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Cylindric symmetric functions and positivity

Christian Kor� & David Palazzo

Abstract We introduce new families of cylindric symmetric functions as subcoalgebras in the
ring of symmetric functions � (viewed as a Hopf algebra) which have non-negative structure
constants. Combinatorially these cylindric symmetric functions are de�ned as weighted sums
over cylindric reverse plane partitions or - alternatively - in terms of sets of a�ne permutations.
We relate their combinatorial de�nition to an algebraic construction in terms of the principal
Heisenberg subalgebra of the a�ne Lie algebra bsln and a specialised cyclotomic Hecke algebra.
Using Schur�Weyl duality we show that the new cylindric symmetric functions arise as matrix
elements of Lie algebra elements in the subspace of symmetric tensors of a particular level-0
module which can be identi�ed with the small quantum cohomology ring of the k-fold product
of projective space. The analogous construction in the subspace of alternating tensors gives
the known set of cylindric Schur functions which are related to the small quantum cohomology
ring of Grassmannians. We prove that cylindric Schur functions form a subcoalgebra in �
whose structure constants are the 3-point genus 0 Gromov�Witten invariants. We show that
the new families of cylindric functions obtained from the subspace of symmetric tensors also
share the structure constants of a symmetric Frobenius algebra, which we de�ne in terms of
tensor multiplicities of the generalised symmetric group G(n; 1; k).

1. Introduction

The ring of symmetric functions � = lim � � k with � k = C[x1; : : : ; xk ]Sk lies in the
intersection of representation theory, algebraic combinatorics and geometry. In order
to motivate our results and set the scene for our discussion, we brie�y recall a classic
result for the cohomology of Grassmannians, which showcases the interplay between
the mentioned areas based on symmetric functions.

1.1. Schur functions and cohomology. A distinguished Z-basis of� is given by
Schur functions f s� j � 2 P+ g with P+ the set of integer partitions. In the context of
Schur�Weyl duality the associated Schur polynomials, the projections ofs� onto � k ,
play a prominent role as characters of irreducible polynomial representations ofGL(k).
In particular, the product expansion s� s� =

P
� 2 P+ c�

�� s� of two Schur functions
yields the Littlewood�Richardson coe�cients c�

�� 2 Z> 0, which describe the tensor
product multiplicities of the mentioned GL(k)-representations. There exists a purely
combinatorial rule how to compute these coe�cients in terms of so-called Littlewood�
Richardson tableaux, which are a particular subclass of reverse plane partitions; see
e.g. [17].
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The positivity of Littlewood�Richardson coe�cients can also be geometrically ex-
plained: let I n;k denote the ideal generated by thoses� , where the Young diagram of
the partition � does not �t inside (n � k)k (the bounding box of height k and width
n � k). Then the quotient � =I n;k is known to be isomorphic to the cohomology ring
H � (Gr( k; n)) of the GrassmannianGr(k; n), the variety of k-dimensional hyperplanes
in Cn . Under this isomorphism Schur functions are mapped to Schubert classes and,
thus, the Littlewood�Richardson coe�cients are the intersection numbers of Schubert
varieties.

Alternatively, one can obtain the same coe�cients via so-called skew Schur func-
tions s�=� , which are the characters of reducibleGL(k)-representations. Noting that
� carries the structure of a (positive self-dual) Hopf algebra [53], the image of a Schur
function under the coproduct � : � ! � 
 � can be used to de�ne skew Schur
functions via

(1) �( s� ) =
X

� 2 P+

s�=� 
 s� ; s�=� =
X

� 2 P+

c�
�� s� :

Here the second expansion is a direct consequence of the fact that� viewed as a
Hopf algebra is self-dual with respect to the Hall inner product; see Appendix A.
Recall that H � (Gr( k; n)) carries the structure of a symmetric Frobenius algebra with
respect to the non-degenerate bilinear form induced via Poincaré duality (see e.g. [1]).
In particular, H � (Gr( k; n)) is also endowed with a coproduct. It follows froms�=� = 0
if � 6� � and (1) that the (�nite-dimensional) subspace in � spanned by the Schur
functions f s� j � � (n � k)k g viewed as acoalgebrais isomorphic to H � (Gr( k; n)) . In
particular, there is no quotient involved, the additional relations are directly encoded
in the combinatorial de�nition of skew Schur functions as sums over skew tableaux.

In this article, we generalise this result and identify what we call positive subcoal-
gebrasof � : subspacesM � � that possess a distinguished basisf f � g � M satisfying
�( f � ) =

P
�;� n�

�� f � 
 f � with n�
�� 2 Z> 0. So, in particular, �( M ) � M 
 M and

M is a coalgebra. One of the examples we will consider is the (in�nite-dimensional)
subspace of cylindric Schur functions whose positive structure constantsn�

�� are the
Gromov�Witten invariants of the small quantum cohomology of Grassmannians.

1.2. Quantum cohomology and cylindric Schur functions. Based on the
works of Gepner [19], Intriligator [24], Vafa [50] and Witten [52] on fusion rings, or-
dinary (intersection) cohomology was extended to (small) quantum cohomology. The
latter also possesses an interpretation in enumerative geometry [18]. The Grassmanni-
ans were among the �rst varieties whose quantum cohomology ringqH � (Gr( k; n)) was
explicitly computed [2, 7]. The latter can also be realised as a quotient of� 
 C[q] [45, 8]
and Postnikov introduced in [41] a generalisation of skew Schur polynomials, so-called
toric Schur polynomials, which are Schur positive and whose expansion coe�cients
are the 3-point genus zero Gromov�Witten invariants C �;d

�� . The latter are the struc-
ture constants of qH � (Gr( k; n)) , where d 2 Z> 0 is the degree of the rational curves
intersecting three Schubert varieties in general position labelled by the partitions
�; �; � � (n � k)k .

