w0tλv with u, v ∈ B0 then by the above observation there is no fold on this wall in
the final v-part of the path (see [13, Remark 6.4]). With this observation in hand the
proof of [13, Theorem 6.6] applies verbatim, including the calculation of the leading
matrices. Linear independence of the Schur functions gives B4, and to verify B5 we
note that if w ∈ Γ0 then

cπ0(u−1
w w0uw; B0)cπ0(w; B0) = s0(ζ)sτw(ζ)Euw,uwEuw,vw

= sτw(ζ)Euw,vw = cπ0(w; B0),

and the proof is complete. �

Now suppose that b = c. In this case we will work in the extended affine Weyl
group W̃ and the extended affine Hecke algebra H̃. See Remark 4.2 for the definition
of the principal series representation (π0,M0) in this case.

Let B1/2 = {e, 0, 01, 012} be the “half box”. Each element w ∈ W of the (non-
extended) affine Weyl group can be written uniquely as

w = tλv with either λ ∈ Q and v ∈ B1/2, or with λ ∈ P \Q and v ∈ B1/2σ.(10)

We will work with the basis

B0 = {ξ0 ⊗Xu | u ∈ B1/2 ∪ B1/2σ}

of the moduleM0. Then, as in Theorem 4.1, with respect to this basis we have

[π0(Tw;B0)]u,v =
∑

{p∈P(~w,u)|θ(p)=v}

Q(p)ζwt(p),(11)

where, if w = tλv as in (10), then wt(w) = λ and θ(w) = v.
We have the following generalised cell factorisation: each w ∈ Γ0 has a unique

expression as

w = u−1w0tλv with u, v ∈ B1/2 ∪ B1/2σ and λ ∈ P+.(12)

If w ∈ Γ0 is written in the form (12) then we define uw = u, vw = v, and τw = λ.

Theorem 6.5. Let c = b. The representation π0, equipped with the basis B0, satis-
fies B1–B5 for the lowest two-sided cell Γ0, with aπ0 = 2a+ 2b. Moreover, the leading
matrices of π0 are

cπ0(w;B0) = s′τw(ζ)Euw,vw for w ∈ Γ0,

where s′λ(ζ) is the Schur function defined in (7).

Proof. The proof is again very similar to [13, Theorem 6.6]. The choice of “box”
B′0 = B1/2 ∪ B1/2σ again implies that if p is a maximal path of type u−1w0tλv with
u, v ∈ B′0 then there are no folds in the final v-part of the path. Moreover, a slight
generalisation of [13, Theorem 3.4] gives

s′λ(X) =
∑

p∈P( ~w0·~tλ,e)

Xwt(p) for λ ∈ P+,

and the proof of [13, Theorem 6.6] now applies verbatim. �
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6.2. Slices of the induced representations and folding tables. In the fol-
lowing sections we analyse the remaining infinite cells Γi with i ∈ {1, 2, 3}. The basic
idea is to use the combinatorial description of the matrix entries from Theorem 4.3
to show that the representation πi is balanced for the cell Γi. Thus we are primarily
interested in the i-folded alcove paths that attain the maximal value of deg(Qi(p)),
as these are the terms that contribute to the leading matrices. However the situation
is complicated by the large number of distinct parameter regimes for the cells Γi as
the i-folded alcove paths that attain the maximal value of deg(Qi(p)) vary with the
parameter regimes.

Therefore it is desirable to be able to work with all parameter regimes simultane-
ously. To achieve this we work in the generic Hecke algebra Hg. In this setting the
degree of the multivariate polynomial Qi(p) (see (8)) is too crude for our purposes,
and so we introduce a more refined statistic, which we call the exponent of Qi(p),
defined as follows. Firstly, if x = (x, y, z) ∈ Z3 then the exponent of the monomial
qx := qx1qy2qz0 is exp(qx) = (x, y, z) ∈ Z3. Let � denote the partial order on Z3 with
(x′, y′, z′) � (x, y, z) if and only if x− x′ > 0, y − y′ > 0, and z − z′ > 0.

Definition 6.6. Let i ∈ {1, 2, 3} and let p be an i-folded alcove path. Then, by direct
inspection of the formula (8), the multivariate polynomial Qi(p) has a unique mono-
mial with exponent maximal with respect to �. We denote this maximal exponent by
exp(Qi(p)). Explicitly,

exp(Qi(p)) =


(f1(p)− g1(p), f2(p), f0(p)) if i = 1
(f1(p), f2(p)− g2(p), f0(p)− g0(p)) if i = 2
(f1(p), f2(p)− g2(p), f0(p) + g0(p)) if i = 3.

Note that if exp(Qi(p)) = (x, y, z) then on specialising q0 → qc, q1 → qa, q2 → qb
we have

deg(Qi(p)) = xa+ yb+ zc.(13)

Definition 6.7. Let B be a fundamental domain for the action of τi on Ui. Let

E(πi; B) = {x ∈ Z3 | qx appears with nonzero coefficient
in some matrix entry of πi(Tw; B) for some w ∈W},

where B = {ξi ⊗Xu | u ∈ B} is the basis ofMi associated to B.

Lemma 6.8. If B and B′ are fundamental domains for the action of τi on Ui then
E(πi; B) = E(πi; B′).

Proof. We may write each u ∈ B as u = τki u
′ for some k ∈ Z and u′ ∈ B′. We claim

that
ξi ⊗Xu = (ξi ⊗Xu′)ζk.

Consider the case i = 2, 3. Then by (5) we have Xu = Xkω1Xu′ , and the result follows
since ξi ·Xω1 = ξi ζ for i = 2, 3. If i = 1 then we have Xu = Xk

τ1Xu′ (this follows from
the fact that τ1 preserves the orientation of all hyperplanes except for the hyperplanes
in the α1 parallelism class, and that this class is not encountered in U1). Since

ξ1 ·Xτ1 = ξ1 ·Xω1T−1
1 = ξ1 (−q−1

1 ζ)(−q1) = ξ1 ζ

the claim follows.
Thus the change of basis matrix from the B basis to the B′ basis is a monomial

matrix with entries in Z[ζ], and the lemma follows. �
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Thus we can define

E(πi) = E(πi; B) for any fundamental domain B.

We will show below (in the course of the proof of Theorem 6.18) that the elements
of E(πi) are bounded above in each component – we will assume this fact for the
moment. Let

M(πi) = {maximal elements of the partially ordered set (E(πi),�)}.

Definition 6.9. Let B be a fundamental domain for the action of τi on Ui. For x =
(x, y, z) ∈ Z3 the x-slice of πi(Tw; B) is the matrix cx

πi(w; B) whose (u, v)th entry is the
coefficient of qx in [πi(Tw; B)]u,v. Thus cx

πi(w; B) is a matrix with entries in Z[ζ, ζ−1].

The following key theorem shows that the slices cx
πi(w; B) with x ∈ M(πi) are

sufficient to compute leading matrices in all parameter ranges.

Theorem 6.10. Let (a, b, c) be a fixed choice of parameters, and suppose that prop-
erty B2 holds for πi(·,B) with bound aπi . Suppose that xa + yb + zc 6 aπi for all
(x, y, z) ∈M(πi). Then

cπi(w; B) =
∑

cx
πi(w; B),

where the sum is over those x = (x, y, z) ∈M(πi) with xa+ yb+ zc = aπi .

Proof. By Theorem 4.3 the entry [cπi(w; B)]u,v of the leading matrix cπi(w; B) is given
as a sum over paths p ∈ Pi(~w;u) with deg(Qi(p)) = aπi . Thus it suffices to show that
if exp(Qi(p)) /∈M(πi) then, after specialising, deg(Qi(p)) < aπi .

Suppose that p is an i-folded alcove path with exp(Qi(p)) = (x, y, z) /∈ M(πi).
Hence there is an i-folded alcove path p′ with (x, y, z) ≺ (x′, y′, z′) = exp(Qi(p′)) ∈
M(πi). Thus x′ − x, y′ − y and z′ − z are all nonnegative with at least one being
strictly positive. Thus (x′ − x)a + (y′ − y)b + (z′ − z)c > 0, and so by (13) we have,
after specialising,

deg(Qi(p)) = xa+ yb+ zc < x′a+ y′b+ z′c 6 aπi ,

and hence the result. �

Thus our approach in the following sections is to compute M(πi) and the slices
corresponding to these maximal exponents. In fact, the cell Γ2 turns out to be the
most complicated, in part due to the intricate equal parameter regime. Thus we give
complete details for Γ2, and we will only state the results for the easier cells Γ1 and Γ3.

Remark 6.11. The hypothesis xa + yb + zc 6 aπi for all (x, y, z) ∈ M(πi) in Theo-
rem 6.10 is required because it is a priori possible that there exists an i-folded alcove
path p with exp(Qi(p)) = (x, y, z) and xa+ yb+ zc > aπi . The leading contributions
from all such paths in Theorem 4.3 must cancel (after specialisation) for otherwise B2
is violated. While indeed cancellations can (and do) occur, it turns out that the con-
dition xa + yb + zc > aπi in fact never occurs. We will see this in the course of the
calculations in the following sections.

We will use “folding tables” to analyse i-folded alcove paths (i ∈ {1, 2, 3}). We give
a brief outline below, and we refer to [13, §7.2] for further details. Let v ∈ W i

0 and
x ∈ W with reduced expression ~x = si1 . . . sin . We denote by p(~x, v) ∈ Pi(~x, v) the
unique i-folded alcove path of type ~x starting at v with no folds. Of course p(~x, v)
may still have bounces, because i-folded alcove paths are required to stay in the strip
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Ui. Nonetheless, we refer to p(~x, v) as the straight path of type ~x starting at v. Let
I−(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) makes a negative crossing at the kth step}
I+(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) makes a positive crossing at the kth step}
I ∗(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) bounces at the kth step}.

Note that I− ∪ I+ ∪ I∗ = {1, . . . , n}. We define a function
ϕv~x : I−(~x, v)→W i

0 × Z
as follows. For k ∈ I−(~x, v) let pk be the i-folded alcove path obtained from the
straight path p0 = p(~x, v) by folding at the kth step (note that after performing this
fold one may need to include bounces at places where the folded path pk attempts to
exit the strip Ui). Let

ϕv~x(k) = the unique (u, n) ∈W i
0 × Z such that p(~x, τni u)

and pk agree after the kth step.
Equivalently, (u, n) is the unique pair such that end(p(~x, τni u)) = end(pk), and thus
τni u is simply the end of the straight alcove path p(rev(~x), end(pk)), where rev(~x) is
the expression ~x read backwards.

Definition 6.12 (Folding tables, see [13]). Fix the enumeration y1, y2, y3, y4 of W i
0

with `(yj) = j − 1 for j = 1, . . . , 4. For each (j, k) with 1 6 j 6 4 and 1 6 k 6 `(x)
define fj,k(~x) ∈ {−, ∗, 1, 2, 3, 4} by

fj,k(~x) =


− if k ∈ I+(~x, yj)
∗ if k ∈ I ∗(~x, yj)
j′ if k ∈ I−(~x, yj) and ϕyj~x = (yj′ , n) for some n ∈ Z.

The i-folding table of ~x is the 4× `(x) array Fi(~x) with (j, k)th entry equal to fj,k(~x).

Remark 6.13. If ~y is a prefix of ~y then Fi(~y) is the subarray of F(~x) consisting of the
first `(y) columns. Also note that of course any other enumeration of W i

0 can be used
in the definition.

Example 6.14. Let ti = tωi for i = 1, 2. The 2-folding tables for the elements ~t1 =
0121 and ~t2 = 010212 are shown in Table 3, where the rows are indexed by W 2

0 in
the order e, 1, 12, 121, and the ~t2 table excludes the final column. Note that we have
appended a 0-row and 0-column to the table for convenience. The 0-row is called the
“header” of the table. The folding tables for the elements v ∈ B0 are also given by
these tables, because the reduced expressions for the elements of B0 are the strict
prefixes of ~t2, along with 010210 (which is given in the ~t2 table by removing the
penultimate column), along with 012 (which is a subexpression of ~t1).

0 1 2 1
1 − − − −
2 ∗ − ∗ 1
3 ∗ 1 ∗ −
4 1 2 1 3

(a) ~t1 = 0121

0 1 0 2 1 2 0
1 − − ∗ − − ∗ −
2 ∗ − − ∗ − − ∗
3 ∗ 1 2 ∗ 1 2 ∗
4 1 2 ∗ 1 2 ∗ 1

(b) ~t2 = 010212 and ~b0 = 010210

Table 3. 2-folding tables
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The folding table Fi(~w) can be used to compute Qi(p) for all p ∈ Pi(~w, u) with
u ∈W i

0 as follows (see [13] for more details). We begin an excursion through the table
Fi(~w) starting at the first cell on row `(u)+1 (the row corresponding to u ∈W i

0) with
a counter Z starting at Z = 1. At each step we move to a cell strictly to the right of the
current cell and modify Z according to the following rules. Suppose we are currently
at the N th cell of row r, and this cell contains the symbol x ∈ {−, ∗, 1, 2, 3, 4}. Let
j ∈ {0, 1, 2} denote the header entry of the N th column.

