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A balanced non-partitionable
Cohen–Macaulay complex

Martina Juhnke-Kubitzke & Lorenzo Venturello

Abstract In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding
conjecture by Stanley, that every Cohen–Macaulay simplicial complex is partitionable. We
construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph
has a minimal coloring. This answers a question by Duval et al. in the negative.

1. Introduction
Cohen–Macaulay simplicial complexes are among the best studied classes of simplicial
complexes in topological combinatorics and combinatorial commutative algebra and
they have been proven to be extremely useful for various problems in these areas. The
most prominent such example is probably provided by Stanley’s proof of the Upper
Bound Conjecture for spheres, which also marks the birth of Cohen–Macaulay com-
plexes [11]. Though the original definition by Stanley is algebraic, Reisner [9] – using
results of Hochster [7] – could show that Cohen–Macaulayness is a purely topolog-
ical property. In particular, all triangulations of balls and spheres are known to be
Cohen–Macaulay. One of the longstanding conjectures concerning this class of simpli-
cial complexes is the so-called Partitionability Conjecture by Stanley [13, p. 14] (for
all Cohen–Macaulay simplicial complexes) and Garsia [4] (for all for order complexes
of Cohen–Macaulay posets), stating that every Cohen–Macaulay simplicial complex
is partitionable. An affirmative answer to this conjecture would also have provided
a combinatorial interpretation of the h-vectors of Cohen–Macaulay complexes. How-
ever, in 2016 Duval, Goeckner, Klivans and Martin [3] provided an infinite family
of non-partitionable Cohen–Macaulay simplicial complexes – together with a general
construction method for such counterexamples – and thereby disproved Stanley’s con-
jecture. Even though we now know that the Partitionability Conjecture is false in full
generality, one could still hope for a more restricted version to be true. In particular,
Duval et al. suggested the following question, which is the main focus of this article [3,
Question 4.2].

Question 1.1. Is every balanced Cohen–Macaulay simplicial complex partitionable?
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We recall that a (d − 1)-dimensional simplicial complex is called balanced if its
underlying graph is d-colorable (in the graph-theoretic sense). Balanced simplicial
complexes were introduced by Stanley [13] and they comprise Coxeter complexes,
Tits buildings and also barycentric subdivisions of regular CW complexes. Hence,
a counterexample to the Partitionability Conjecture for order complexes of Cohen–
Macaulay posets [4], would also answer Question 1.1 in the negative.

In this article, we construct an infinite family of balanced non-partitionable Cohen–
Macaulay complexes. For this aim we start with the counterexample from [3] and
remove the obvious obstructions to balancedness via edge subdivisions. A priori the
subdivided complex might be partitionable, but we prove in Theorem 3.5 that for care-
fully chosen subdivisions non-partitionability is preserved. Since our counterexample
is not only Cohen–Macaulay but constructible, it is the first example of a balanced
constructible non-partitionable simplicial complex [5, § 4].

2. Background on simplicial complexes
We recall basics on (relative) simplicial complexes, including some of their combina-
torial and algebraic properties. We refer to [2] and [14] for more details.

Given a finite set V , an (abstract) simplicial complex ∆ on vertex set V is a
collection of subsets of V that is closed under inclusion. We write V (∆) for the vertex
set of a simplicial complex ∆. Throughout this article, all simplicial complexes are
assumed to be finite. Elements of ∆ are called faces of ∆ and inclusion-maximal faces
are called facets of ∆. The dimension of a face F ∈ ∆ is its cardinality minus one, and
the dimension of ∆ is defined as dim ∆ := max{dimF : F ∈ ∆}. 0-dimensional and
1-dimensional faces are called vertices and edges, respectively. A simplicial complex
∆ is pure if all its facets have the same dimension. The link of a face F ∈ ∆ is the
subcomplex