Toric Schur polynomials are �nite variable restrictions of cylindric skew Schur func-
tions s�=d=� 2 � which have a purely combinatorial de�nition in terms of sums over
cylindric tableaux, i.e. column strict cylindric reverse plane partitions. Cylindric plane
partitions were �rst considered by Gessel and Krattenthaler in [20]. There has been
subsequent work [37, 33, 34] on cylindric skew Schur functions exploring their com-
binatorial and algebraic structure. In particular, Lam showed that they are a special
case of a�ne Stanley symmetric functions [33]. While cylindric Schur functions are
in general not Schur-positive, McNamara conjectured in [37] that their skew versions

Algebraic Combinatorics , Vol. 3 #1 (2020) 192



Cylindric symmetric functions

have non-negative expansions in terms of cylindric non-skew Schur functionss�=d= ? .
A proof of this conjecture was recently presented in [34].

In this article we shall give an alternative proof and, moreover, show that the
functions f s�=d= ? j � � (n � k)k ; d 2 Z> 0g span a positive subcoalgebra of�
whose structure constants are the Gromov�Witten invariants of qH � (Gr( k; n)) ; see
Corollaries 5.42 and 5.43.

1.3. The Verlinde algebra and TQFT. The quantum cohomology ring
qH � (Gr( k; n)) has long been known to be isomorphic to thebgln -Verlinde alge-
bra Vk ( bgln ) at level k when q = 1 [52]. Here we will also be interested in the fusion
ring Vk ( bsln ) whose precise relationship withqH � (Gr( k; n)) was investigated in [31]:
despite being closely related, the two Verlinde algebrasVk ( bsln ) and Vk ( bgln ) exhibit
di�erent combinatorial descriptions in terms of bosons and fermions.

Verlinde algebras [51] orfusion rings arise in the context of conformal �eld theory
(CFT) and, thus, vertex operator algebras, where they describe the operator product
expansion of two primary �elds modulo some descendant �elds. There is an entire
class of rational CFTs, called Wess�Zumino�Witten models, which are constructed
from the integrable highest weight representations of Kac�Moody algebraŝg with the
level k �xing the value of the central element and the primary �elds being in one-
to-one correspondence with the highest weight vectors; see e.g. the textbook [14] and
references therein.

Geometrically the Verlinde algebras Vk (ĝ) have attracted interest because their
structure constants N �

�� , called fusion coe�cients in the physics literature, equal the
dimensions of moduli spaces of generalised� -functions, so-called conformal blocks [6,
13]. Here the partitions �; �; � label the primary �elds or highest weight vectors. The
celebrated Verlinde formula [51]

(2) N �
�� =

X

�

S�� S�� S� 1
��

S0�

expresses these dimensions in terms of the modularS-matrix, a generator of the group
PSL(2; Z) describing the modular transformation properties of the characters of the
integrable highest weight representations of̂g. The representation ofPSL(2; Z) is part
of the data of a Verlinde algebra, in particular the S-matrix encodes the idempotents
of the Verlinde algebra as it diagonalises the fusion matrices(N � ) �� = N �

�� . More
recently, the work of Freed, Hopkins and Teleman has also linked the Verlinde algebras
to twisted K-theory [15, 16].

The Verlinde formula and the existence of the modular group representation are
a ��ngerprint� of a richer structure: a three-dimensional topological quantum �eld
theory (TQFT) or modular tensor category, of which the Verlinde algebra is the
Grothendieck ring. In fact, the Verlinde algebra itself can be seen as a TQFT, but a
two-dimensional one. Based on work of Atiyah [5], the class of 2D TQFT is known to
be categorically equivalent to symmetric Frobenius algebras.

Exploiting the construction from [31] using quantum integrable systems, a q-
deformation of the bsln -Verlinde algebra was constructed in [30] which (1) carries
the structure of a symmetric Frobenius algebra and (2) whose structure constants or
fusion coe�cients N �

�� (q) 2 Z[q] are related to cylindric versions of Hall�Littlewood
and q-Whittaker polynomials. Both types of polynomials occur (in the non-cylindric
case) as specialisation of Macdonald polynomials [36]. Settingq = 0 one recovers the
non-deformed Verlinde algebraVk ( bsln ) and cylindric Schur polynomials that are dif-
ferent from Postnikov's toric Schur polynomials as their expansion coe�cients yield
the fusion coe�cients N �

�� = N �
�� (0) of Vk ( bsln ) rather than Vk ( bgln ). Geometrically,
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the q-deformed Verlinde algebra has been conjectured [30, Section 8] to be related to
the deformation of the Verlinde algebra discussed in [48, 49].

In this article we investigate the combinatorial structure of the q-deformed Verlinde
algebra from [30] in the limit q ! 1: we construct two families of positive subcoalge-
bras of � whose structure constants are given byN �

�� (1); see Corollary 5.25.

1.4. The main results in this article. We summarise the main steps in our
construction of positive subcoalgebras in� . Recall that the GL(k)-characters of
tensor products of symmetric S� V = S� 1 V 
 � � � 
 S� r V and alternating powersV� V =

V� 1 V 
 � � � 

V� r V with V the natural or vector representation of GL(k)

are respectively the homogeneoush� and elementary symmetric polynomialse� ; see
Appendix A.2 for their de�nitions. Similar as in the case of Schur functions, we in-
troduce skew complete symmetricand skew elementary symmetric functionsin � via
the coproduct of their associated symmetric functions,

(3) � h� =
X

� 2 P+

h�=� 
 h� and � e� =
X

� 2 P+

e�=� 
 e� :

The latter exhibit interesting combinatorics associated with weighted sums over
reverse plane partitions (RPP); see our discussion in Appendix A.4. In light of the
generalisation of skew Schur functions (1) to cylindric Schur functions in connection
with quantum cohomology, one might ask if there exist analogous cylindric gen-
eralisations of the functions (3) and if these de�ne a positive in�nite-dimensional
subcoalgebra of� .