(1) If x = − then we move to the (N+1)st cell of row r and Z remains unchanged.
(2) If x = ∗ then we move to the (N + 1)st cell of row r and replace Z by Z ′

where

Z ′ =
{
Z × (−q−1

j ) if either i ∈ {1, 2}, or if i = 3 and j = 2
Z × q0 if i = 3 and j = 0.

(3) If x = k ∈ {1, 2, 3, 4} then we have two options:
(a) we can move to the (N + 1)st cell of row r and leave Z unchanged, or
(b) we can move to the (N+1)st cell of row k and replace Z by Z×(qj−q−1

j ).
The set of all such excursions through the table is naturally in bijection with the set
of i-folded alcove paths Pi(~w, u), and the final value of the counter Z at the end of
the excursion is Qi(p). Moreover, the final exiting row gives the value of θi(p). It may
help to note that cases (1), (2), (3)(a) and (3)(b) correspond to a positive crossing,
bounce, negative crossing, and fold respectively.

Suppose that ~w = ~tmω1
· ~tnω2

where m,n ∈ N, and let u ∈ W i
0. Then Fi(~w) is the

concatenation of m copies of the i-folding table of ~tω1 followed by n copies of the
i-folding table of ~tω2 (for this observation to hold it is important that tω1 and tω2

are translations). Thus the process described above may be regarded as “m passes
through the ~tω1 table, followed by n passes through the ~tω2 table” in an obvious way.

6.3. The cell Γ2. The cell Γ2 is stable on each of the following regions:

R1 = {(r1, r2) ∈ Q2
>0 | r2 < r1, r2 < 2− r1}

R2 = {(r1, r2) ∈ Q2
>0 | r2 < r1, r2 > 2− r1}

R3 = R1,2 = {(r1, r2) ∈ Q2
>0 | r2 < r1, r2 = 2− r1}

R4 = R1,1′ = {(r1, r2) ∈ Q2
>0 | r2 = r1, r2 < 2− r1}

R5 = R2,2′ = {(r1, r2) ∈ Q2
>0 | r2 = r1, r2 > 2− r1}

R6 = P2 = {(r1, r2) ∈ Q2
>0 | r2 = r1, r2 = 2− r1}.

To explain this notation, notice that R1 and R2 are open regions, and R1,2 is the
border between these regions. Moreover, R1,1′ is the border between the regions R1
and R1′ , where Rj′ denotes the σ-dual of Rj . Similarly R2,2′ if the border between
the regions R2 and R2′ .

We begin by describing the cell Γ2 in each of the above regions and setting up
notation for the statement of the main theorems. In order to obtain the nicest leading
matrices possible, we will need, in each case, to adjust the fundamental domains and
the bases ofM2. To do so, we define fundamental domains as ordered sets instead of
sets.

The cases (r1, r2) ∈ Rj with j = 1, 2 are “generic”, and admit cell factorisations
where

wj =
{

101 if j = 1,
2 if j = 2,

tj =
{

2101 if j = 1,
1012 if j = 2,

and Bj =
{

(e, 2, 21, 210) if j = 1,
(e, 1, 10, 101) if j = 2.
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For each j = 1, 2 let zj ∈ Bj be such that B′j = {z−1
j u | u ∈ Bj} is a fundamental

domain for the action of τ2 on U2 with z−1
j e on the negative side of each hyperplane

separating z−1
j e from z−1

j u with u ∈ Bj . Specifically, z1 = 21 and z2 = 1. Let B′j =
(ξ2 ⊗Xz−1

j
u | u ∈ B′j) be the basis associated to the fundamental domain B′j . Thus

B′j =
{

(ξ2 ⊗X12, ξ2 ⊗X1, ξ2 ⊗Xe, ξ2 ⊗X0) if j = 1
(ξ2 ⊗X1, ξ2 ⊗Xe, ξ2 ⊗X0, ξ2 ⊗X01) if j = 2.

The fundamental domain B′1 is depicted in the third example in Figure 3.
The region R3 = R1,2 is “non-generic”, and does not admit a cell factorisation.

However we have
Γ2(R1,2) = Γ2(R2) ∪ {w1}.

Thus we can use cell factorisation in Γ2(R2) to describe all elements of Γ2(R1,2)\{w1},
and hence the expressions uw, vw, and τw are defined for w ∈ Γ2(R1,2) \ {w1}. We
extend this definition by setting

uw1 = vw1 = 101 and τw1 = −1.

We set B3 = B2, B′3 = B′2 and B′3 = B′2.
The regions R4 = R1,1′ and R5 = R2,2′ may be considered “generic” in a certain

sense. Indeed these cases admit a generalised cell factorisation using the extended
affine Weyl group. We have

Γ2(Rj) = W ∩ {u−1wjtkj v | u, v ∈ Bj , k > 0}

where

wj =
{

121 if j = 4
0 if j = 5

tj =
{

01σ if j = 4
12σ if j = 5

and Bj =
{

(e, 0, σ, 0σ) if j = 4
(e, 1, σ, 1σ) if j = 5.

If w = u−1wjtkj v with u, v ∈ Bj and k > 0 we write uw = u, vw = v and τw = k. Let
B′4 and B′5 be the bases ofM2 associated to the fundamental domain B′4 = (e, 0, σ, 0σ)
and B′5 = (1σ, σ, 1, e). Thus

B′j =
{

(ξ2 ⊗Xe, ξ2 ⊗X0, ξ2 ⊗Xσ, ξ2 ⊗X0σ) if j = 4
(ξ2 ⊗X1σ, ξ2 ⊗Xσ, ξ2 ⊗X1, ξ2 ⊗Xe) if j = 5.

Finally, the region R6 = P2 is truely “non-generic”, and exhibits rather remarkable
behaviour. Every element of Γ2\{2, 12, 212, 010} can be written in the form w = utkω1

v
with k > 0 and u ∈ {e, 1, 21, 121} and v ∈ {e, 0, 01, 012}, and moreover every element
of this form with the exception of e = et0ω1

e lies in Γ2. The following indexing of
the elements of Γ2 will help with the statement of the main theorem. Let (ui) =
(e, 1, 21, 121) and (vj) = (e, 0, 01, 012). Then, for k > 0, we define wki,j = uit

k
ω1
vj for

all (i, j) /∈ {(1, 1), (1, 2), (2, 4)}, and

wk1,1 = u1t
k+1
ω1

v1, wk1,2 = u1t
k+1
ω1

v2 and wk2,4 =
{

12 if k = 0
u2t

k−1
ω1

v4 if k > 1.

Then
Γ2 = {wki,j | 1 6 i, j 6 4, k > 0} ∪ {0, 2, 212, 010}.

The main theorems of this section are the following three results. In the first two
theorems, the elementary matrix Eu,v (u, v ∈ Bj) denotes the matrix with 1 at position
(k, `) where k, ` is the position of u and v in the ordered set Bj , and 0 everywhere else.
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Theorem 6.15. Let (r1, r2) ∈ Rj, with j = 1, 2, 3. Then π2, equipped with the basis
B′j, satisfies B1–B5 for the cell Γ2 = Γ2(r1, r2), with aπ2 = ã(Γ2). Moreover, for
j = 1, 2 the leading matrices of π2 are

cπ2(w; B′j) = (−1)jsτw(ζ)Euw,vw for w ∈ Γ2

where sk(ζ) is the Schur function of type A1. In the case j = 3 we have, for w ∈ Γ2,

cπ2(w; B′3) = fuw,vwτw (ζ)Euw,vw

where

fu,vk (ζ) =


sk(ζ)− sk−1(ζ) if u, v 6= 101
sk(ζ)− sk−1(ζ)− ζ−k−1 if u 6= 101 and v = 101
sk(ζ)− sk−1(ζ)− ζk+1 if u = 101 and v 6= 101
sk(ζ)− sk+1(ζ) if u = v = 101,

where sk(ζ) is the Schur function of type A1 and we set s−1(ζ) = 0.

Theorem 6.16. Let (r1, r2) ∈ Rj with j = 4, 5. Then π2, equipped with the basis B′j,
satisfies B1–B5 for the cell Γ2 = Γ2(r1, r2), with aπ2 = ã(Γ2). Moreover the leading
matrices of π2 are, for w ∈ Γ2,

cπ2(w; B′j) = (−1)j+1sτw(ζ1/2)Euw,vw .

Theorem 6.17. Let (r1, r2) ∈ R6. Then π̃2 = π2⊕π5⊕π6, equipped with the standard
W 2

0 -basis for the π2 component, satisfies B1–B5 for the cell Γ2 = Γ2(R6). Moreover,
the leading matrices are as follows (for k > 0):

c(wk11) = ζkE41 + ζ−k−1E43 c(wk12) = (ζk+1 + ζ−k−1)E44

c(wk13) = ζ−k−1E41 + ζkE43 c(wk14) = (ζk + ζ−k−1)E42

c(wk21) = ζkE11 + ζ−kE33 c(wk22) = ζk+1E14 + ζ−kE34

c(wk23) = ζk+1E13 + ζ−k−1E31 c(wk24) = ζkE12 + ζ−kE32

c(wk31) = ζkE21 + ζ−kE23 c(wk32) = (ζk+1 + ζ−k)E24

c(wk33) = ζ−k−1E21 + ζk+1E23 c(wk34) = (ζk+1 + ζ−k−1)E22

c(wk41) = ζ−kE13 + ζkE31 c(wk42) = ζ−kE14 + ζk+1E34

c(wk43) = ζ−k−1E11 + ζk+1E33 c(wk44) = ζ−k−1E22 + ζk+1E32

c(2) = E22 + E66 c(0) = E44 + E55

c(212) = E22 − E66 c(010) = E44 − E55.

The proof of the above theorems will be given towards the end of this section.
We first analyse the slices of the matrices π2(Tw;W 2

0 ). This in turn requires, by
Theorem 4.3, a rather detailed analysis of 2-folded alcove paths. Each w ∈W can be
written uniquely as

w = utm2 t
n
1 v with u ∈W0, v ∈ B0, and m,n ∈ Z

(where we write t1 = tω1 and t2 = tω2) and necessarily `(w) = `(u)+n`(t1)+m`(t2)+
`(v). We choose and fix the reduced expressions for each u ∈ W0, v ∈ B0, and t1, t2,
which are lexicographically minimal. Thus

~w0 = 1212, ~t1 = 0121, and ~t2 = 010212,

and the expressions ~v for v ∈ B0 are the prefixes of ~b0 = 010210, along with the
element 012 (see Example 6.14). These choices give a distinguished reduced expression
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for each w ∈W , namely
~w = ~u · ~tm2 · ~tn1 · ~v

with the reduced expressions for each component chosen as above. We fix this choice
throughout this section. If p is a path of type ~w = ~u · ~tm2 · ~tn1 · ~v we write

p = p0 · p0 where p0 is of type ~u and p0 is of type ~tm2 · ~tn1 · ~v.(14)

To efficiently record 2-folded alcove paths we will use the notation î to denote an
i-fold, and ǐ to denote an i-bounce. Thus, for example, p = 21̂0̌1̂21 is a 2-folded alcove
path whose second and fourth steps are 1-folds, and whose third step is a 0-bounce
(for example, this is a valid 2-folded alcove path starting at 1).

The main theorems of this section will follow from the following combinatorial
theorem.

Theorem 6.18. Let p be an 2-folded alcove path of type ~w = ~u · ~t `2 · ~t k1 · ~v with
u ∈ W0, v ∈ B0 and k, ` > 0 starting at u0 ∈ W 2

0 . Then exp(Q2(p)) � x for
some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. Moreover, the paths p with
exp(Q2(p)) = x for some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)} are pre-
cisely the paths p = p0 · p0 with end(p0) = start(p0) where p0 is listed in Table 4 and
p0 is listed in Table 5.