lk∆(F ) = {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆}.
A subcomplex Γ ⊆ ∆ is induced if for any F ⊆ V (Γ) with F ∈ ∆, it holds that
F ∈ Γ. We write Γ = ∆V (Γ) in this case. A relative simplicial complex is a pair
(∆,Γ) of simplicial complexes, where Γ ⊆ ∆ is a subcomplex of ∆. Elements of ∆rΓ
are called faces of (∆,Γ) and the dimension of (∆,Γ) is the maximal dimension
of a face in ∆ r Γ. Other notions from arbitrary simplicial complexes carry over
to relative simplicial complexes in exactly the same way. Let (∆,Γ) be a relative
simplicial complex, let Ω = ∆ r Γ and Ω = {F : F ⊆ G for some G ∈ Ω} be the
so-called combinatorial closure of Ω. (Ω,Ω r Ω) is called the minimal representation
of (∆,Γ) for the obvious reason. We will make use of this representation of relative
simplicial complexes in the construction of our counterexample.

The f -vector of a (d − 1)-dimensional (relative) simplicial complex ∆ is f(∆) =
(f−1(∆), f0(∆), . . . , fd−1(∆)), where fi(∆) denotes the number of i-dimensional faces
of ∆. The h-vector h(∆) = (h0(∆), h1(∆), . . . , hd(∆)) of ∆ is defined by the relation

d∑
i=0

fi−1(∆)(t− 1)d−i =
d∑

i=0
hi(∆)td−i.

We turn to several combinatorial and algebraic properties of simplicial complexes
that will be of importance for this article.

A (d−1)-dimensional simplicial complex ∆ is called balanced if its underlying graph
is d-colorable, that is, there exists a map κ : V (∆) → [d] = {1, . . . , d} such that
κ(v) 6= κ(w) if {v, w} ∈ ∆. Balanced simplicial complexes were originally introduced
by Stanley [13] and prominent examples of such simplicial complexes are provided by
barycentric subdivisions, Coxeter complexes and Tits buildings.
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Definition 2.1 ([1, 8]). A pure (relative) simplicial complex ∆ with facets F1, . . . , Fn

is called partitionable if there exists a partitioning of ∆ into pairwise disjoint Boolean
intervals

∆ =
n⋃
·

i=1
[Ri, Fi],

where [Ri, Fi] = {G ∈ ∆ : Ri ⊆ G ⊆ Fi}.

It was shown by Stanley [14, Proposition III.2.3] that the h-vector of a partitionable
simplicial complex ∆ has the following combinatorial interpretation:

(1) hi(∆) = #{1 6 j 6 n : #Rj = i}.

In particular, all h-vector entries are non-negative in this case.
We define three classes of simplicial complexes that share the same set of h-

vectors [12, Theorem 6]: shellable, constructible and Cohen–Macaulay complexes.
A pure simplicial complex ∆ is shellable if there exists an ordering F1, . . . , Fn of the

facets of ∆ such that for each 1 6 i 6 n there exists a unique minimal element Ri in

{G ⊆ Fi : G 6⊆ Fj for 1 6 j 6 i− 1}.

Since, obviously,
⋃
· n

i=1[Ri, Fi] is a partitioning of ∆, the h-vector of a shellable
simplicial complex can be computed using (1).

A (d − 1)-dimensional simplicial complex ∆ is constructible if ∆ is a simplex or
∆ = ∆1 ∪ ∆2, where ∆1 and ∆2 are constructible (d − 1)-dimensional simplicial
complexes and ∆1 ∩∆2 is constructible of dimension d− 2.

In the following, let F be an arbitrary field. A (d−1)-dimensional simplicial complex
∆ is Cohen–Macaulay over F if and only if, for every face F ∈ ∆ (including the empty
face), β̃i(lk∆(F );F) = 0 for all i 6= d − 1 −#F (see [14, Corollary II.4.2]). Here, we
use β̃i(Γ;F) := dimF H̃i(Γ;F) to denote the dimension of the ith reduced homology
group of a simplicial complex Γ over F.