1.4.1. Satake correspondence and quantum cohomology.In order to motivate our ap-
proach we �rst discuss the case of quantum cohomology. It has been long known that
the ring qH � (Gr( k; n)) can be described in terms of the (much simpler) quantum coho-
mology ring qH � (Pn � 1) of projective spacePn � 1 = Gr(1 ; n); see e.g. [23, 9, 28]. Here
we shall follow the point-of-view put forward in [22] concentrating on the simplest case
of the Grassmannian only: it follows from the Satake isomorphism of Ginzburg [21]
that when identifying the cohomology of Gr(k; n) as a minuscule Schubert cell in the
a�ne Grassmannian of GL(n) the latter corresponds to the k-fold exterior power of
the cohomology ofPn � 1 under the same identi�cation. In particular, the Satake cor-
respondence identi�esH � (Gr( k; n)) with the gln -module

V k V and the multiplication
by the �rst Chern class corresponds to the action by the principal nilpotent element
of gln . This picture has been extended to quantum cohomology in [22] by replacing
the principal nilpotent element with the cyclic element in gln , which then describes
the quantum Pieri rule in qH � (Gr( k; n)) provided one setsq = 1 , i.e. one considers
the Verlinde algebra Vk ( bgln ).

In our article we shall work instead with the loop algebragln [z; z� 1] and identify the
quantum parameter with the loop variable via q = ( � 1)k � 1z� 1. This will allow us to
identify the two distinguished bases ofqH � (Gr( k; n)) from a purely Lie-algebraic point
of view. Fix a Cartan subalgebrah � gln . Then under the Satake correspondence the
associated (one-dimensional) weight spaces ofh in V�

k =
V k V 
 C[z; z� 1] are mapped

onto Schubert classes. The other, algebraically distinguished, basis ofqH � (Gr( k; n))
is given by the set of its idempotents. The latter only exist if we introduce the nth
roots t = z1=n and under the Satake correspondence they are mapped to the weight
spaces of the Cartan algebrah0 in apposition to h [32], i.e.h0 is the centraliser of the
cyclic element. The basis transformation between idempotents and Schubert classes is
described in terms of at-deformed modularS-matrix which encodes an isomorphism
gln [z; z� 1] �= gl
n [t; t � 1] with the twisted loop algebra gl
n [t; t � 1] =

L
m 2 Z tm 
 gl(m )

n ,
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where gl(m )
n � gln is the subalgebra of principal degreem mod n. If t = 1 and k odd

we recover the modularS-matrix of the Verlinde algebra Vk ( bgln ); see e.g. [39].
However, we believe the extension to the loop algebra important, not only for

the reasons already outlined, but because it allows us to identify the multiplication
operators with Schubert classes and, thus,qH � (Gr( k; n)) itself, with the image of the
principal Heisenberg subalgebrâh0

0 � bgln [26] in the endomorphisms overV�
k . Because

the latter is a level-0 module we are dealing in this article only with the projection
h0

0[z; z� 1] of ĥ0
0 in the loop algebra gln [z; z� 1]. From a representation theoretic point

of view it is then natural to consider also the image of the principal Heisenberg
subalgebra in the endomorphisms of other subspaces, especially the symmetric tensor
product V+

k = Sk V 
 C[z; z� 1].

1.4.2. Schur�Weyl duality and skew group rings. A description of our construction in
terms of Schur�Weyl duality is as follows: let R = C[z; z� 1] be the ring of Laurent
polynomials and consider theR-module Vk = R 
 V 
 k . The latter carries a natural
left U(gln [z; z� 1])-action and a right action of the following skew group ring: set
H k = R[x � 1

1 ; : : : ; x � 1
k ] 
 R R[Sk ] with 1 
 R R[Sk ] �= R[Sk ] being the group ring of

the symmetric group in k-letters and impose the additional relations � i x i = x i +1 � i ,
� i x j = x j � i for ji � j j > 1 wheref � i gk � 1

i =1 are the elementary transpositions inSk . The
action of the ring H k on Vk is �xed by permuting factors and letting each x i act by the
cyclic element ofgln [z; z� 1] in the i th factor and trivially everywhere else. This action
is not faithful, but factors through the quotient H k (n) = H k =hxn

1 � zi . Considering
H 0

k (n) = H k (n) 
 R R0 with R0 = R[t]=(z � tn ) we obtain a (semi-simple) algebra
which can be seen as some sort of specialisation or �classial limit� of a Ariki�Koike
(or cyclotomic Hecke) algebra [4].

In this construction the image of the centreZ (H k ) �= R[x � 1
1 ; : : : ; x � 1

k ]Sk in EndR Vk

is isomorphic to the ring R[x � 1
1 ; : : : ; x � 1

k ]Sk =hxn
i � zi , which as a Frobenius algebra

can be identi�ed with the extension of qH � (P) over the ring of Laurent polynomials
in q, whereP = Pn � 1 � � � � � Pn � 1 are k copies of projective space andq = z� 1. Schur�
Weyl duality then tells us that each class in that latter ring must correspond to an
element in the image ofU = U(gln [z; z� 1]). In fact, we show equality between the
images ofZ (H k ) and the principal Heisenberg subalgebra inEndR Vk . Restricting to
the subspaceV�

k � V k of alternating tensors, we recover the quantum cohomology of
GrassmanniansqH � (Gr( k; n)) via the Satake correspondence: the Schur polynomials
s� (x1; : : : ; xk ) 2 Z (H k ) are mapped to operators inEndR V�

k which correspond to
multiplication by Schubert classes in qH � (Gr( k; n)) .

Theorem 5.39 then shows how cylindric Schur functions occur in our construction:
let ui , i 2 N be a set of commuting indeterminates and consider inEndR Vk the
Cauchy identity

Y

i > 0

kY

j =1

(1 + ui x j ) =
X

� 2 P+

s� (x1; : : : ; xk )s� 0(u1; u2; : : :) :

Taking matrix elements in the above identity with alternating tensors from V�
k we

obtain formal power series in the quantum deformation parameterq = ( � 1)k+1 z� 1

whose coe�cients are cylindric Schur functions in the ui . The proof of McNamara's
conjecture is then an easy corollary; see Corollary 5.42.

1.4.3. The subspace of symmetric tensors.In complete analogy with the previous case
we consider the image ofZ (H k ) in the endomorphisms over the subspace of symmetric
tensors V+

k = Sk V 
 C[z; z� 1] � V k . The latter de�nes again a symmetric Frobenius
algebra, which is theq ! 1 limit of the q-deformed Verlinde algebra discussed in [30].