Proof. Write p = p0 · p0 as in (14). We claim that:
(1) if end(p0) = e then exp(Q2(p0))�x for some x∈{(1, 0, 0), (0, 1, 0), (2,−1, 0)};
(2) if end(p0) = 1 then exp(Q2(p0)) � x for some x ∈ {(1, 0, 0), (0, 1, 0)};
(3) if end(p0) = 12 then exp(Q2(p0)) � (1, 0, 0);
(4) if end(p0) = 121 then exp(Q2(p0)) � (0, 0, 0),

and moreover, the paths where equality is attained are listed in Table 4 (the ∗ in rows
17 and 18 will be explained later).

row u start(p0) p0 exp(Q2(p0)) end(p0)
1 e 121 e (0, 0, 0) 121
2 1 e 1̂ (1, 0, 0) e

3 1 12 1̂ (1, 0, 0) 12
4 1 12 1 (0, 0, 0) 121
5 2 1 2̂ (0, 1, 0) 1
6 12 e 12̂ (0, 1, 0) 1
7 12 12 1̂2 (1, 0, 0) 1
8 21 1 2̂1 (0, 1, 0) e

9 21 1 21̂ (1, 0, 0) 12
10 21 1 21 (0, 0, 0) 121
11 121 e 12̂1 (0, 1, 0) e

12 121 e 1̂2̌1̂ (2,−1, 0) e

13 121 e 121̂ (1, 0, 0) 12
14 121 e 121 (0, 0, 0) 121
15 121 12 1̂21 (1, 0, 0) e

16 212 1 21̂2 (1, 0, 0) 1
17∗ 1212 e 121̂2 (1, 0, 0) 1
18∗ 1212 e 1̂2̌12̂ (1, 0, 0) 1

Table 4. Optimal p0 parts
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To establish the claim we note that the paths listed obviously have the stated
exponents. One now constructs all paths p0 of type ~u with u ∈ W0 starting at some
u0 ∈ {e, 1, 12, 121}, and verifies the claim directly. For example, the paths starting
and ending at e are precisely the following:

e, 1̂, 2̌, 1̂2̌, 2̌1̂, 12̂1, 1̂2̌1̂, 2̌1̂2̌, 12̂12̌, 1̂2̌1̂2̌

and each of these paths has exponent bounded by some element of

{(1, 0, 0), (0, 1, 0), (2,−1, 0)}

with equality in the second, sixth, and seventh cases (listed in rows 2, 11 and 12 of
the table).

Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. We claim that if p = p0 ·p0

then exp(Q2(p)) � x for some x ∈ E, and moreover the paths attaining equality are
precisely the concatenations of paths p0 from Table 4 with paths p0 in Table 5 with
end(p0) = start(p0). The proof of this claim occupies the remainder of the proof.
When combining two paths it is useful to note the obvious fact that if x′ � x and
y′ � y then x′ + y′ � x + y.

The folding tables for the elements ~t1 = 0121 and ~t2 = 010212 are shown in Table 3.
The following observation will be used frequently: If a pass of either the ~t1 or ~t2 table
is completed on a row containing at least one ∗, and if no folds are made in this pass,
then

exp(Q2(p0)) ≺ exp(Q2(p′)),(15)

where p′ is the path obtained from p0 by removing this copy of ~t1 or ~t2. Thus such
paths necessarily have strictly dominated exponents, and can therefore be discarded
in the following analysis.

The claim follows from the following four points.
(1) Suppose that start(p0) = e. Since every entry of the first row of the 2-folding

table for ~t1 is −, and since every entry of the 2-folding table of ~t2 is either − or
∗, it is clear that exp(Q2(p0)) � (0, 0, 0). Thus, combined with the paths from
Table 4 we have exp(Q2(p)) � x for some x ∈ {(1, 0, 0), (0, 1, 0), (2,−1, 0)} ⊂
E. Moreover we have equality if and only if the p0 part has no bounce, and
therefore equality holds if and only if ` = 0 and v ∈ {e, 0, 01, 012}, giving the
paths

p0 = ~t k1 · ~v for some k > 0 and v ∈ {e, 0, 01, 012}.

These paths are listed on rows 1/34, 8/37, 15/39 and 24/43 of Table 5 (it is
convenient to separate the cases k > 0 and k = 0, and this is indicated by the
notation i/j for the table rows).

(2) Suppose that start(p0) = 1. Writing p0 = p1 · p2 where p1 is of type ~t `2 and p1
is of type ~t k1 · ~v, we have

exp(Q2(p0)) = (0,−`,−`) + exp(Q2(p2)).

It is clear that exp(Q2(p2)) � (1,−1,−1) or exp(Q2(p2)) � (0, 0, 0) (depend-
ing on whether k > 0 and the possible fold on the 4th place of ~t1 is taken).
Therefore

exp(Q2(p0)) � (1,−`− 1,−`− 1) or exp(Q2(p0)) � (0,−`,−`).
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Thus exp(Q2(p0)) � (1,−1,−1) or exp(Q2(p0)) � (0, 0, 0). In the first case,
combining the contribution from p0 we have exp(Q2(p)) � (2,−1,−1) ≺
(2,−1, 0) ∈ E or exp(Q2(p)) � (1, 0,−1) ≺ (2, 0,−1) ∈ E, and so the com-
bined path is sub-optimal. In the second case we have exp(Q2(p)) � (1, 0, 0) ∈
E or exp(Q2(p)) � (0, 1, 0) ∈ E, with equality if and only if k = ` = 0 and
v = e. This (trivial) path is listed on row 35 of Table 5.

(3) Suppose that start(p0) = 12. We first claim that if ` > 0 then exp(Q2(p)) ≺ x
for some x ∈ E. By the observation made in (15) it suffices to assume that if
` > 0 then a fold is made in the first pass of the ~t2 table. Thus the first part
of the path is one of the following:

pa = 0̌1̂0̌212̌ pb = 0̌10̂2̌12 pc = 0̌102̌1̂2̌ pd = 0̌102̌12̂,

with exponents (1,−1,−2), (0,−1, 0), (1,−2,−1), and (0, 0,−1) respectively.
The paths pa and pc exit on row 1 of the 2-folding table, and paths pb and
pc exit on row 2 of the table. Since no positive contributions occur on the
first row of any of the tables we have (using the first claim) exp(Q2(p)) �
(1, 0, 0) + (1,−1,−2) = (2,−1,−2) ≺ (2,−1, 0) ∈ E in the case pa, and
exp(Q2(p0)) � (1,−2,−1)+(1, 0, 0) = (2,−2,−1) ≺ (2, 0,−1) ∈ E in the case
pc. The only possible positive contribution on row 2 of the folding tables comes
from the 1-fold in the ~t1 table, however accessing this fold comes at the cost of
both a 0-bounce and a 2-bounce. Hence in case pb we have either exp(Q2(p)) �
(0,−1, 0) + (1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) � (1,−2,−1) + (1, 0, 0) ≺
(2, 0,−1) ∈ E, and in case pd we have either exp(Q2(p)) � (0, 0,−1) +
(1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) � (1,−1,−2)+(1, 0, 0) ≺ (2,−1, 0) ∈ E.
This establishes the claim.

Thus we may assume that ` = 0, and so p0 has type ~t k1 · ~v for some k > 0
and some v ∈ B0. If k > 0 then by the observation above we may assume
that a fold is made in the first pass of the ~t1 table. Thus the first part of the
path is necessarily 0̌1̂21, which has exponent (1, 0,−1) and exits on row 1 of
the folding table. Any further ~t1 factors will have no effect on the exponent,
and the final ~v factor can have contribution at most (0, 0, 0), and this occurs
if and only if v ∈ {e, 0, 01, 012}. Thus the paths

p0 = 0̌1̂21 · ~tn1 · ~v for n > 0 and v ∈ {e, 0, 01, 012}

(starting at 21) all have exponent precisely (1, 0,−1), and when composed
with an optimal p0 path we have exp(Q2(p)) = (2, 0,−1) ∈ E. These paths
are listed on rows 2, 9, 16 and 25 of Table 5.

If k = 0 then p0 has type ~v for some v ∈ B0. By direct observation these
paths have exponent bounded by either (0, 0, 0) or (1, 0,−1). The only paths
with exponent (0, 0, 0) are the empty path e and the path 0̌10̂, and the paths
with exponent (1, 0,−1) are precisely 0̌1̂ and 0̌1̂2. Appended with an optimal
p0 path we therefore obtain paths with exponents (1, 0, 0) and (2, 0,−1). These
paths are listed on rows 36, 47, 40, and 44 of Table 5.

(4) Suppose that start(p0) = 121. A very similar argument to the case start(p0) =
12 shows that if ` > 0 then exp(Q2(p)) ≺ x for some x ∈ E. Thus we may
assume that ` = 0. Thus p0 has type ~t k1 · ~v for some k > 0 and v ∈ B0. Since
the 4th row of the 2-folding table of ~t1 contains no bounces, one may begin
by making any number k1 6 k passes through the folding table with no folds.

If k1 = k then the exponent of p0 is equal to the exponent of the ~v part of
p0. The possible paths of type ~v, v ∈ B0, starting on row 4 are as follows:
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e 0 0̂ 01 0̂1 01̂ 010̌
0̂10̌ 01̂0 010̌2 0̂10̌2 01̂02̌ 010̌2̂ 010̌21
0̂10̌21 01̂02̌1 010̌2̂1 010̌21̂ 010̌210 0̂10̌210 01̂02̌10̌
010̌2̂10 010̌21̂0̌ 010̌210̂ 012 0̂12 01̂2̌ 012̂.

Thus when appended with an optimal p0 part we have exp(Q2(p)) = (0, 0, 0)+
exp(Q2(p0)) � x for some x ∈ E, with equality precisely in the following cases
of p0:

~t k1
1 · 0̂, ~t k1

1 · 0̂1, ~t k1
1 · 01̂, ~t k1

1 · 01̂0, and ~t k1
1 · 012̂.

These paths are listed in rows 10/38, 17/41, 18/42, 32∗/46, and 26/45 of
Table 5 (the ∗ will be explained later in Remark 6.19, and again it is convenient
to split the k1 = 0 and k1 > 0 cases).

If k1 < k then we assume that the (k1 + 1)-st pass of the ~t1 table has a
fold. The possibilities on this pass are

pa =0̂121 exponent (0, 0, 1), exit row 1,
pb =01̂2̌1̂ exponent (2,−1, 0), exit row 1,
pc =012̂1 exponent (0, 1, 0), exit row 1,
pd =01̂2̌1 exponent (1,−1, 0), exit row 2,
pe =0121̂ exponent (1, 0, 0), exit row 3.

The paths pa, pb, and pc exiting on row 1 can be followed by any number of
~t1 factors, and then an element v ∈ {e, 0, 01, 012} (any other elements v ∈ B0
will decrease the exponent). Thus the paths
~t k1
1 · p′ · ~t

k2
1 · ~v with k1, k2 > 0, p′ ∈ {pa, pb, pc} and v ∈ {e, 0, 01, 012}

have exponents (0, 0, 1) for p′ = pa, (2,−1, 0) for p′ = pb, and (0, 1, 0) for
p′ = pc. These paths are listed in rows 4, 11, 20, 28 (for p′ = pa), 5, 12, 21,
29 (for p′ = pb), and 6, 13, 22, 30 (for p′ = pc).

Consider the path pd. If k1 + 1 < k then there are further passes through
the ~t1 table, and by the observation above there must be a fold on the next
pass. Thus p0 starts with ~t k1

1 · pd · 0̌12̌1̂, which has exponent (2,−2,−1) and
exits on row 1. Since (2,−2,−1) ≺ (2, 0,−1) and no positive contributions
can be obtained from row 1 it follows that in fact k1 + 1 = k. Thus p0 is of
the form ~t k−1

1 · pd · p′′ for some path p′′ of type ~v with v ∈ B0. However it is
clear that such a path has exp(Q2(p0)) ≺ (2, 0,−1), and so pd does not lead
to any optimal paths.

Consider the path pe, which exits on row 3. Suppose that k1 + 1 < k.
Applying the analysis of the start(p0) = 12 case we see that

p0 = ~t k1
1 · pe · 0̌1̂21 · ~t k2

1 · ~v with k1, k2 > 0 and v ∈ {e, 0, 01, 012}
are the only paths with exponent (1, 0, 0)+(1, 0,−1) = (2, 0,−1). These paths
are listed in rows 7, 14, 23 and 31 of Table 5. If k1 + 1 = k then the paths

p0 = ~t k1
1 · pe · p′ with p′ ∈ {0̌1̂, 0̌1̂2}

(listed in rows 19 and 27) are the only paths with exponent (2, 0,−1), and
the paths

p0 = ~t k1
1 · pe · p′ with p′ ∈ {e, 0̌10̂}

(listed in rows 3 and 33∗) are the only paths with exponent (1, 0, 0).
The theorem now follows by combining Tables 4 and 5. �
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row ~x start(p0) p0 exp(Q2(p0)) wt2(p0) θ2(p0) conditions

1 tk1 e ~t k1 (0, 0, 0) k e k > 1

2 12 0̌1̂21 · ~t k−1
1 (1, 0,−1) k − 1 e k > 1

3 121 ~t k−1
1 · 0121̂ (1, 0, 0) −k 12 k > 1

4 121 ~tm1 · 0̂121 · ~tn1 (0, 0, 1) n−m e m+ n = k − 1 > 0

5 121 ~tm1 · 01̂2̌1̂ · ~tn1 (2,−1, 0) n−m− 1 e m+ n = k − 1 > 0

6 121 ~tm1 · 012̂1 · ~tn1 (0, 1, 0) n−m− 1 e m+ n = k − 1 > 0

7 121 ~tm1 · 0121̂ · 0̌1̂21 · ~tn1 (2, 0,−1) n−m− 1 e m+ n = k − 2 > 0

8 tk1 · 0 e ~t k1 · 0 (0, 0, 0) k + 1 121 k > 1

9 12 0̌1̂21 · ~t k−1
1 · 0 (1, 0,−1) k 121 k > 1

10 121 ~t k1 · 0̂ (0, 0, 1) −k 121 k > 1

11 121 ~tm1 · 0̂121 · ~tn1 · 0 (0, 0, 1) n−m+ 1 121 m+ n = k − 1 > 0

12 121 ~tm1 · 01̂2̌1̂ · ~tn1 · 0 (2,−1, 0) n−m 121 m+ n = k − 1 > 0

13 121 ~tm1 · 012̂1 · ~tn1 · 0 (0, 1, 0) n−m 121 m+ n = k − 1 > 0

14 121 ~tm1 · 0121̂ · 0̌1̂21 · ~tn1 · 0 (2, 0,−1) n−m 121 m+ n = k − 2 > 0

15 tk1 · 01 e ~t k1 · 01 (0, 0, 0) k + 1 12 k > 1
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16 12 0̌1̂21 · ~t k−1
1 · 01 (1, 0,−1) k 12 k > 1