The following implications between the just described classes of simplicial com-
plexes are well-known:

shellable ⇒ constructible ⇒ Cohen–Macaulay
⇓

partitionable.

Examples of constructible 3-balls that are not shellable show that the left implication
is strict (see e.g. [10, 15]). As any triangulation of the dunce hat is Cohen–Macaulay
but not constructible [6, § 2], also the right implication is strict. Finally Björner
exhibited a partitionable simplicial complex that is not Cohen–Macaulay and hence
neither constructible nor shellable [14, p. 85].

Example 2.2. The construction in [3] starts with a particular subcomplex Q of
Ziegler’s famous example of a non-shellable 3-ball on 10 vertices, labeled 0, . . . , 9 [15].
More precisely, the subcomplex Q is the combinatorial closure of the following set of
facets

F(Q) = {{1, 2, 4, 9}, {1, 2, 6, 9}, {1, 5, 6, 9}, {1, 5, 8, 9}, {1, 4, 8, 9},
{1, 4, 5, 8}, {1, 4, 5, 7}, {4, 5, 7, 8}, {1, 2, 5, 6}, {0, 1, 2, 5},
{0, 2, 5, 6}, {0, 1, 2, 3}, {1, 2, 3, 4}, {1, 3, 4, 7}}.

Let A = Q{0,2,3,4,6,7,8} be the induced subcomplex of Q on vertex set {0, 2, 3, 4, 6, 7, 8},
i.e. A is the combinatorial closure of

{{0, 2, 6}, {0, 2, 3}, {2, 3, 4}, {3, 4, 7}, {4, 7, 8}}.
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The complexes A and Q, which will be the starting point of the construction in
the next section, are depicted in Figure 1. Note that Q is not balanced and that
τ = (0 7)(2 4)(6 8) is an automorphism of Q.

0

1

2

3

4

5

6

7

8

9

0

6

7

8

1

9

Figure 1. Front (left) and back (right) view of Q. The blue and
dashed faces belong to A.

We end this section with the following main tool from [3], which is also crucial for
the balanced construction.

Theorem 2.3 ([3, Theorem 3.1]). Let X = (Q,A) be a relative simplicial complex
such that:

(1) Q and A are Cohen–Macaulay;
(2) A is an induced subcomplex of Q of codimension at most 1;
(3) X is not partitionable.

For a positive integer N let CN denote the simplicial complex obtained by identifying
N disjoint copies of Q along A. If N is larger than the total number of faces of A,
then CN is Cohen–Macaulay and not partitionable.

3. The balanced construction
Our counterexample makes use of the following basic observation.

Lemma 3.1. Let d− 1 > 2 and let ∆ be a pure balanced (d− 1)-dimensional simplicial
complex. Then all vertex links of ∆ are balanced.

Proof. The claim follows immediately from the facts that ∆ is balanced, dimlk∆({v}) =
d− 2 for any vertex v ∈ V (∆) and that κ(v) 6= κ(w) for all v ∈ V (∆), w ∈ lk∆({v})
and any proper coloring κ : V (∆)→ {1, . . . , d}. �

Note that the converse of the previous lemma is not necessarily true. In the follow-
ing, we call a vertex v (or its vertex link lk∆({v})) critical if lk∆({v}) is not balanced
and uncritical otherwise.

Before proceeding to our construction, we describe its underlying idea. If we look
at the simplicial complex Q from Example 2.2, we easily see that vertices 0, 3, 7 are
uncritical, whereas all the other vertices are critical. Hence, by the previous lemma,
those are obvious obstructions that prevent Q from being balanced. The idea now is
to perform some (possibly few) edge subdivisions that make the critical vertex links
balanced without affecting balancedness of other uncritical vertex links and without
altering the symmetry of the simplicial complex Q. Luckily, – though this is not
guaranteed by Lemma 3.1 – it will turn out, that the simplicial complex obtained in
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this way, is already balanced. We now make this idea more precise. We perform the
following subdivision steps:

Step 1. We first subdivide the edge {2, 4} by introducing a new vertex 10. In this
way, the link of the former critical vertex 9 becomes the cone over a 6-gon and as
such is balanced. Figure 2 (left and middle) shows the link of the vertex 9 before
and after the subdivision. Moreover, the permutation τ = (0 7)(2 4)(6 8) is still an
automorphism of the subdivided complex (see Example 2.2).