Algebraic Combinatorics , Vol. 3 #1 (2020) 195



C. Korff & D. Palazzo

Figure 1. From left to right: a cylindric reverse plane partition
(CRPP), a row strict CRPP and an adjacent column CRPP when
n = 4 and k = 3 ; see Section 5 for their de�nitions.

Since the corresponding moduleV+
k is no longer minuscule one does not expect that

this Frobenius algebra describes the quantum cohomology of asmooth projective
variety. In the context of Frobenius manifolds the symmetric tensor product has also
been considered in [28, Section 2.b].

Albeit a direct geometric interpretation is currently missing, there is interesting
combinatorics to discover: we consider the following alternative Cauchy identity in
EndR Vk ,

Y

i > 0

kY

j =1

(1 � ui x j ) � 1 =
X

� 2 P+

m� (x1; : : : ; xk )h� (u1; u2; : : :);

where the m� are the monomial symmetric functions, and we now take matrix ele-
ments with symmetric tensors in V+

k . In Theorem 5.12 we show that the coe�cients
in the resulting power series in the loop variablez, are cylindric analoguesh�=d=� of
the skew complete symmetric functions in (3). Similar to cylindric Schur functions,
the latter have a completely independent combinatorial de�nition as weighted sums
over cylindric reverse plane partitions (see Figure 1 for examples). Their non-skew
versions have a particularly simple expansion in� (c.f. Lemma 5.14),

(4) h�=d= ? =
X

�

jS� j
jS� j

h� ;

where � is an element in the fundamental alcove of theglk weight lattice under the
level-n action of the extended a�ne symmetric group Ŝk , d 2 Z a sort of winding
number around the cylinder and the sum runs over all weights� in the Ŝk -orbit of � .
The expansion coe�cients are given by the ratio of the cardinalities of the stabiliser
subgroupsS� ; S� � Sk of the weights �; � and, despite appearances, are integers; see
Lemma 5.10.

We show that the subspace spanned by these non-skew cylindric complete sym-
metric functions is a positive subcoalgebra of� , whose non-negative integer structure
constants N �

�� coincide with those of the Frobenius algebraV+
k and which we express

in terms of tensor multiplicities of the generalised symmetric groupG(n; 1; k).
Cylindric elementary symmetric functions e�=d=� enter naturally by considering the

image of theh�=d=� under the antipode which is part of the Hopf algebra structure on
� . Their combinatorial de�nition involves row strict cylindric reverse plane partitions;
see Figure 1. We unify all three families of cylindric symmetric functions (elementary,
complete and Schur) by relating their combinatorial de�nitions in terms of cylindric
reverse plane partitions to the same combinatorial realisation of the a�ne symmetric
group ~Sk in terms of �in�nite permutations�, bijections w : Z ! Z, considered by
several authors [35, 10, 12, 44]. The new aspect in our work is that we link this
combinatorial realisation for the extendeda�ne symmetric group Ŝk to cylindric loops
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and reverse plane partitions by considering the level-n action for h�=d=� and e�=d=� ,
while for the cylindric Schur functions we consider theshifted level-n action.

2. The principal Heisenberg subalgebra

Our main reference for the following discussion of the principal Heisenberg subalgebra
is [26, Chapter 14]. While the latter can be introduced for arbitrary simple complex
Lie algebrasg, we shall here focus on the simplest caseg = gln (C), the general linear
algebra of the Lie groupGL(V ) with V = Cv1 � � � � � Cvn

�= Cn . A basis ofgln (C) are
the unit matrices f eij j1 6 i; j 6 ng whose matrix elements are zero except in thei th
row and j th column where the element is 1. The Lie bracket of these basis elements
is found to be

(5) [eij ; ekl ] = � jk eil � � il ekj :

Note that by choosing a basis we have also �xed a Cartan subalgebra,

(6) h =
nL

i =1
Ceii :

For i = 1 ; : : : ; n � 1 set ei = ei;i +1 , f i = ei +1 ;i and hi = eii � ei +1 ;i +1 . These matrices
are the Chevalley generators of the subalgebrasln � gln and we denote byh0 � sln
the Cartan subalgebra, which is spanned by thehi .

2.1. The affine Lie algebra. We now turn our attention to the a�ne Lie alge-
bra of gln . Let gln [z; z� 1] = C[z; z� 1] 
 gln be the loop algebrawith Lie bracket,
[f (z)x; g(z)y] := f (z)g(z)[x; y], where f; g 2 C[z; z� 1] are Laurent polynomials in
some variable z and x; y 2 gln . Then the a�ne Lie algebra is the unique central
extension of the loop algebra

(7) bgln = gln [z; z� 1] � Ck

together with the Lie bracket

(8) [x(z) � �k ; y(z) � �k ] = [ x(z); y(z)] � Reshx0(z)jy(z)i k ;

where x(z) = f (z)x; y(z) = g(x)y 2 gln [z; z� 1], �; � 2 C and

Reshx0(z)jy(z)i = Res(f 0(z)g(z))hxjyi ;

is the 2-cocycle �xed by the Killing form hxjyi = tr( xy) and the linear map Res :
C[z; z� 1] ! C with Res(zr ) = � r; � 1. The set of Chevalley generators for the a�ne
algebra bsln contains the additional elements

(9) en = z 
 en 1; f n = z� 1 
 e1n ; hn = ( enn � e11) � k :

For our discussion we will only need the loop algebrasln [z; z� 1] � gln [z; z� 1] but
it is instructive to brie�y recall the de�nition of the principal Heisenberg subalgebra
in the a�ne Lie algebra bsln � bgln �rst.

For r = 1 ; : : : ; n � 1 de�ne the following elements in sln [z; z� 1],

(10) Pr =
X

j � i = r

eij + z
X

i � j = n � r

eij

and set Pr + n = zPr for all other r 2 ZnnZ.