17 121 ~t k1 · 0̂1 (0, 0, 1) −k 12 k > 1

18 121 ~t k1 · 01̂ (1, 0, 0) −k − 1 e k > 1

19 121 ~t k−1
1 · 0121̂ · 0̌1̂ (2, 0,−1) −k 12 k > 1

20 121 ~tm1 · 0̂121 · ~tn1 · 01 (0, 0, 1) n−m+ 1 12 m+ n = k − 1 > 0

21 121 ~tm1 · 01̂2̌1̂ · ~tn1 · 01 (2,−1, 0) n−m 12 m+ n = k − 1 > 0

22 121 ~tm1 · 012̂1 · ~tn1 · 01 (0, 1, 0) n−m 12 m+ n = k − 1 > 0

23 121 ~tm1 · 0121̂ · 0̌1̂21 · ~tn1 · 01 (2, 0,−1) n−m 12 m+ n = k − 2 > 0

24 tk1 · 012 e ~t k1 · 012 (0, 0, 0) k + 1 1 k > 1

25 12 0̌1̂21 · ~t k−1
1 · 012 (1, 0,−1) k 1 k > 1

26 121 ~t k1 · 012̂ (0, 1, 0) −k − 1 1 k > 1

27 121 ~t k−1
1 · 0121̂ · 0̌1̂2 (2, 0,−1) −k 1 k > 1

28 121 ~tm1 · 0̂121 · ~tn1 · 012 (0, 0, 1) n−m+ 1 1 m+ n = k − 1 > 0

29 121 ~tm1 · 01̂2̌1̂ · ~tn1 · 012 (2,−1, 0) n−m 1 m+ n = k − 1 > 0

30 121 ~tm1 · 012̂1 · ~tn1 · 012 (0, 1, 0) n−m 1 m+ n = k − 1 > 0

31 121 ~tm1 · 0121̂ · 0̌1̂21 · ~tn1 · 012 (2, 0,−1) n−m 1 m+ n = k − 2 > 0

32∗ tk1 · 010 121 ~t k1 · 01̂0 (1, 0, 0) −k 121 k > 1
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33∗ 121 ~t k−1
1 · 0121̂ · 0̌10̂ (1, 0, 0) −k − 1 121 k > 0

34 e e e (0, 0, 0) 0 e

35 1 e (0, 0, 0) 0 1

36 12 e (0, 0, 0) 0 12

37 0 e 0 (0, 0, 0) 1 121

38 121 0̂ (0, 0, 1) 0 121

39 01 e 01 (0, 0, 0) 1 12

40 12 0̌1̂ (1, 0,−1) 0 12

41 121 0̂1 (0, 0, 1) 0 12

42 121 01̂ (1, 0, 0) −1 e

43 012 e 012 (0, 0, 0) 1 1

44 12 0̌1̂2 (1, 0,−1) 0 1

45 121 012̂ (0, 1, 0) −1 12

46 010 121 01̂0 (1, 0, 0) 0 121

47 12 0̌10̂ (0, 0, 0) 0 121

Table 5: Optimal p0 parts
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Remark 6.19.We note that the paths in rows 17∗ and 18∗ from Table 4, and rows
32∗ and 33∗ from Table 5, while giving maximal exponent paths, do not contribute to
maximal exponents in matrix entries due to cancellations. Let us explain this further.

Let p0 = 121̂2 and p′0 = 1̂2̌12̂ be the the paths on rows 17∗ and 18∗ of Table 4,
and suppose that p0 is a path of type ~t `2 · ~t k1 · ~v with k, l > 0 and v ∈ B0, with
start(p0) = end(p0) = end(p′0) = 1. Let p = p0 · p0 and p′ = p′0 · p0. Note that
these paths are of the same type w = 1212t`2tk1v, and they have the same start and
end alcove. In particular, for any fundamental domain B, after using τ2 to move the
start alcove of both paths into B (if required) we have start(p) = start(p′) = u,
wt2

B(p) = wt2
B(p′) = k, and θ2

B(p) = θ2
B(p′) = u′, say. The combined contribution to

the matrix π2(Tw; B) from these two paths is in the (u, u′)-entry, and it is given by

(Q2(p) +Q2(p′))ζk = Q2(p0)(Q2(p0) +Q2(p′0))ζk

= Q2(p0)(q1 − q−1
1 − q−1

2 (q1 − q−1
1 )(q2 − q−1

2 ))ζk

= Q2(p0)(−q1q−2
2 − q−1

1 + q−1
1 − q−1

1 q−2
2 )ζk.

Note that the leading terms have cancelled, and hence each remaining exponent x
satisfies x ≺ exp(Q2(p)). A similar comment applies to the paths on rows 32∗ and 33∗
from Table 5. Thus, for the purpose of computing optimal terms in matrix entries,
the paths from these rows can be ignored.

The cancellations outlined above turn out to be the only “generic” cancellations
of leading terms that occur for paths in the tables. However, as we see below, can-
cellations can and do occur after specialising, where leading terms for one maximal
exponent can cancel with leading terms from another maximal exponent when the
exponents lead to equal degrees on specialisation.

Corollary 6.20.We have M(π2) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}.

Proof. Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. We have shown in
Theorem 6.18 that if p is a 2-folded alcove path then exp(Q2(p)) � x for some
x ∈ E. It then follows from Theorem 4.3 that if y is an exponent appearing with
nonzero coefficient in some matrix entry of some π2(Tw; B) then y � x for some
x ∈ E. Thus to show that M(π2) = E it is sufficient to show that each x ∈ E does
indeed appear as an exponent in some matrix entry of some matrix π2(Tw; B) (note
– it is a priori not sufficient to show that there exist 2-folded alcove paths with these
exponents, because it is possible for leading terms to cancel in the matrix entries).
To this end we use Theorem 4.3 to see that, in the standard W 2

0 -basis, we have
[π2(T1)]e,e = q1 − q−1

1 (exponent (1, 0, 0)), [π2(T2)]1,1 = q2 − q−1
2 (exponent (0, 1, 0)),

[π2(T0)]121,121 = q0 − q−1
0 (exponent (0, 0, 1)), and

[π2(T1T2T1)]e,e = −q2
1q−1

2 + q2 + q−1
2 − q−2

1 q−1
2

[π2(T1T0T1)]12,12 = −q2
1q−1

0 + q0 + q−1
0 − q−2

2 q−1
0

giving exponents (2,−1, 0) and (2, 0,−1) respectively. Thus M(π2) = E. �

We can now prove Theorems 6.15–6.17.

Proof of Theorems 6.15–6.17. Consider the case (r1, r2) ∈ R1. By specialising we
have that deg(Q2(p)) is bounded by each integer xa+ yb+ zc with (x, y, z) ∈M(π2)
(see (13)), and thus deg(Q2(p)) is bounded by 2a − c with equality if and only if
exp(Q2(p)) = (2, 0,−1). We now compute the (2, 0,−1) slice of π2(Tw).

We first find all paths with exponent (2, 0,−1). These paths are obtained by choos-
ing a path p0 from Table 4, and p0 from Table 5, with end(p0) = start(p0) and with
exponents summing to (2, 0,−1). Explicitly these paths are as follows:
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(1) The paths starting at e are p = p0 ·p0 with either row(p0) = 13 and row(p0) ∈
{2, 9, 16, 25, 40, 44}, or row(p0) = 14 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

(2) The paths starting at 1 are p = p0 · p0 with either row(p0) = 9 and row(p0) ∈
{2, 9, 16, 25, 40, 44}, or row(p0) = 10 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

(3) The paths starting at 12 are p = p0 ·p0 with either row(p0) = 3 and row(p0) ∈
{2, 9, 16, 25, 40, 44}, or row(p0) = 4 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

(4) The paths starting at 121 are p = p0 · p0 with row(p0) = 1 and row(p0) ∈
{7, 14, 19, 23, 27, 31}.

Each of these paths can be rewritten in the form u−1w1tN1 v for some u, v ∈ B1 and
N > 0 (recall that t1 = 2101, and note that t1 = tω1 = 0121). This shows that if
exp(Q2(p)) = (2, 0,−1) then w ∈ Γ2(R1).

The paths above combine to give all paths of the form
(1) (21)−1 · 1̂0̌1̂ · tN1 · v and (21)−1 · 101 · tN−k−1

1 · 21̂0̌1̂ · tk1 · v with v ∈ B1 and
0 6 k 6 N − 1.

(2) (2)−1 · 1̂0̌1̂ · tN1 · v and (2)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B1 and

0 6 k 6 N − 1.
(3) (e)−1 · 1̂0̌1̂ · tN1 · v and (e)−1 · 101 · tN−k−1

1 · 21̂0̌1̂ · tk1 · v with v ∈ B1 and
0 6 k 6 N − 1.

(4) (210)−1 · 1̂0̌1̂ · tN1 · v and (210)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B1 and

0 6 k 6 N − 1.
Using the action of τ2 on U2 we consider the paths in point 4 to start at 0 = τ2 · 121.
Then, with respect to the fundamental domain B′1 = z−1

1 B1 = {e, 1, 12, 0} the paths
in each of the points have weights N or 2k −N , and θ2

B′1
(p) = v in all cases. Then

c(2,0,−1)
π2

(u−1w1tN1 v) = −
(
ζN +

N−1∑
k=0

ζ2k−N

)
Eu,v = −sN (ζ)Eu,v,

where the minus sign comes from the fact that Q2(p) = (−q0)−1(q1 − q−1
1 )2 has

leading term −q−1
0 q2

1.
This calculation shows that exp(Q2(p)) = (2, 0,−1) if and only if w ∈ Γ2(R1).

It follows that B2 and B3 hold for the representation π2 equipped with the basis
associated to B′1, with aπ2 = 2a− c. Then, by Theorem 6.10 we have

cπ2(w; B′1) = c(2,0,−1)
π2

(w; B′1).

It is then clear that B4 holds (by linear independence of Schur characters), and the
formula

cπ2(u−1
w w1uw; B′1)cπ2(w; B′1) = (−s0(ζ)Euw,uw)(−sτw(ζ)Euw,vw) = −cπ2(w; B′1)

verifies B5.
The case (r1, r2) ∈ R2 is very similar – one first identifies the paths with exponent

(0, 1, 0), and then rewrites these paths in the cell factorisation u−1w2tN2 v with u, v ∈
B2. Next one adjusts the start of the paths according to the fundamental domain
B′2 = z−1

2 B2 = {e, 1, 0, 01} (paths starting at 121 now start at 0, and those starting at
12 now start at 01). Since Q2(p) = q2 − q−1

2 has leading term +q2 for all such paths
we finally obtain +sN (ζ).

In fact, all other cases are similar (although somewhat more complicated). For
example, consider the non-generic case (r1, r2) ∈ R3, where c = 2a − b and c < b.
One proceeds as above, however note that on specialising the maximum value of
xa+ yb+ zc for x ∈M(π2) is max{a, b, c, 2a− c, 2a− c} = c attained at x = (0, 0, 1)
and x = (2,−1, 0). One checks, directly from Theorem 6.18, that if p is of type ~w
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with exp(Q2(p)) ∈ {(0, 0, 1), (2,−1, 0)} then w ∈ Γ2(R3). We then compute the sum
of slices with respect to the adjusted basis B′3 associated to B′3

c(0,0,1)
π2

(w; B′3) + c(2,−1,0)
π2

(w; B′3),
and it turns out that this sum is precisely as stated in Theorem 6.15. It follows
that exp(Q2(p)) ∈ {(0, 0, 1), (2,−1, 0)} if and only if w ∈ Γ2(R3). Hence B2 and B3
hold, and Theorem 6.10 shows that the above sum of slices equals cπ2(w; B′3). Ax-
iom B4 readily follows. To verify axiom B5 let u0 = 101 and set du0 = w1 and
du = u−1w2u for all u ∈ B3 \ {u0} (these turn out to be the Duflo involutions, see
Theorem 7.8). Note that cπ2(du) = −Eu,u for all u ∈ B′3. Then, for w ∈ Γ2(R3) we
have cπ2(duw ; B′3)cπ2(w; B′3) = −cπ2(w; B′3), and hence B5 holds.