Step 2. In the next step, we subdivide the edge {5, 9} by adding a vertex 11. It
is easy to check that the vertices 6 and 8 are now uncritical and that τ is still an
automorphism of this new complex. This step is depicted in Figure 2 (middle and
right). On the right the vertices are properly colored. Namely, 1 is colored red, 2, 4
and 11 are colored yellow and 6, 8 and 10 are colored green.

Step 3. Subdividing the edges {0, 6} and {7, 8}, the vertices 2 and 4, respectively
become uncritical. Moreover, also 5 has an uncritical link now. Labeling the new
vertex on the edge {0, 6} with 12 and the one on {7, 8} with 13, we also see that
the permutation τ ′ = (0 7)(2 4)(6 8)(12 13) is an automorphism of the subdivided
complex.
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Figure 2. The link of 9 before (left) and after the edge subdivision
of {2, 4} (middle) and {5, 9} (right).

We call the simplicial complex obtained from the just described edge subdivisions
Q∗. The top row of Figure 3 depicts the front and back view of Q∗. It is easy to
check that – though we did not treat the critical vertex 1 separately – the simplicial
complex Q∗ has only uncritical vertices. We even have the following:

Lemma 3.2. The simplicial complex Q∗ constructed above is balanced.

Proof. The bottom row of Figure 3 shows the 3-dimensional simplicial complex Q∗
together with the proper 4-coloring obtained by partitioning the vertices as

κ−1({1}) = {0, 6, 7, 8, 10}, κ−1({2}) = {1, 12, 13},
κ−1({3}) = {2, 4, 11}, κ−1({4}) = {3, 5, 9}. �

Another reasonable approach to construct a balanced counterexample to the par-
titionability conjecture could have been to start with a balanced non-shellable ball
and to try to apply the technique from [3]. However, all known examples of balanced
non-shellable balls are relatively big and it is hard to decide which subcomplex to
choose. We also want to remark that applying the same edge subdivisions as above
directly to Ziegler’s non-shellable ball does not produce a balanced ball.

The following simple remark will be useful later.

Algebraic Combinatorics, Vol. 2 #6 (2019) 1153
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Figure 3. Front and back view of ∆.

Remark 3.3. If ∆ is a balanced simplicial complex, then any simplicial complex built
from ∆ by taking a certain number of copies of ∆ and identifying them along a fixed
subcomplex is balanced.

We define A∗ of Q∗ to be the induced subcomplex Q∗{0,2,3,4,6,7,8,10,12,13}. Note that
dimA∗ = 2 and that A∗ can be obtained from A in the same way we constructed
Q∗ from Q; namely, by subdividing the edges {2, 4}, {0, 6} and {7, 8}. (We do not
subdivide {5, 9} since it is not present in A.) As edge subdivisions preserve shellability,
we get the following lemma:

Lemma 3.4. The simplicial complexes Q∗ and A∗ are shellable, hence constructible
and Cohen–Macaulay.

Our final goal is to apply Theorem 2.3 to the relative simplicial complex (Q∗, A∗).
The only ingredient missing to be able to do so is to verify that condition (3) of
Theorem 2.3 is fulfilled. Indeed, we have the following statement:

Theorem 3.5. The relative simplicial complex X := (Q∗, A∗) is not partitionable.