Lemma 2.1. In the a�ne algebra bsln we have the Lie bracket relations

(11) [Pm ; Pm 0] = � m + m 0;0 k ; 8m; m0 2 ZnnZ :
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The Pr together with the central element k span the so-calledprincipal Heisenberg
subalgebraĥ0

0 � bsln . (1) Consider the exact sequence

(12) 0 ! Ck ! bgln
�
� gln [z; z� 1] ! 0 :

Then ĥ0
0 = � � 1(z(P1)) is the pre-image of the centraliser z(P1) = f x(z) 2

sln [z; z� 1] j [P1; x(z)] = 0 g under the projection � . We denote by

(13) h0
0[z; z� 1] = � (ĥ0

0) � sln [z; z� 1] :

the projection of the principal Heisenberg subalgebra onto the loop algebra in (12).
It follows that [Pr ; Pr 0] = 0 in the loop algebra sl[z; z� 1] and, thus, h0

0[z; z� 1] is an
(in�nite-dimensional) commutative Lie subalgebra in sln [z; z� 1]. It is the latter which
is in the focus of our discussion for the remainder of this article.

Note that both �halves� of the principal subalgebra, the negative and positive
indexed elementsPr are related by the following anti-linear � -involution on gln [z; z� 1],

(14) z� = �z = z� 1 and x � = �xT ; 8x 2 gln ;

where �x is the matrix obtained by complex conjugation and xT denotes the trans-
pose. That is, x � is the hermitian conjugate of x. One immediately veri�es from the
de�nition (10) that P �

r = P� r .
Denote by � : gln ! gln the (�nite) Dynkin diagram automorphism induced by

exchanging thei th Dynkin node with the (n � i )th node for i = 1 ; : : : ; n � 1, �( ei;j ) =
en � i;n � j . The latter is clearly an involution. Consider now the a�ne Dynkin diagram
and the map �̂ : gln ! gln of order n that corresponds to a cyclic permutation of all
nodes,�̂( eij ) = ei +1 ;j +1 where indices are understood modulon. Note that the latter
also induces a (�nite) Lie algebra automorphism and that the relation � � �̂ � 1 = �̂ � �
holds. We extend both automorphisms (viewed asC[z; z� 1]-linear maps) to the loop
algebra gln [z; z� 1] by setting �( f (z)x) = f (z)�( x) and �̂( f (z)x) = f (z)�̂( x) for all
x 2 gln and f 2 C[z; z� 1].

Lemma 2.2. Let � = �̂ � � , then �( Pr ) = P � r for all r 2 ZnnZ.

Proof. A straightforward computation using the de�nition (10). �

2.2. Cartan subalgebras in apposition. We now consider the projection of the
principal Heisenberg subalgebra onto the �nite Lie algebragln . Let � 1 : gln [z; z� 1] !
gln be the projection obtained by specialising toz = 1 , that is � 1 : f (z) 
 g 7! f (1)g.
Set h0

r = � 1(Pr ) for r = 1 ; : : : ; n � 1. Then h0
1 is known as cyclic element and the

centraliser

(15) h0 = f g 2 gln j [h0
1; g] = 0g

is another Cartan subalgebra, calledin apposition to the Cartan algebra h de�ned
in (6); see [32] for details.

We recall the construction of the root vectors with respect to the Cartan algebra
h0. Let � = exp(2��=n ) and de�ne for i; j = 1 ; : : : ; n the matrices

(16) e0
ij = S� 1eij S =

1
n

nX

a;b=1

� � ia + jb eab; S = ( � ab=
p

n)16 a;b6 n :

Obviously, S induces a Lie algebra automorphism, i.e. the matricese0
ij also satisfy (5).

(1) Note that this principal Heisenberg subalgebra is di�erent from the homogeneous Heisen-
berg subalgebra ĥ0 = h0 [z; z� 1 ] � Ck which is generated by h i (m) = zm h i with [h i (m); h j (m0)] =
� m + m 0;0hh i jh j i k and m; m 0 2 Z.
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Lemma 2.3. The matrices f e0
ij g give the root space decomposition with respect to the

Cartan algebra h0. That is, we have

(17) [h0
r ; e0

ij ] = ( � � ir � � � jr )e0
ij ; r = 1 ; : : : ; n � 1; i; j = 1 ; : : : ; n

Moreover,

(18) Sh0
r S� 1 =

nX

j =1

� � jr ejj :

and the mapeij 7! e0
ij is a Lie algebra automorphism.

Proof. A straightforward computation using the Lie bracket relations

(19) [h0
r ; ei;j ] = ei � r;j � ei;j + r ;

where indices are understood modulon. �

Note that the matrices f h0
1; h0

2; : : : ; h0
n � 1g only span the sln Cartan subalgebra

h0
0 = ( h0 \ sln ) � h0. A basis of h0 is given by the matricese0

ii = S� 1eii S.
We now take a closer look at the matrix

(20) S =
1

p
n

nX

i;j =1

� ij eij

which diagonalises the Cartan subalgebrah0. If we introduce in addition the matrix

(21) T = � � n ( n � 1)
24

nX

i =1

�
i ( n � i )

2 eii

then we obtain a representation of the groupPSL2(Z). Let C = ( � i + j; 0 mod n )16 i;j 6 n

and Ĉ = ( � i;j +1 mod n )16 i;j 6 n be the matrices which implement the Dynkin diagram
automorphisms � and �̂ ,

(22) Ceij C = �( eij ) = en � i;n � j and Ĉeij Ĉ� 1 = �̂( eij ) = ei +1 ;j +1 ;

where indices are understood modulon. Then Ch0
r = h0

n � r C and Ĉh0
r = h0

r Ĉ for
r = 1 ; : : : ; n � 1. Moreover, we have the following proposition.

Proposition 2.4 (Kac�Peterson [27]). The S and T -matrix satisfy

(23) S2 = ( ST)3 = C

and

(24) CS= �S = S� = S� 1; CT = T C; T � = T � 1 :

Moreover, (ĈS)ab = S(a� 1)b = � � bSab and (SĈ)ab = Sa(b+1) = � aSab with indices
taken modulon.