We omit the details for the “generic” cases in Theorem 6.16 which involve the
extended affine Weyl group — the general approach is similar to the above. Thus
consider the most intricate case of all — the equal parameter case of Theorem 6.17.
In this case, quite remarkably, the maximum value of xa + yb + zc is a, attained at
all x ∈ M(πi). One checks directly from Theorem 6.18 that if p is of type ~w with
exp(Q2(p)) ∈ M(π2) then either w ∈ Γ2(R6) or p0 is on row 32∗ or 33∗. However, as
explained in Remark 6.19, the paths on rows 32∗ and 33∗ may be discarded (as their
leading terms cancel one another). We now compute the sum of all slices:∑

x∈M(π2)

cx
π2

(w;W 2
0 )

with respect to the standard basis. A rather miraculous calculation (with many cancel-
lations occurring) shows that this sum of slices is precisely as stated in Theorem 6.17.
This computation can be read immediately off the tables in Theorem 6.18, because
we work in the standard basis and thus no modifications or conversions are required;
however one must be rather careful with signs. For example, let us compute the
sum of slices for w = wk3,3. We look through the tables to find all paths of type
wk3,3 = 21 · tkω1

· 01. These paths are listed in Table 6.
Therefore, with respect to the standard basis,

c(1,0,0)
π2

(wk3,3) = ζ−k−1E2,1

c(0,1,0)
π2

(wk3,3) =
(
ζk+1 +

k−1∑
n=0

ζ2n−k+1
)
E2,3 =

(
ζk+1 + sk−1(ζ)

)
E2,3

c(0,0,1)
π2

(wk3,3) =
(
ζ−k +

k−1∑
n=0

ζ2n−k+2
)
E2,3 = sk(ζ)E2,3

c(2,−1,0)
π2

(wk3,3) = −
( k−1∑
n=0

ζ2n−k+1
)
E2,3 = −sk−1(ζ)E2,3

c
(2,0,−1)
π̃2

(wk3,3) = −
(
ζk + ζ−k +

k−2∑
n=0

ζ2n−k+2
)
E2,3 = −sk(ζ)E2,3.

Thus the sum of slices is∑
x∈M(π2)

cx
π2

(w;W 2
0 ) = ζ−k−1E2,1 + ζk+1E2,3.

Note the remarkable cancellations that have occurred. The remaining formulae for the
sum of slices for each w = wki,j follow very similarly. Then B2 and B3 follow for the rep-
resentation π2, and it is easy to see that B2 and B3 also hold for π̃2. Verification of B4
for π̃2 is as follows (note that obviously B4 fails for π2, as cπ2(0) = E4,4 = cπ2(010)).
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p0 row p0 row start(p) p exp(Q2(p)) coeff wt2(p) θ2(p) conditions

8 15/39 1 2̂1tk101 (0, 1, 0) +1 k + 1 12 k > 0

9 16 1 21̂0̌1̂21tk−1
1 01 (2, 0,−1) −1 k 12 k > 1

9 40 1 21̂0̌1̂ (2, 0,−1) −1 0 12

10 17/41 1 21tk1 0̂1 (0, 0, 1) +1 −k 12 k > 0

10 18/42 1 21tk101̂ (1, 0, 0) +1 −k − 1 e k > 0

10 19 1 21tk−1
1 0121̂0̌1̂ (2, 0,−1) −1 −k 12 k > 1

10 20 1 21tm1 0̂121tn1 01 (0, 0, 1) +1 n−m+ 1 12 m+ n = k − 1 > 0

10 21 1 21tm1 01̂2̌1̂tn1 01 (2,−1, 0) −1 n−m 12 m+ n = k − 1 > 0

10 22 1 21tm1 012̂1tn1 01 (0, 1, 0) +1 n−m 12 m+ n = k − 1 > 0

10 23 1 21tm1 0121̂0̌1̂21tn1 01 (2, 0,−1) −1 n−m 12 m+ n = k − 2 > 0

Table 6. Paths for wk3,3
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Suppose that∑
w∈Γ2

awcπ̃2(w) = 0 for some aw ∈ Z (finitely many of which are nonzero).(16)

Write akij = awk
ij
. Consider the (1, 1)-entry of (16). This gives∑

k>0
ak21ζ

k +
∑
k>0

ak43ζ
−k−1 = 0.

Since each power of ζ appears at most once, we have ak21 = ak43 = 0 for all k > 0.
Similarly, by considering the (1, 2), (1, 3), (1, 4) and (2, 1) entries of (16) gives

ak24 = ak23 = ak41 = ak22 = ak42 = ak31 = ak33 = 0.

The (2, 2)-entry gives

as2 + as2s1s2 +
∑
k>0

ak44ζ
−k−1 +

∑
k>0

ak34(ζk+1 + ζ−k−1) = 0

Thus ak34 = 0 for all k > 0 (considering the powers ζk+1), and then it follows that
ak44 = 0 for all k > 0 (considering the powers ζ−k−1) and thus as2 + as2s1s2 = 0. Now
considering the (6, 6)-entry we have as2 − as2s1s2 = 0, and hence as2 = as2s1s2 = 0.
Continuing in this way we see that akij = 0 for all i, j, k, and hence B4 holds.

To verify B5, note directly from the formulae for cπ̃2(wkij) that

cπ̃2(sj)cπ̃2(w) = cπ̃2(w) for all w in the right cell of sj (with j = 0, 1, 2)

(we note that the elements sj , j = 0, 1, 2, turn out to be the Duflo involutions, see
Theorem 7.8). The proof is now complete. �

6.4. The cell Γ1. The analysis of this cell is similar to (and in fact considerably
easier than) the Γ2 case.

The stable regions for Γ1 (with r2 6 r1) are as follows.

R1 = {(r1, r2) ∈ Q2
>0 | r2 6 r1, r2 < 1− r1}

R2 = {(r1, r2) ∈ Q2
>0 | r2 6 r1, r2 > 1− r1, r2 > r1 − 1}

R3 = {(r1, r2) ∈ Q2
>0 | r2 < r1 − 1}

R4 = R1,2 = {(r1, r2) ∈ Q2
>0 | r2 6 r1, r2 = 1− r1}

R5 = R2,3 = {(r1, r2) ∈ Q2
>0 | r2 = r1 − 1}.

The regimes (r1, r2) ∈ Rj with j = 1, 2, 3 are “generic”, and admit cell factorisations
where

wj =


1 if j = 1
02 if j = 2
212 if j = 3

tj =


021 if j = 1
102 if j = 2
012 if j = 3

and Bj =


(e, 2, 0, 02) if j = 1
(e, 1, 10, 12) if j = 2
(e, 0, 01, 010) if j = 3

If w = u−1wjtkj v with u, v ∈ Bj and k > 0 we write, as usual, uw = u, vw = v, and
τw = k.

For each j = 1, 2, 3 let zj ∈ Bj be such that B′j = {z−1
j u | u ∈ Bj} is a fundamental

domain for the action of τ1 on U1 with z−1
j e on the negative side of each hyperplane

separating z−1
j e from z−1

j u with u ∈ Bj . Specifically, zj = 2, 12, e in the cases j =
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1, 2, 3. Let B′j = (ξ1 ⊗ Xz−1
j
u | u ∈ B′j) be the basis associated to the fundamental

domain B′j . Thus

B′j =


(ξ1 ⊗X2, ξ1 ⊗Xe, ξ1 ⊗X20, ξ1 ⊗X0) if j = 1
(ξ1 ⊗X21, ξ1 ⊗X2, ξ1 ⊗X20, ξ1 ⊗Xe) if j = 2
(ξ1 ⊗Xe, ξ1 ⊗X0, ξ1 ⊗X01, ξ1 ⊗X010) if j = 3.

The fundamental domain B′1 is depicted in the second example in Figure 3.
The regimes R1,2 and R2,3 are “non-generic”, and do not admit cell factorisations.

We have

Γ1(R1,2) = Γ1(R1) ∪ {w2} and Γ1(R2,3) = Γ1(R2) ∪ {w3}.

Thus we can use cell factorisation in Γ1(R1) to describe all elements of Γ1(R1,2)\{w2},
and hence the expressions uw, vw, and τw are defined for w ∈ Γ1(R1,2) \ {w2}. We
extend this definition by setting

uw2 = vw2 = 02 and τw2 = −1.

Similarly we can use cell factorisation in Γ1(R2) to describe all elements of Γ1(R2,3) \
{w3}, and hence the expressions uw, vw, and τw are defined for w ∈ Γ1(R2,3) \ {w3}.
We extend this definition by setting

uw3 = vw3 = 12 and τw3 = −1.

The main theorem of this section is the following. To conveniently state the theorem
we will write R4 = R1,2, R5 = R2,3, B′4 = B′1, B′4 = B′1, B′5 = B′2 and B′5 = B′2.
Moreover, we let b4 = 02 and b5 = 12. The elementary matrix Eu,v (u, v ∈ Bj)
denotes the matrix with 1 at position (k, `) where k, ` is the position of u and v in
the ordered set Bj , and 0 everywhere else.

Theorem 6.21. Let (r1, r2) ∈ Rj, with 1 6 j 6 5. Then π1, equipped with the basis
B′j, satisfies B1–B5 for the cell Γ1 = Γ1(r1, r2), with aπ1 = ã(Γ1). Moreover, for
j = 1, 2, 3 the leading matrices of π1 are

cπ1(w; B′j) = sτw(ζ)Euw,vw for w ∈ Γ1,

where sk(ζ) is the Schur function of type A1. In the cases j = 4, 5 we have, for w ∈ Γ1,
cπ1(w; B′j) = fuw,vwτw (ζ)Euw,vw

where

fu,vk (ζ) =


sk(ζ)± sk−1(ζ) if u, v 6= bj
sk(ζ)± sk−1(ζ)± ζ−k−1 if u 6= bj and v = bj
sk(ζ)± sk−1(ζ)± ζk+1 if u = bj and v 6= bj
sk(ζ)± sk+1(ζ) if u, v = bj

with the + sign for j = 4, and the − sign for j = 5, and where s−1(ζ) = 0.

Proof. The proof of Theorem 6.21 is similar to the proof of Theorem 6.15, and we will
simply make some comments and omit the details. One first establishes an analogue
of Theorem 6.18 using the 1-folding tables for ~t1 and ~t2 given in Table 7.

In particular one shows that exp(Q1(p)) � x for some

x ∈ {(1, 0, 0), (0, 1, 1), (−1, 2, 0), (−1, 0, 2)}.
Then, as in Corollary 6.20 we see that

M(π1) = {(1, 0, 0), (0, 1, 1), (−1, 2, 0), (−1, 0, 2)}.
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0 1 2 1
1 − − − ∗
2 − ∗ − −
3 1 ∗ 1 2
4 2 1 2 ∗

(a) ~t2 = 010212 and ~b0 = 010210

0 1 0 2 1 2 0
1 − − − − − − −
2 − ∗ 1 − ∗ 1 −
3 1 ∗ − 1 ∗ − 1
4 2 1 3 2 1 3 2

(b) ~t1 = 0121

Table 7. 1-folding tables

Next one classifies the paths p for which exp(Q1(p)) = x for some x ∈ M(π1). Theo-
rem 6.21 now follows as in the Γ2 case. �

6.5. The cell Γ3. Again, the analysis of this cell is similar to (and considerably
easier than) the Γ2 case.

The cell Γ3 is stable in the following regions:

R1 = {(r1, r2) ∈ Q2
>0 | r1 − 2 < r2 < r1}

R2 = {(r1, r2) ∈ Q2
>0 | r2 < r1 − 2}

R3 = R1,2 = {(r1, r2) ∈ Q2
>0 | r2 = r1 − 2}.

The parameters (r1, r2) ∈ R1 ∪ R2 are generic for the cell Γ3, and we have a cell
factorisation where

wj =
{

0101 if j= 1
02 if j= 2

tj =
{

2101 if j= 1
1012 if j= 2

and Bj =
{

(e, 2, 21, 210) if j= 1
(e, 1, 10, 101) if j= 2.

For each j = 1, 2 let zj ∈ Bj be such that B′j = {z−1
j u | u ∈ Bj} is a fundamental

domain for the action of τ2 on U2 with z−1
j e on the negative side of each hyperplane

separating z−1
j e from z−1

j u with u ∈ Bj . Specifically, zj = 21, 1 in the cases j = 1, 2.
Let B′j = (ξ1 ⊗ Xz−1

j
u | u ∈ B′j) be the basis associated to the fundamental domain

B′j . Thus

B′j =
{

(ξ3 ⊗X12, ξ3 ⊗X1, ξ3 ⊗Xe, ξ3 ⊗X0) if j = 1
(ξ3 ⊗X1, ξ3 ⊗Xe, ξ3 ⊗X0, ξ3 ⊗X01) if j = 2.

The fundamental domain B′1 is depicted in the third example of Figure 3.
The regime R3 = R1,2 is non-generic for Γ3, and there is no cell factorisation.

However we note that

Γ3(R1,2) = Γ3(R2) ∪ {w1}.