Proof. The proof uses similar ideas as the ones employed in the proof of [3, Theo-
rem 3.3], even though there are some more cases to consider due to the new vertices
introduced with the subdivision. Assume by contradiction that X is partitionable. We
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will show that, in this case, the vertex 5 has to be contained in at least two intervals
of any partitioning, which gives a contradiction.

For the sake of clarity we list the facets of both Q∗ and A∗.
F (Q∗) =

{
{1, 2, 9, 10}, {1, 4, 9, 10}, {1, 2, 6, 9}, {1, 5, 6, 11}, {1, 6, 9, 11}, {1, 5, 8, 11},
{1, 8, 9, 11}, {1, 4, 8, 9}, {1, 4, 5, 8}, {1, 4, 5, 7}, {4, 5, 7, 13}, {4, 5, 8, 13},
{1, 2, 5, 6}, {0, 1, 2, 5}, {0, 2, 5, 12}, {2, 5, 6, 12}, {0, 1, 2, 3}, {1, 2, 3, 10},
{1, 3, 4, 10}, {1, 3, 4, 7}

}
F (A∗) =

{
{0, 2, 3}, {4, 7, 13}, {3, 4, 10}, {0, 2, 12}, {3, 4, 7}, {2, 3, 10}, {2, 6, 12},
{4, 8, 13}

}
Given a partitioning P of X and a facet F ∈ F(Q∗), we denote by IF the interval of
P with top element F .

As {1, 4, 8, 9} is the only facet containing the triangle {4, 8, 9}, we have {4, 8, 9} ∈
I{1,4,8,9}. If also {1, 4, 8} ∈ I{1,4,8,9}, it follows that I{1,4,8,9} must contain {4, 8} =
{4, 8, 9} ∩ {1, 4, 8}, which is a contradiction since {4, 8} ∈ A∗. Therefore, {1, 4, 8} /∈
I{1,4,8,9} and since {1, 4, 5, 8} is the only other facet of Q∗ containing {1, 4, 8}, we
conclude that {1, 4, 8} ∈ I{1,4,5,8}. Again, as {4, 8} ∈ A∗ and {4, 8} = {1, 4, 8} ∩
{4, 5, 8}, it must hold that {4, 5, 8} /∈ I{1,4,5,8} and hence also {4, 5} /∈ I{1,4,5,8}. The
other facets of X containing {4, 5} are
(2) {4, 5, 8, 13}, {4, 5, 7, 13}, {1, 4, 5, 7}.
Using that τ ′ is an automorphism of Q∗ and A∗, the same line of arguments applied
to {2, 6, 9} yields that the edge {2, 5} has to be contained in an interval with one of
the following top elements:

{2, 5, 6, 12}, {0, 2, 5, 12}, {0, 1, 2, 5}.
We now distinguish four cases:

Case 1. {4, 5} ∈ I{4,5,8,13} and {2, 5} ∈ I{2,5,6,12}
As {4, 5, 8, 13} is the only facet containing {5, 8, 13}, we must have {5, 8, 13} ∈
{4, 5, 8, 13}. As {5} = {4, 5} ∩ {5, 8, 13} we infer that that {5} ∈ I{4,5,8,13}. Similarly,
using again that τ ′ is an automorphism of Q∗ and A∗, we get that {5} ∈ I{2,5,6,12}.
Hence {5} is contained in two intervals, which is a contradiction.

Case 2. {4, 5} /∈ I{4,5,8,13} and {2, 5} /∈ I{2,5,6,12}
As {4, 5} /∈ I{4,5,8,13} it follows from (2) that {4, 5} ∈ I{4,5,7,13} or {4, 5} ∈ I{1,4,5,7}.
Since {4, 5, 7, 13} and {1, 4, 5, 7} are also the only facets of Q∗ containing {4, 5, 7} and
since {4, 5}, {5, 7} ⊆ {4, 5, 7}, it follows that they have to lie in the same interval,
together with {5} = {4, 5} ∩ {5, 7}. Therefore, we either have
(3) {5} ∈ I{1,4,5,7} or {5} ∈ I{4,5,7,13}.