This is the the familiar representation of the S and T -matrix from csu(n)k -WZNW
conformal �eld theory for k = 1 ; see [27] for the case of generalk. We therefore omit
the proof.
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2.3. The twisted loop algebra. We recall from [26] the twisted realisation of the
loop algebra with respect to theprincipal gradation. Denote by � _ 2 h the dual Weyl
vector, which is the sum over the fundamental co-weights with respect to the original
Cartan subalgebrah. In the case ofgln it reads explicitly,

(25) � _ =
nX

i =1

n � 2i + 1
2

eii :

One easily veri�es that [� _ ; eij ] = ( j � i )eij and, hence, the group element! =
exp[2�{� _ =n] induces a Zn -gradation on the Lie algebra gln via the automorphism

( g) = !g! � 1,

gln =
n � 1L

r =0
gl( r )

n ; gl( r )
n = f g j 
( g) = e

2 �{
n r gg :

In particular, we have that h = gl(0)
n and 
( h0

r ) = exp(2 �{r=n )h0
r . Thus, 
( h0) = h0,

and Kostant has shown in [32] that the automorphism
 induces a Coxeter transfor-
mation in the Weyl group Sn

�= N (T0)=T0, where T0 � GL (V ) is the maximal torus
corresponding to the Cartan algebra in appositionh0 and N (T0) its normaliser.

For r 2 Z de�ne �r 2 f 0; 1; 2; : : : ; n � 1g by r = �r + mn with m 2 Z. Then the
twisted loop algebra is de�ned as

(26) gl
n [t; t � 1] =
L

r 2 Z
t r 
 gl(�r )

n ;

with Lie bracket [f (t)x; g(t)y] := f (t)g(t)[x; y] where f; g 2 C[t; t � 1] and x; y 2 gln .
The following result is an immediate consequence of the analogous isomorphism for
the corresponding a�ne Lie algebras in [27, Chapter 14] and we therefore omit the
proof.

Proposition 2.5. The linear map � : gln [z; z� 1] ! gl
n [t; t � 1] de�ned by

zm 
 eij 7! � (zm 
 eij ) = t j � i + nm 
 eij

is a Lie algebra isomorphism. In particular, we have forr 2 NnnN that

(27) � (Pr ) = t r h0
�r and � (P� r ) = t � r h0

n � �r ;

where h0
m 2 h0 with m = 1 ; 2; : : : ; n � 1 is the image of Pm under the projection

� 1 : gln [z; z� 1] � gln obtained by settingz = 1 .

Setting formally z = tn the loop algebra isomorphism� : gln [z; z� 1] ! gl
n [t; t � 1]
corresponds to the following similarity transformation with the diagonal matrix

(28) D(t) =
nX

i =1

t � i eii :

That is, we have the straightforward identities D(t)eij D(t � 1) = t j � i eij from which
the result is immediate. This allows us to combine thegln Lie algebra automorphism
induced by the S-matrix with the loop algebra isomorphism � via introducing the
following deformed S-matrix,

(29) S(t) = SD(t) =
1

p
n

nX

i;j =1

t � j � ij eij

while leaving the T -matrix unchanged.

Lemma 2.6. Let z = tn . Then S(t)Pr S� 1(t) = t r P n
j =1 � � jr ejj .

Proof. A somewhat tedious but straightforward computation using the de�nition (29).
We therefore omit the details. �
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The last lemma shows that the similarity transformation with the deformed S-
matrix (29) describes the Lie algebra isomorphism from Proposition 2.5 together
with a change of basis in which the principal subalgebra is diagonal.

2.4. Universal enveloping algebras and PBW basis. Consider the universal
enveloping algebraU( bgln ). According to the Poincare�Birkho��Witt (PBW) Theorem
the latter has the triangular decomposition

U( bgln ) �= U(n̂+ ) � U(ĥ) � U(n̂� ) ;

with n̂+ and n̂� being the Lie subalgebras generated byf ei gn
i =1 and f f i gn

i =1 , re-
spectively. Here the a�ne Cartan subalgebra is given by ĥ = h[z; z� 1] � Ck, but
in what follows we are only interested in level 0 representations and, hence, focus
on the loop algebrah[z; z� 1] and the universal enveloping algebraU(gln [z; z� 1]) �=
U(n̂+ ) � U(h[z; z� 1]) � U(n̂� ) instead. To unburden the notation we will henceforth
write U for U(gln [z; z� 1]) and U� for the Borel subalgebrasU(h[z; z� 1]) � U(n̂� ).
Similarly, we abbreviate the universal enveloping algebra of the twisted loop algebra,
U(gl
n [t; t � 1]), by U 
 .

Lemma 2.7. The Lie algebra isomorphism� : gln [z; z� 1] ! gl
n [t; t � 1] extends to a
Hopf algebra isomorphism� : U ! U 
 .

Proof. Recall that g = gln [z; z� 1] naturally embeds into its tensor algebra T(g).
Identifying g with its image under the projection T(g) � U it generatesU. The same
is true for U 
 . As the de�nition of coproduct � : U ! U 
 U, �( x) = x 
 1 + 1 
 x,
antipode 
 : U ! U, 
 (x) = � x and co-unit " (x) = 0 for all x 6= 1 , are the same for
both U and U 
 the assertion follows from� being a Lie algebra isomorphism. �

Let P+
6= n be the set of partitions � where each part� i 6= `n , ` 2 N and set P� � =

P� � 1 P� � 2 � � � Then f P� � j � 2 P+
6= n g � U(n̂� ) and according to the PBW theorem

f P� P� � j �; � 2 P+
6= n g forms a basis ofU(h0

0[z; z� 1]).

2.5. Power sums and the ring of symmetric functions. Recall the de�nition
of the ring of symmetric functions � = C[p1; p2; : : :], which is freely generated by
the power sumspr , and can be equipped with the structure of a Hopf algebra; see
Appendix A for details and references.

Lemma 2.8. The maps � � : � ! U� �xed by

(30) pmn 7! P� mn = z� m
nX

i =1

eii and pr 7! P� r ; r 6= mn; m; r 2 N

are Hopf algebra homomorphisms.

We shall henceforth setP� mn = z� m P n
i =1 eii and P0 =

P n
i =1 eii , such that the

relation Pr + n = zPr holds for all r 2 Z. Denote by U0 the subalgebra inU generated
by f Pr gr 2 Z .