Thus we use the cell factorisation in Γ3(R2) to describe the elements of Γ3(R3), with
the extension of notation

uw1 = vw1 = 101 and τw1 = −1.

We also set B′3 = B′2 and B′3 = B′2. In the following theorem, the elementary matrix
Eu,v (u, v ∈ Bj) denotes the matrix with 1 at position (k, `) where k, ` is the position
of u and v in the ordered set Bj , and 0 everywhere else.
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Theorem 6.22. Let (r1, r2) ∈ Rj, with j = 1, 2, 3. Then π3, equipped with the basis
B′j, satisfies B1–B5 for the cell Γ3 = Γ3(r1, r2), with aπ3 = ã(Γ3). Moreover, for
j = 1, 2 the leading matrices of π3 are

cπ3(w; B′j) = sτw(ζ)Euw,vw for w ∈ Γ3

where sk(ζ) is the Schur function of type A1. In the case j = 3 we have, for w ∈ Γ3,
cπ3(w; B′3) = fuw,vwτw (ζ)Euw,vw

where

fu,vk (ζ) =


sk(ζ) + sk−1(ζ) if u, v 6= 101
sk(ζ) + sk−1(ζ) + ζ−k−1 if u 6= 101 and v = 101
sk(ζ) + sk−1(ζ) + ζk+1 if u = 101 and v 6= 101
sk(ζ) + sk+1(ζ) if u = v = 101,

where s−1(ζ) = 0.

Proof. Again the proof of Theorem 6.22 is similar to the proof of Theorem 6.15,
however the presence of a positive contribution q+1

0 to Q3(p) from the bounces on
the “top” wall of the strip U2 requires some additional arguments, which we now
outline. Since the cell Γ3 only occurs in the regime r2 < r1 the key idea is to include
the relation (0, 0, 1) ≺ (0, 1, 0) in the partial order on Z3. This turns out to be most
useful in the form (0,−1, 1) ≺ (0, 0, 0) which should be interpreted as saying that the
combined contribution to exponent by performing both a bounce on the top of the
strip and a bounce on the bottom of the strip is negative.

The 3-folding tables of ~t1 and ~t2 are as in Table 3. Note that each row that contains
at least one ∗ entry in fact contains precisely one ∗ in a 0-headed column and one ∗
in a 2-headed column. This fact makes the critical observation (15) remain true: If a
pass of either the ~t1 or ~t2 table is completed on a row containing at least one ∗, and
if no folds are made in this pass, then we have

exp(Q3(p)) = exp(Q3(p′)) + (0,−1, 1) ≺ exp(Q3(p′)),

where p′ is the path obtained from p by removing this copy of ~t1 or ~t2. Thus such
paths necessarily have strictly dominated exponents.

Incorporating the above observations into the analysis one readily establishes an
analogue of Theorem 6.18. Specifically, for each 3-folded alcove path p we have
exp(Q3(p)) � x for some x ∈ {((2, 0, 2), (0, 1, 1)}. Then, as in Corollary 6.20 we
see that

M(π3) = {(2, 0, 2), (0, 1, 1)},
and the paths with exp(Q3(p)) = x for some x ∈ M(π3) are easily classified. Theo-
rem 6.22 follows. �

The proof of Theorem 6.1 is now complete. Moreover, we have explicit formulae
for the leading matrices for all cells. Using these formulae we can easily verify conjec-
ture P8.

Corollary 6.23. Conjecture P8 holds for all choices of parameters.

Proof. Suppose that x, y, z ∈ W and γx,y,z−1 6= 0. It follows that x, y, z ∈ Γ for
some Γ ∈ Λ (see Theorem 1.7). Then γx,y,z−1 is the coefficient of cπΓ(z; BΓ) in the
expansion of cπΓ(x; BΓ)cπΓ(y; BΓ). Suppose that Γ admits a cell factorisation. Then by
the explicit formulae from Theorem 5.1 and Section 6 we have cπΓ(w; BΓ) = fw Euw,vw
for some constant or Schur function fw 6= 0. Then

cπΓ(x; BΓ)cπΓ(y; BΓ) = fxfyEux,vxEuy,vy = δvx,uy fxfyEux,vy .
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Thus if γx,y,z−1 6= 0 we have vx = uy (that is, x−1 ∼R y), and moreover uz = ux (that
is, z ∼R x) and vz = vy (that is, z−1 ∼R y−1). Hence P8 follows in this case.

If Γ does not admit a cell factorisation then the result follows by more direct
computation using the explicit formulae for the leading matrices, and we omit the
easy details. �

7. The asymptotic Plancherel formula
At this stage we have computed Lusztig’s a-function, and proved conjectures P4, P8,
P9, P10, P11, P12, and P14 (see Corollaries 3.1, 6.2, and 6.23). In this section we prove
the remaining conjectures. With the exception of P15, all of these conjectures follow
from a remarkable property (Theorem 7.4) of Opdam’s Plancherel formula which
ensures that there is a descent to an “asymptotic Plancherel formula” on Lusztig’s as-
ymptotic algebra J . This asymptotic Plancherel formula ensures that P7 holds (since
we obtain an inner product on J ), and moreover allows us to prove P1 and compute
the Duflo involutions. Conjectures P2, P3, P5, P6, and P13 all follow. Conjecture P15
is of a slightly different flavour, and uses an additional ingredient due to Xie [24] (see
Theorem 7.13).

7.1. The Plancherel formula. Since the Plancherel Theorem is inherently an
analytic concept, we regard H as an algebra over C by specialising q → q for some
real number q > 1 and extending scalars from Z to C. We write HC for this specialised
algebra. Let πi, i = 0, 1, . . . , 13 be the specialisations of the representations πi defined
earlier. Now we regard ζ ∈ (C×)2 for the representation π0 = πζ0 and ζ ∈ C× for
the representations πi = πζi with i = 1, 2, 3. Write χζi for the character of πζi for
i = 0, 1, 2, 3, and write χi for the character of πi for i = 4, 5, . . . , 13.

Define an involution ∗ on HC and the canonical trace functional Tr : HC → C by(∑
w∈W

awTw

)∗
=
∑
w∈W

aw Tw−1 and Tr
(∑
w∈W

awTw

)
= ae

where now aw denotes complex conjugation. An induction on `(v) shows that
Tr(TuT ∗v ) = δu,v for all u, v ∈W , and hence Tr(h1h2) = Tr(h2h1) for all h1, h2 ∈ HC.
It follows that (h1, h2) = Tr(h1h

∗
2) defines an Hermitian inner product on HC. Let

‖h‖2 =
√

(h, h) be the `2-norm. The algebra HC acts on itself by left multiplication,
and the corresponding operator norm is ‖h‖ = sup{‖hx‖2 : x ∈ HC, ‖x‖2 6 1}.
Let HC denote the completion of HC with respect to this norm. Thus HC is a
non-commutative C∗-algebra. The irreducible representations of HC are the (unique)
extensions of the irreducible representations of HC that are continuous with respect to
the `2-operator norm, and it turns out that these are the irreducible “tempered” rep-
resentations of HC (see [19, §2.7 and Corollary 6.2]). In particular, every irreducible
representation of HC is finite dimensional (since every irreducible representation
of HC has degree at most |W0|), and it follows from the general theory of traces
on “liminal” C∗-algebras that there exists a unique positive Borel measure µ on
Irrep(HC), called the Plancherel measure, such that (see [4, §8.8])

Tr(h) =
∫

Irrep(HC)
χπ(h) dµ(π) for all h ∈ HC.

The Plancherel measure has been computed in general by Opdam [19]. We now recall
the explicit formulation in type C̃2 obtained by the second author in [20, §4.7].
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Define rational functions cj(ζ), j = 0, 1, 2, 3, by

c0(ζ) = (1−q−2aζ−1
1 )(1−q−2aζ−1

1 ζ−2
2 )(1−q−b−cζ−1

1 ζ−1
2 )(1+q−b+cζ−1

1 ζ−1
2 )(1− q−b−cζ−1

2 )(1 + q−b+cζ−1
2 )

(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )

c1(ζ) = (1 + q−a−b−cζ−1)(1− q−a−b+cζ−1)(1 + qa−b−cζ−1)(1− qa−b+cζ−1)
(1− ζ−2)(1− q2aζ−2)

c2(ζ) = (1 + q−b+cζ−1)(1− q−2a−b−cζ−1)(1− q−2a+b+cζ−1)
(1− ζ−2)(1− qb+cζ−1)

c3(ζ) = (1− q−b−cζ−1)(1 + q−2a−b+cζ−1)(1 + q−2a+b−cζ−1)
(1− ζ−2)(1 + qb−cζ−1) ,

and constants Cj , j = 0, 1, 2, . . . , 8 by

C0 = 1
8q4a+4b

C1 = q2a − 1
2q2a+4b(q2a + 1)

C2 = q2b+2c − 1
2q4a+2b(q2b + 1)(q2c + 1)

C3 = q2b − q2c

2q4a+2b(q2b + 1)(q2c + 1)

C4 = (q2a+2b+2c − 1)(q4a+2b+2c − 1)
(q2a + 1)(q2b + 1)(q2c + 1)(q2a+2b + 1)(q2a+2c + 1)

C5 = (q2a−2b−2c − 1)(q4a−2b−2c − 1)
(q2a + 1)(q−2b + 1)(q−2c + 1)(q2a−2b + 1)(q2a−2c + 1)

C6 = (q2b − q2c)(q2b+2c − 1)
(q2a+2b + 1)(q2a+2c + 1)(q−2a+2b + 1)(q−2a+2c + 1)

C7 = (q2a+2b−2c − 1)(q4a+2b−2c − 1)
(q2a + 1)(q2b + 1)(q−2c + 1)(q2a+2b + 1)(q2a−2c + 1)

C8 = (q2a−2b+2c − 1)(q4a−2b+2c − 1)
(q2a + 1)(q−2b + 1)(q2c + 1)(q2a−2b + 1)(q2a+2c + 1) .

The explicit formulation of the Plancherel formula for C̃2 from [20, §4.7] is as
follows. Let T = {ζ ∈ C : |ζ| = 1} denote the circle group with normalised Haar
measure d ζ (thus

∫
T f(ζ) d ζ = 1

2π
∫ 2π

0 f(ei θ) d θ).

Theorem 7.1. Let h ∈ HC. If r2 6 r1 then

Tr(h) = |C0|
∫∫

T2

χζ0(h)
|c0(ζ)|2 d ζ + |C1|

∫
T

χζ1(h)
|c1(ζ)|2 d ζ

+ |C2|
∫
T

χζ2(h)
|c2(ζ)|2 d ζ + |C3|

∫
T

χζ3(h)
|c3(ζ)|2 d ζ

+ |C4|χ4(h) + |C5|χ′(h) + |C6|χ12(h) + |C7|χ5(h) + |C8|χ′′(h)
where

χ′ =


χ7 if r1 + r2 > 2
χ10 if 1 < r1 + r2 < 2
χ9 if r1 + r2 < 1

χ′′ =


χ8 if r1 − r2 > 2
χ11 if 1 < r1 − r2 < 2
χ6 if r1 − r2 < 1.

If r2 > r1 then the Plancherel Theorem is obtained from the r2 < r1 formula by
applying σ to all representation, constants, and c-functions. The defining regions in
(χ′′)σ are r2 − r1 > 2, 1 < r2 − r1 < 2, and r2 − r1 < 1.
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Proof. See [20, Section 4.7] for the case r1 6= r2, and [20, Section 4.4] for the case
r1 = r2. �

7.2. The Plancherel formula and cell decomposition. In this section we
make an observation comparing the cell decomposition and the Plancherel formula in
type C̃2. This observation was conjectured in [13] to hold in arbitrary affine type, and
here we confirm this conjecture for type C̃2.

It is convenient to group the representations that appear under the integral signs
in the Plancherel formula into classes Π0 = {πζ0 | ζ ∈ T2} and Πi = {πζi | ζ ∈ T}
for i = 1, 2, 3. The remaining representations (the “point masses”) are taken to be in
their own classes: Πj = {πj} for 4 6 j 6 12. For each choice (r1, r2) (with r1 = b/a
and r2 = c/a as usual) let Π(r1, r2) denote the set of classes that appear with nonzero
coefficient in the Plancherel formula. For example, if (r1, r2) ∈ A1 then

Π(r1, r2) = {Π0,Π1,Π2,Π3,Π4,Π5,Π6,Π9,Π12}.(17)

Let ρ0, . . . , ρ13 denote the representations of the balanced system of cell represen-
tations constructed in Theorem 6.1. Thus typically ρj = πj , with only the following
exceptions: In equal parameters we have ρ2 = πζ2⊕π5⊕π6, for (r1, r2) ∈ {(r, 1) | r > 1}
we have ρ13 = π5 ⊕ π7 ⊕ π12, and for (r1, r2) ∈ A2,3 we have ρ13 = π6 ⊕ π12 ⊕ π10.

Proposition 7.2. For each choice (r1, r2) ∈ Q2
>0 there is a well defined surjective

map Ω : Π(r1, r2)→ Λ(r1, r2) given by

Ω(Πj) = Γj if πj is a submodule of ρj (as representations of Hg).