Applying the automorphism τ ′ to the above argument yields
{5} ∈ I{0,1,2,5} or {5} ∈ I{0,2,5,12}.

Hence, {5} belongs to two intervals, which is a contradiction.

Case 3. {4, 5} /∈ I{4,5,8,13} and {2, 5} ∈ I{2,5,6,12}
As {4, 5} /∈ I{4,5,8,13}, the argument of Case 2 shows that (3) holds. We now show

that {5} has to lie in a second interval.
Note that the only two facets containing {5, 12} are {2, 5, 6, 12} and {0, 2, 5, 12}.

Since both of these contain {2, 5, 12} and {5, 12} ⊆ {2, 5, 12}, it follows that {5, 12}
and {2, 5, 12} have to belong to the same interval. Moreover, since {2, 5} ∈ I{2,5,6,12}
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by assumption, we must have {2, 5, 12} ∈ I{2,5,6,12} and hence {5, 12} ∈ I{2,5,6,12}.
Finally, this implies {5} = {2, 5} ∩ {5, 12} ∈ I{2,5,6,12} and therefore again {5} lies in
two intervals, which is a contradiction.

Case 4. {4, 5} ∈ I{4,5,8,13} and {2, 5} /∈ I{2,5,6,12}
We reach a contradiction in this case by applying the automorphism τ ′ to the argu-
ments of Case 3. This finishes the proof. �

The (relative) simplicial complexes Q∗, A∗ and X = (Q∗, A∗) have the following
f -vectors:

f(Q∗) = (1, 14, 45, 52, 20), f(A∗) = (1, 10, 17, 8), f(X) = (0, 4, 28, 44, 20).
In particular, the subcomplex A∗ has a total number of 36 faces. Theorem 2.3, The-
orem 3.5, Lemma 3.4 and Remark 3.3 therefore imply our main result:

Theorem 3.6. The simplicial complex C37 constructed from 37 disjoint copies of Q∗
and identifying them along A∗ is balanced, Cohen–Macaulay and not partitionable.

Analogous to the situation in [3, Theorem 3.5] we note that a much smaller coun-
terexample to the balanced partitionability conjecture can be found by glueing to-
gether only 3 copies of Q∗.

Theorem 3.7. The simplicial complex C3 obtained by taking 3 disjoint copies of Q∗
and identifying them along A∗ is balanced, Cohen–Macaulay and not partitionable.

We omit the proof of the above theorem since it is verbatim the same as the one
of Theorem 3.5 in [3], if one exchanges the automorphism τ by τ ′.

The f -vector of the simplicial complex C3 is f(C3) = (1, 22, 101, 140, 60).

Remark 3.8. We do not know if C3 is the smallest balanced simplicial complex that
is Cohen–Macaulay but not partitionable. However, it is easy to see, e.g. by solving
a certain integer linear program, that C2 is partitionable. Moreover, it is not possible
to change Q into a balanced simplicial complex by fewer than 4 edge subdivisions.
On the other hand, if one finds a counterexample to the partitionability conjecture,
which is smaller than the one of [3], then it might well be the case that one can also
construct a counterexample to the balanced partitionability conjecture that is smaller
than C3.

Remark 3.9. As Q∗ and A∗ are both constructible by Lemma 3.4, it follows by
definition that C3 is also constructible. The simplicial complex C3 therefore is the
first balanced counterexample to the conjecture that every constructible simplicial
complex is partitionable [5, § 4].

Remark 3.10. The conjecture by [4] still remains open, since we do not know if any
of the balanced counterexamples is the order complex of a Cohen–Macaulay poset.
By solving the associated linear program we checked that the barycentric subdivision
of the simplicial complex C3 from [3] is partitionable.

Acknowledgements. The authors would like to thank Xuan Thanh Le for his help in
solving certain integer linear programs efficiently, while searching for a counterexam-
ple.
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