Proof. This is immediate upon noting that the Hopf algebra relations for power sums
in � match the relations of the standard Hopf algebra structure onU; compare with
the proof of Lemma 2.7 and Appendix A. �

Using the maps� � we now introduce the analogue of various symmetric functions
(see Appendix A for their de�nitions and references) as elements in the upper (lower)
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Borel algebras and denote these by capital letters. For example, we de�ne for any
partition � 2 P+ in U+ the elements

(31) S� =
X

�

� � (� )
z�

P� ; z� =
Y

i > 1

i m i ( � ) mi (� )! ;

where � � (� ) is the character value of an element of cycle type� in the symmetric
group. Thus, the elementS� is the image of the Schur functions� 2 � under � + . If
the partition � in the de�nition of S� consists of a single vertical or horizontal strip
of length r > 0 we obtain the following elements inU+ ,

(32) E r =
X

� ` r

� � z� 1
� P� and H r =

X

� ` r

z� 1
� P�

where� � = ( � 1)j � j� ` ( � ) . These generators are solutions to Newton's formulae and can
be identi�ed with the elementary er and complete symmetric functionshr in the ring
of symmetric functions. Below we will also make use of the �generating functions�

(33) E(u) =
X

r > 0

ur E r = exp

0

@�
X

r > 1

(� u)r

r
Pr

1

A

and

(34) H (u) =
X

r > 0

ur H r = exp

0

@
X

r > 1

ur

r
Pr

1

A :

Their matrix elements should be understood as formal power series in the indetermi-
nate u. Besides the image of Schur functions we will also need the image of monomial
symmetric functions m� under � + ; see Appendix A. We recall from� the following
�straightening rules� for elements Sv which are not indexed by partitions but by some
v = ( : : : ; a; b; : : :) 2 Z`

> 0,

(35) S( :::;a;b;::: ) = � S( :::;b � 1;a+1 ;::: ) and S( :::;a;a +1 ;::: ) = 0

In � these relations are a direct consequence of the known relations for determinants.
The need for these straightening rules arises when applying Macdonald's raising op-
erator [36, Chapter I.1]. Recall that the raising operator Rij acts on partitions as
Rij � = ( � 1; : : : ; � i + 1 ; : : : ; � j � 1; : : : ). Given S� we set Rij S� = SR ij � and extend
this action linearly.

We are now in the position to introduce M � = � + (m� ). Given a partition � 2 P+

de�ne

(36) M � =
Y

� i >� j

(1 � Rji )S� :

Compare with [36, Example III.3] when t = 1 . The de�nition (36) is best explained
on an example.

Example 2.9. Consider the partition � = (2 ; 1). Then we have:

M (2 ;1) = (1 � R21)
Y

j> 2

(1 � Rj 1)(1 � Rj 2)S(2 ;1) :

From the above product we need to extract all operatorsR =
Q

Rji for which SR� is
nonzero. Employing the straightening rules (35), we �nd that the only non-zero terms
are given by M (2 ;1) = S(2 ;1) � 2S(1 ;1;1) .
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Making the substitution Pr ! P� r we denote byf E � r ; H � r gr 2 N the images of the
elementary and symmetric functions under� � . Using the anti-linear involution (14)
and the fact that the power sums are aQ-basis it follows at once that � �

+ = � � .
Similarly, taking the combined Dynkin diagram automorphism � from 2.2 that � � =
� � � + .

Lemma 2.10. Let f 2 � then F � = � + (f ) � = �( F ) = � � (f ), where � is the
anti-linear involution (14) and � the combined Dynkin diagram automorphism from
Lemma 2.2.

So, in particuar, if S� = � + (s� ) and M � = � + (m� ) are the images of the Schur
function s� and monomial symmetric function m� under the homomorphism from
Lemma 2.8, then

(37) S�
� = �( S� ) = � � (s� ) and M �

� = �( M � ) = � � (m� ) :

Proof. As the power sums freely generate� , it su�ces to check the relations � �
+ = � �

and � � = � � � + on the pr . The �rst relation is a consequence of the de�nitions (10)
and (14), the second from Lemma 2.2. �

3. The affine symmetric group and wreath products

Let Sk be the symmetric group of the set[k] = f 1; : : : ; kg and denote byf � 1; : : : ; � k � 1g
the group's generators. SetPk =

L k
i =1 Z� i , the glk weight lattice with standard

basis � 1; : : : ; � k and inner product (� i ; � j ) = � ij . De�ne the root lattice Qk � Pk as
the sub-lattice generated by f � i = � i � � i +1 gk � 1

i =1 and set � 0 = � n � � 1. Denote by
P+

k � Pk the positive dominant weightswhich we identify with the set of partitions,
P+

k
�= f � j � 1 > � � � > � k > 0g which have at most k parts. We use the notation

P++
k = f � j � 1 > � � � > � k > 0g for the subset ofstrict dominant weights/partitions.

3.1. Action on the weight lattice. Each � 2 Pk de�nes a map � : [k] ! Z
in the obvious manner and we shall consider the right actionPk � Sk ! Pk given
by (�; w ) 7! � � w = ( � w(1) ; : : : ; � w(k ) ). For a �xed weight � denote by S� � Sk its
stabiliser group. The latter is isomorphic to the Young subgroup

(38) S�
�= � � � � Sm 1 ( � ) � Sm 0 ( � ) � Sm � 1 ( � ) � � � �

with mi (� ) being the multiplicity of the part i in � . Note that jS� j =
Q

i 2 Z mi (� )!
and we shall make repeatedly use of the multinomial coe�cients

(39) d� =
jSk j
jS� j

=
k!

Q
i 2 Z mi (� )!

=
�

k
m(� )

�
;

which we call the quantum dimensions for reasons that will become clear in the
following sections. Given any permutationw 2 Sk there exists a unique decomposition
w = w� w� with w� 2 S� and w� a minimal length representative of the right coset
S� w. Denote by S� � Sk the set of all minimal length coset representatives inS� nSk .