Moreover, on each open region Aj the map Ω is bijective.

Proof. This is by direct observation for each parameter regime. For example, consider
(r1, r2) ∈ A1. In this case Π(r1, r2) is as in (17), and from Figure 5 we have Λ(r1, r2) =
{Γ0,Γ1,Γ2,Γ3,Γ4,Γ5,Γ6,Γ9,Γ12}, and the result follows in this case.

For another example, consider (r1, r2) ∈ A2,3. Thus r1 = 1 and 0 < r2 < 1. Then

Π(r1, r2) = {Π0,Π1,Π2,Π3,Π4,Π5,Π6,Π10,Π12}
Λ(r1, r2) = {Γ0,Γ1,Γ2,Γ3,Γ4,Γ5,Γ13}.

Thus Ω(Πj) = Γj for j ∈ {0, 1, 2, 3, 4, 5}, and Ω(Π6) = Ω(Π10) = Ω(Π12) = Γ13 (recall
that ρ13 = π6 ⊕ π12 ⊕ π10).

As a final example, consider (r1, r2) = (1, 1) = P2 (equal parameters). In this case

Π(r1, r2) = {Π0,Π1,Π2,Π4,Π5,Π6} and Λ(r1, r2) = {Γ0,Γ1,Γ2,Γ4}.

Since ρ2 = πζ2 ⊕ π5 ⊕ π6 we have Ω(Πj) = Γj for j ∈ {0, 1, 4} and Ω(Π2) = Ω(Π5) =
Ω(Π6) = Γ2. All remaining cases are similar. �

We will sometimes write Ω(π) in place of Ω(Π) if π is a member of the class Π.

7.3. The asymptotic Plancherel formula. Each rational function f(q) =
a(q)/b(q) can be written as f(q) = q−Na′(q−1)/b′(q−1) with N ∈ Z where a′(q−1)
and b′(q−1) are polynomials in q−1 nonvanishing at q−1 = 0. The integer N in
this expression is uniquely determined, and is called the q−1-valuation of f , written
νq(f) = N . For example, νq((q2 + 1)(q3 + 1)/(q7 − q + 1)) = 2.

Definition 7.3. Let Π be a class of representations appearing in the Plancherel The-
orem. Consider the coefficient in the Plancherel formula of a generic character χπ
with π ∈ Π as a rational function C = C(q) in q by setting q = q. The q−1-valuation
of Π is defined to be νq(Π) = νq(C(q)). We also write νq(π) = νq(Π) for any π ∈ Π.
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Recall that we have seen that Lusztig’s a-function is constant on two-sided cells,
and thus we may write a(Γ) for the value of a(w) for any w ∈ Γ. Moreover the values
of the a-function are given in Table 2 (and the discussion immediately following
the table; see Corollary 6.2). The following remarkable property of the Plancherel
measure has an analogue in the finite dimensional case where the Plancherel measure
is replaced by the “generic degrees” of the Hecke algebra (see [10, Chapter 11] and [8]).

Theorem 7.4. For each classes Π appearing in the Plancherel formula in type C̃2 we
have νq(Π) = 2a(Ω(Π)).

Proof. If νq(f(q)) = N then we write f(q) ∼ Cq−N where C is the specialisation at
q−1 = 0 of qαf(q). Thus Cq−α is the “leading term” of f(q) when f(q) is expressed
as a Laurent power series in q−1. Then we compute, directly from Theorem 7.1,

|C0|
|c0(ζ)|2 ∼

1
8 ×


q−4a−4b|(1− ζ−1

1 )(1− ζ−1
1 ζ−2

2 )(1− ζ−2
1 ζ−2

2 )(1− ζ−2
2 )|2 if r2 < r1

q−4a−4c|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 if r2 > r1

q−4a−4b|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−1

1 ζ−1
2 )(1− ζ−1

2 )|2 if r1 = r2

showing that νq(Π0) = 2a(Γ0) for all choices of parameters. Similarly we compute

|C1|
|c1(ζ)|2 ∼

1
2×



q2a−4c|1− ζ−2|2 if (r1, r2) ∈ A
q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ B
q2a−4b|1− ζ−2|2 if (r1, r2) ∈ C
q−2a|1− ζ−2|2 if (r1, r2) ∈ D
q−2b−2c|1 + ζ−1|2 if (r1, r2) ∈ E
q2a−4b|1 + ζ−1|2 if (r1, r2) ∈ F
q−2b−2c|1− ζ−1|2 if (r1, r2) ∈ G

A

B

C
D

E

F

G

1

1

|C2|
|c2(ζ)|2 ∼

1
2×



q−2c|1− ζ−2|2 if (r1, r2) ∈ A
q−2b|1− ζ−2|2 if (r1, r2) ∈ B
q−4a+2c|1− ζ−2|2 if (r1, r2) ∈ C
q−4a+2b|1− ζ−2|2 if (r1, r2) ∈ D
q−2b|1− ζ−1|2 if (r1, r2) ∈ E
q−4a+2c|1 + ζ−1|2 if (r1, r2) ∈ F
q−4a+2c|1− ζ−1|2 if (r1, r2) ∈ G
q−4a+2b|1 + ζ−1|2 if (r1, r2) ∈ H
q−2a if (r1, r2) ∈ I

2

2

A E

B

FCG

D

H

I

|C3|
|c3(ζ)|2 ∼

1
2×



q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ A
q−4a−4b|1− ζ−2|2 if (r1, r2) ∈ B
q−4a−4c|1− ζ−2|2 if (r1, r2) ∈ C
q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ D
q−4a−4b|1− ζ−1|2 if (r1, r2) ∈ E
q−4a−4c|1− ζ−1|2 if (r1, r2) ∈ F

A

B

C

F
D

E

2

2

and thus νq(Πi) = 2a(Ω(Πi)) for all i = 1, 2, 3 and all choices of parameters.
For the point masses we have

Algebraic Combinatorics, Vol. 2 #5 (2019) 1023



J. Guilhot & J. Parkinson

|C5| ∼



q−4a+2b if (r1, r2) ∈ A
q−2a if (r1, r2) ∈ B ∪ E
q−4a+2c if (r1, r2) ∈ C
q−2c if (r1, r2) ∈ D
q−2b if (r1, r2) ∈ F
q−2b−2c if (r1, r2) ∈ G
q−2a/2 if (r1, r2) ∈ H ∪ I
q−2c/2 if (r1, r2) ∈ J
q−2b/2 if (r1, r2) ∈ K

A B

C

D

F

E

G

H

IJ

K

2

2

1

1

|C6| ∼



q−2a if (r1, r2) ∈ A ∪D
q−2b if (r1, r2) ∈ B
q−2c if (r1, r2) ∈ C
q−4a+2c if (r1, r2) ∈ E
q−4a+2b if (r1, r2) ∈ F
q−2a/2 if (r1, r2) ∈ G ∪H
q−4a+2c/2 if (r1, r2) ∈ I
q−4a+2b/2 if (r1, r2) ∈ J

A B

C

D
E

F

G

HI

J

1

1

|C7| ∼



q−4a−4b if (r1, r2) ∈ A
q−2b−2c if (r1, r2) ∈ B
q2a−4c if (r1, r2) ∈ C
q−2c if (r1, r2) ∈ D
q2a−4c/2 if (r1, r2) ∈ E

A

B

C

D

E

2

1

|C8| ∼



q−4a−4c if (r1, r2) ∈ A
q−2b−2c if (r1, r2) ∈ B
q2a−4b if (r1, r2) ∈ C
q−2b if (r1, r2) ∈ D
q2a−4b/2 if (r1, r2) ∈ E

A

B

CD E

21
and the result follows (by comparison with Table 2). �

Definition 7.5.Using Theorem 7.4 we define the asymptotic Plancherel measure on
Irrep(HC) by

dµ′(π) = lim
q→∞

q2a(Ω(Π)) dµ(π) for all π ∈ Π.
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Theorem 7.6. For r2 6 r1 the asymptotic Plancherel measure is as follows. The case
r2 > r1 may be obtained by applying σ. For the infinite cells we have

µ′(πζ0) = 1
8 ×

{
|(1− ζ−1

1 )(1− ζ−1
1 ζ−2

2 )(1− ζ−2
1 ζ−2

2 )(1− ζ−2
2 )|2 if r2 6= r1

|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−1

1 ζ−1
2 )(1− ζ−1

2 )|2 if r2 = r1

µ′(πζ1) = 1
2 ×


|1− ζ−2|2 if r2 6= r1 − 1 and r2 6= 1− r1

|1− ζ−1|2 if r2 = 1− r1

|1 + ζ−1|2 if r2 = r1 + 1

µ′(πζ2) = 1
2 ×


|1− ζ−2|2 if r2 6= r1 and r2 6= 2− r1

|1− ζ−1|2 if r2 = r1 and r2 6= 2− r1

|1 + ζ−1|2 if r2 6= r1 and r2 = 2− r1

1 if (r1, r2) = (1, 1)

µ′(πζ3) = 1
2 ×


|1− ζ−2|2 if r2 6= r1 and r2 = r1 − 2
|1− ζ−1|2 if r2 6= r1 and r2 = r1 − 2
0 if r2 = r1

and for the square integrable representations we have µ′(π4) = 1 for all (r1, r2), and

µ′(π5) =
{

1 if r2 6= 1
1
2 if r2 = 1

µ′(π6) =
{

1 if r1 6= 1
1
2 if r1 = 1

µ′(π7) =


1 if r2 > 2− r1, r2 6= 1
1
2 if r2 > 2− r1, r2 = 1
0 if r2 6 2− r1

µ′(π8) =
{

1 if r2 < r1 − 2
0 if r2 > r1 − 2

µ′(π9) =
{

1 if r2 < 1− r1

0 otherwise

µ′(π10) =


1 if 1− r1 < r2 < 2− r1, r1 6= 1
1
2 if 1− r1 < r2 < 2− r1, r1 = 1
0 otherwise

µ′(π11) =
{

1 if r1 − 2 < r2 < r1 − 1
0 otherwise

µ′(π12) =


1 if r2 < r1, r1 6= 1, r2 6= 1
1
2 if r2 < r1, either r1 = 1 or r2 = 1
0 otherwise

Proof. This follows directly from the computations made in the proof of Theorem 7.4.
�

7.4. Conjecture P1. We can now prove that P1 holds for C̃2, following the tech-
nique of [13].

Theorem 7.7. Lusztig’s conjecture P1 holds for C̃2 for all choices of parameters.

Proof. Recall that ∆(w) is defined by Pe,w =nwq−∆(w)+(strictly smaller powers of q),
where nw 6= 0. We are required to prove that a(w) 6 ∆(w). This is equivalent to
showing that

lim
q→∞

qa(w)Pe,w(q) <∞,
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where we write Pe,w(q) for the specialisation of Pe,w at q = q. By the Plancherel
Theorem we have

qa(w)Pe,w(q) = qa(w) Tr(Cw) =
∫

Irrep(HC)
qa(w)χπ(Cw) dµ(π).

Suppose that w is in the two-sided cell Γ, and hence a(w) = a(Γ). Since the represen-
tations πi satisfy B1 and B2 for their respective cell Ω(πi), it follows that the integral
above is over only those classes of representations π ∈ Π ∈ Ω−1(Γ′) with Γ >LR Γ′.
For each such class of representations the Plancherel measure is, by Theorem 7.4, of
the form

dµ(π) = q−2a(Γ′)(1 +O(q−1)) dµ′(π)
where dµ′ is the asymptotic Plancherel measure. Thus the integrand (with respect to
the asymptotic Plancherel measure) is qa(Γ)−a(Γ′) tr(cπ(w))(1+O(q−1)). Since Γ >LR
Γ′ we have a(Γ′) > a(Γ) (by P4) and thus the power of q in the integrand is at most 0.
It is clear from the explicit C̃2 Plancherel Theorem that the limit may be passed under
the integral sign, and the result follows. �

7.5. Duflo involutions and conjecture P6. In this section we compute the Du-
flo elements for each cell. We recall that for r2 6 r1 all cells admit a cell factorisation
(perhaps within the extended affine Weyl group) with the exceptions

Γ1 in the case (r1, r2) ∈ R1
1,2 = {(r, r′) | r′ 6 r, r′ = 1− r},

Γ1 in the case (r1, r2) ∈ R1
2,3 = {(r, r′) | r′ = r − 1},

Γ2 in the case (r1, r2) ∈ R2
1,2 = {(r, r′) | r′ < r, r′ = 2− r},

Γ3 in the case (r1, r2) ∈ R3
1,2 = {(r, r′) | r′ = r − 2},

Γ2 in the case (r1, r2) = (1, 1),
Γ13 in all cases in which this cell appears.

Theorem 7.8. Let Γ ∈ Λ. The Duflo elements DΓ = D∩Γ are as follows. If Γ admits
a cell factorisation then

DΓ = {u−1wΓu | u ∈ BΓ}.
If Γ does not admit a cell factorisation then (in the local notation of the relevant
subsection 6.3–6.5)

DΓ1 = {w2} ∪ {u−1w1u | u ∈ B1 \ {02}} if (r1, r2) ∈ R1
1,2

DΓ1 = {w3} ∪ {u−1w2u | u ∈ B2 \ {12}} if (r1, r2) ∈ R1
2,3

DΓ2 = {w1} ∪ {u−1w2u | u ∈ B2 \ {101}} if (r1, r2) ∈ R2
1,2

DΓ3 = {w1} ∪ {u−1w2u | u ∈ B2 \ {101}} if (r1, r2) ∈ R3
1,2

DΓ2 = {0, 1, 2} if (r1, r2) = (1, 1)
DΓ13 = {0, 1} if (r1, r2) ∈ A4,5 ∪A7,8 ∪A9,10 ∪ P4 ∪ P5

DΓ13 = {1, 2, 010} if (r1, r2) ∈ A2,3.

Proof. Let n′w be the coefficient of q−a(w) in Pe,w. Thus w ∈ D if and only if n′w 6= 0
(and in this case n′w = nw). Moreover, from the asymptotic Plancherel formula we
have (see the proof of Theorem 7.7)

n′w =
∫

Ω−1(Γ)
tr(cπ(w)) dµ′(π) if w ∈ Γ.(18)
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In particular, for w ∈ Γi with 4 6 i 6 12 we have, using Theorem 5.1,

n′w = tr(cπi(w)) dµ′(πi) = ± tr(Euw,vw) dµ′(πi),

and thus n′w 6= 0 if and only if w ∈ {u−1wΓiu | u ∈ BΓi} as claimed.
For the infinite cells admitting a cell factorisation the analysis is as follows. Con-

sider the lowest two-sided cell Γ0. If r2 6= r1 then Theorem 6.4 and the asymptotic
Plancherel formula give (for w ∈ Γ0)

n′w = 1
8

∫
T2

sτw(ζ) tr(Euw,vw)|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 d ζ1 d ζ2.

It is well known that the Schur functions sλ(ζ) defined in equation (6) are orthonormal
with respect to the measure 1

8 |(1− ζ
−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 d ζ1 d ζ2,
and it follows that n′w = 0 unless τw = 0 and uw = vw, in which case n′w = 1. Hence the
result in this case. If r2 = r1 then the analysis is similar, since the Schur functions s′λ(ζ)
defined in (7) are orthonormal with respect to the asymptotic Plancherel measure
1
8 |(1− ζ

−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−1

1 ζ−1
2 )(1− ζ−1

2 )|2 d ζ1 d ζ2.
Now consider the case Γ2 with (r1, r2) ∈ R2 = {(r, r′) | r′ < r, r′ > 2− r}. In this

case we have (see Section 6.3)

Γ2 = {u−1w2tk2v | u, v ∈ B2, k > 0}

where w2 = 2, t2 = 1012, and B2 = {e, 1, 10, 101}. Using the formula in Theorem 6.15
we have cπζ2

(w; B′2) = sτw(ζ)Euw,vw for w ∈ Γ2, where sk is the Schur function of
type A1. The asymptotic Plancherel formula gives

n′w = 1
2

∫
T
sτw(ζ) tr(Euw,vw)|1− ζ−2|2 d ζ,

and since the Schur functions of type A1 are orthonormal with respect to the measure
1
2 |1 − ζ−2|2 d ζ it follows that n′w 6= 0 if and only if uw = vw and τw = 0. Thus
w ∈ {u−1w2u | u ∈ B2} as claimed.

The remaining cases admitting a cell factorisation are similar. However there are
slight modifications in the cases Γ2 with r2 = r1 6= 1 where we have cπζ2

(w) =
±sτw(ζ1/2)Euw,vw . Here the asymptotic Plancherel measure is 1

2 |1− (ζ1/2)−2|2 and so
the same analysis applies.

We now consider the cells that do not admit cell factorisations. Consider the case
Γ2 with (r1, r2) ∈ R2

1,2. Here we have

Γ2 = {w1} ∪ {u−1w2tk2v | u, v ∈ B2, k > 0}

where w1 = 101 and w2, t2, and B2 are as above. Recall that we extend the cell
factorisation in Γ2(R2) to the element w1 by setting τw1 = −1 and uw1 = vw1 = 101.
The asymptotic Plancherel formula, along with Theorem 6.15, gives

n′w = 1
2

∫
T
fuw,vwτw tr(Euw,vw)|1 + ζ−1|2 d ζ = 1

2δuw,vw

∫
T
fuw,uwτw |1 + ζ−1|2 d ζ

where

fu,uk =
{
sk(ζ)− sk−1(ζ) = s2k(−ζ1/2) if u 6= 101
sk(ζ)− sk+1(ζ) = −s2k+2(−ζ1/2) if u = 101.

Since the elements s2k(−ζ1/2) are orthonormal with respect to the measure |1 +
ζ−1|2 d ζ the result follows. The first 4 cases listed at the beginning of this section are
similar.
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Now consider the cell Γ2 in the equal parameter case. We have Ω−1(Γ2) = Π2∪Π5∪
Π6, and so Theorem 6.17 and the asymptotic Plancherel formula give (for w ∈ Γ2)

n′w = 1
2

∫
T

tr(cπζ2 (w)) d ζ + 1
2 tr(cπ5(w)) + 1

2 tr(cπ6(w)),

where the matrices cπζ2 (w) are obtained from the matrices in Theorem 6.17 by remov-
ing the 5th and 6th rows and columns. Since

∫
T ζ

k d ζ = δk,0 we obtain

1
2

∫
T

tr(cπζ2 (w)) d ζ =


1 if w = 1
1
2 if w ∈ {0, 2, 010, 212}
0 otherwise

(note that 1 = w0
21). Moreover, we have

cπ5(w) =


1 if w = 0
−1 if w = 010
0 otherwise

and cπ6(w) =


1 if w = 2
−1 if w = 212
0 otherwise.

For example, in the case of cπ5(w), the above claim follows from the fact that γ0(w)−
γ1(w)− γ2(w) 6 1 with equality if and only if w ∈ {0, 010}, where γi(w) denotes the
number of i generators appearing in any reduced expression of w (note that since the
orders mij of the products sisj are even this statistic is well defined).

Putting these facts together gives

n′w =
{

1 if w ∈ {0, 1, 2}
0 otherwise,

and hence the result for this cell.
Finally we consider the finite cell Γ13. There are two regimes:

Ω−1(Γ13) =
{
{π5, π7, π

B
12} if (r1, r2) ∈ R1 = A4,5 ∪A7,8 ∪A9,10 ∪ P4 ∪ P5

{π6, π
A
12, π

B
10} if (r1, r2) ∈ R2 = A2,3.

The asymptotic Plancherel measure is a sum of point masses:

dµ′(Ω−1(Γ13)) = 1
2 ×

{
δπ5 + δπ7 + δπ12 if (r1, r2) ∈ R1

δπ6 + δπ12 + δπ10 if (r1, r2) ∈ R2,

and thus n′w = 1
2 tr(cπ13(w)). The result follows using the formulae for the leading

matrices from Theorem 5.1. �

Corollary 7.9. Conjecture P6 holds for all choices of parameters.

Proof. Using the explicit descriptions in Theorem 7.8 it is clear that the elements of
D are involutions. �

7.6. An inner product on J and conjectures P2, P3, P5, P7 and P13. In
this section we endow Lusztig’s asymptotic algebra JΓ with a natural inner product
inherited from the Plancherel Theorem (a kind of asymptotic Plancherel Theorem).
As a consequence we obtain a proof of conjectures P2, P3, P5, P7, and P13.

Recall that we have proved in Theorem 1.7 that for each Γ ∈ Λ we have that
Lusztig’s asymptotic algebra is isomorphic to the Z-algebra JΓ spanned by the leading
matrices {cπΓ,w | w ∈ Γ}. We thus identify Lusztig’s asymptotic algebra with this
concrete algebra, with Jw ↔ cπΓ,w. Define an involution ∗ on JΓ by linearly extending
J∗w = Jw−1 .

Algebraic Combinatorics, Vol. 2 #5 (2019) 1028



Lusztig’s Conjectures for C̃2

Theorem 7.10. Let Γ ∈ Λ. The formula

〈g1, g2〉Γ =
∫

Ω−1(Γ)
tr(g1g

∗
2) dµ′(π) for g1, g2 ∈ JΓ

defines an inner product on JΓ with {Jw | w ∈ Γ} an orthonormal basis.

Proof. The proof is exactly as in [13, Theorem 8.14]. �

Corollary 7.11. Conjectures P2, P3, P5, P7, and P13 hold for all choices of pa-
rameters.

Proof. If x, y, z ∈ Γ then γx,y,z = 〈JxJy, Jz−1〉Γ = 〈Jy, Jx−1Jz−1〉Γ = 〈JyJz, Jx−1〉Γ =
γy,z,x, and hence P7 holds.

Conjectures P2, P3, P5, and P13 will follow easily from the following observation.
By Theorem 7.8 we see that each right cell Υ contains a unique Duflo involution
dΥ ∈ D. Using the explicit formulae for the leading matrices we compute directly
that for all two-sided cells Γ, and all right cells Υ ⊆ Γ, we have

cπΓ(dΥ)cπΓ(w) =
{
±cπΓ(w) if w ∈ Υ
0 if w /∈ Υ

(19)

where the sign is independent of w (and thus depends only on dΥ). For example, if Γ
admits a cell factorisation then dΥ = u−1wΓu for some u ∈ BΓ and cπΓ(dΥ) = ±Eu,u.
For w ∈ Γ we have cΓ(w) = cEuw,vw for some constant or Schur function c, and thus

cπΓ(dΥ)cπΓ(w) = ±cEu,uEuw,vw = ±δu,uwcπΓ(w).

Since w ∈ Υ if and only if uw = u the result follows (note also that if w /∈ Γ then
cπΓ(w) = 0). For the cases where Γ does not admit a cell factorisation we have in fact
already verified the above formulae in most cases in the course of establishing B5 (see
for example Theorem 5.1 for the cell Γ13, and the final lines in Section 6.3 for the
case Γ2 with equal parameters).

Consider P2. If γx,y,d 6= 0 with d = dΥ then x, y, d ∈ Γ for some two-sided cell Γ.
Using P7 we have

γx,y,d = γd,x,y = 〈JdJx, Jy−1〉Γ.
By (19) we have x ∈ Υ (otherwise JdJx = 0 and so γx,y,d = 0) and therefore JdJx =
±Jx (recall that Jw ∈ JΓ is identified with cπΓ(w)). Therefore γx,y,d = ±〈Jx, Jy−1〉Γ,
and Theorem 7.10 forces y−1 = x. Thus P2 holds.

Consider P5. Note from the previous paragraph that the condition γx,y,d 6= 0
forces x, d ∈ Υ for some right cell Υ and y = x−1. Moreover, γx,x−1,d = γd,x,x−1 =
〈JdJx, Jx〉Γ where Γ is the two-sided cell containing Υ. Using (19) it follows that
γx,x−1,d = ε〈Jx, Jx〉Γ = ε for some ε ∈ {−1, 1} independent of x. In particular, taking
x = d we have

ε = γd,d−1,d = γd,d,d−1 = 〈J2
d , Jd〉Γ =

∫
Ω−1(Γ)

tr(cπΓ(d)3) dµ′(π),

where we have used the fact that d2 = e. However, by (19) we have cπΓ(d)3 =
εcπΓ(d)2 = ε2cπΓ(d) = cπΓ(d), and hence

ε =
∫

Ω−1(Γ)
tr(cπΓ(d)) dµ′(π) = nd,

by (18) and the fact that n′d = nd for d ∈ D. Hence P5 holds.
Conjectures P3 and P13 follow more easily. �
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Remark 7.12.We note that some efficiency could be gained by using the logical
dependencies between the conjectures established in [17, Chapter 14]. For example,
P1+P3⇒ P5, and P2+P3+P4+P5⇒ P7. However we have found it instructive and
illustrative to demonstrate each conjecture directly. For example, it is considerably
more satisfying to see that P7 is in fact a consequence of an inner product structure on
Lusztig’s asymptotic algebra rather than a consequence of axioms P2, P3, P4 and P5.

7.7. Conjecture P15. In summary, using the explicit decomposition into cells, the
calculation of the a-function, and the asymptotic Plancherel Theorem we have proved
conjectures P1–P14 (see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11 and Theorem 7.7). The
remaining conjecture P15 has been proved by Xie [24, Theorem 6.2] under an assump-
tion on the a-function. We see below that this assumption is easily checked using the
results of this section, and P15 follows.

Theorem 7.13. Conjecture P15 holds for all choices of parameters.

Proof. By [24, Theorems 6.2 and 6.3] it is sufficient to verify that a(d) = deg hd,d,d
for all d ∈ D. This in turn is equivalent to showing that γd,d,d 6= 0 for all d ∈ D. As
we saw in the proof of P5 above (see Corollary 7.11) we have γd,d,d = nd = ±1, and
hence the result. �
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