3.2. The extended affine symmetric group. Let Pk act on itself by translations.
Then the extended a�ne symmetric group is de�ned as Ŝk = Sk n Pk . In terms of
generators and relationsŜk is de�ned as the group generated byh�; � 0; � 1; : : : ; � k � 1i
subject to the identities (all indices are understood modk)

(40) � 2
i = 1 ; � i � i +1 � i = � i +1 � i � i +1 ; � i � j = � j � i ; ji � j j > 1;

and

(41) � � i +1 = � i � :
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For our discussion it will be convenient to use instead of� and � 0 the generators

(42) xk = � � 1� 2 � � � � k � 1 and x i = � i x i +1 � i ; i = 1 ; 2; : : : ; k � 1 :

Then any elementŵ 2 Ŝk can be written as ŵ = wx � = wx � 1
1 � � � x � k

k for some� 2 Pk

and w 2 Sk .
Fix as ground ring R = C[z; z� 1] and consider theR-module,

(43) H k = R[x � 1
1 ; : : : ; x � 1

k ] 
 R R[Sk ] :

De�ne an R-algebra by identifying (as subalgebras)R[x � 1
1 ; : : : ; x � 1

k ] 
 1 with the
polynomial algebra R[x � 1

1 ; : : : ; x � 1
k ] and 1 
 R[Sk ] with the group algebra R[Sk ], and

in addition impose the relations

(44) � i x i � i = x i +1 ; x i � j = � j x i for j 6= i; i � 1 :

The latter algebra is a skew group ring or semi-direct product algebra which is some
sort of �classical limit� of the a�ne Hecke algebra. The following facts about H k are
known:

Lemma 3.1.
(i) The set f wx � j x � = x � 1

1 � � � x � k
k ; � 2 Pk ; w 2 Sk g is a basis ofH k .

(ii) The centre of H k is Z (H k ) = R[x � 1
1 ; : : : ; x � 1

k ]Sk .

Proof. Claim (i) follows from the de�nition of H k and because the monomials
f x � g� 2 Pk form a basis of R[x � 1

1 ; : : : ; x � 1
k ]. In particular, the skew group ring

H k is a free module over R[x � 1
1 ; : : : ; x � 1

k ]. Assume that f =
P

w f w w with
f w 2 R[x � 1

1 ; : : : ; x � 1
k ] is central, then it follows from x i f = fx i with i = 1 ; : : : ; k that

f w = 0 for all w 6= 1 . Thus, f 2 R[x � 1
1 ; : : : ; x � 1

k ], but since in addition wf = fw for
all w 2 Sk we must havef 2 R[x � 1

1 ; : : : ; x � 1
k ]Sk . Hence,Z (H k ) � R[x � 1

1 ; : : : ; x � 1
k ]Sk .

The converse relation,R[x � 1
1 ; : : : ; x � 1

k ]Sk � Z (H k ) is obvious. This proves (ii). �

3.3. Representations in terms of the cyclic element. Let V be the vector
representation of gln introduced earlier and recall from (10) the de�nition of the
elements P� 1 in the loop algebra sln [z; z� 1] which we interpret as endomorphisms
over V [z; z� 1] = V 
 C[z; z� 1] corresponding to the matrices

(45) X =

0

B
B
B
@

0 1 0
...

. . .
. . .

0 0 1
z 0 � � � 0

1

C
C
C
A

and X � 1 =

0

B
B
B
@

0 � � � 0 z� 1

1 0 0
. . .

. . .
...

0 1 0

1

C
C
C
A

:

As the notation suggests, both matrices are the inverse of each other with matrix mul-
tiplication de�ned over the ring R = C[z; z� 1]. In fact, the following matrix identities
in EndR V[z; z� 1] hold true:

Lemma 3.2. The Lie algebra elementsPr 2 gln [z; z� 1] with r 2 Z de�ned in (10)
and (30) are powers of the matrices(45),

(46) Pr = X r ; 8r 2 Z :

In particular, X mn = zm 1n , where 1n is the n � n identity matrix and m 2 Z.

Proof. This is immediate from the de�nition (10) noting that the eij are the unit
matrices whose only nonzero entry is in thei th row and j th column. �

Consider the tensor product (V [z; z� 1]) 
 k �= Vk = R 
 V 
 k , where we identify
both tensor products in the obvious manner via

(f 1(z)vi 1 ) 
 � � � 
 (f k (z)vi k ) 7! (f 1(z) � � � f k (z)) 
 vi 1 
 � � � 
 vi k :
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Let Sk act on the right by permuting factors in V 
 k . Denote by X � 1
i the matrix

which acts by multiplication with X � 1 in the i th factor and trivially everywhere else.
De�ne a Ŝk -action and, hence, aH k -action on Vk by setting for w 2 Sk , � 2 Pk ,

(47) vi 1 
 � � � 
 vi k :wx � = X � � 1 vi w (1) 
 � � � 
 X � � k vi w ( k ) :

N.B. this H k -action is not faithful, since we infer from (46) that for any � 2 Pk and
w 2 Sk the element w(x � � x � + nm� ) with m 2 Z; � 2 Q k is sent to zero.

Lemma 3.3. The action (47) factors through the quotient

(48) H k (n) := H k =hxn
1 � zi :

Proof. This is a direct consequence of the de�nition of the action and thatf x � w j � 2
Pk ; w 2 Sk g is a basis ofH k . �

Besides the right H k -action we also have a natural left action of the enveloping
algebra U = U(gln [z; z� 1]) via the coproduct � : U ! U 
 U. This left action of
the loop algebra commutes with the right action of the symmetric group Sk on Vk ,
which permutes the factors in the tensor product. Schur�Weyl duality states that the
images ofR[Sk ] and U in EndR Vk are centralisers of each other. Therefore, given any
element in the centre Z (H k ) �= R[x �

1 ; : : : ; x � 1
k ]Sk its image must coincide with the

image of an element inU. We will now show that the ring of symmetric polynomials
in the X � 1

i coincides with the image ofU0 (de�ned after Lemma 2.8).

Lemma 3.4. We have the following identities inEndR Vk ,

(49) � k � 1(Pr ) =
kX

i =1

X r
i ; 8r 2 Z;

where thePr are de�ned in (10) and (30). In particular, � k � 1(Pmn ) = zm k IdVk .

Proof. The assertion follows from Lemma 3.2 and the de�nition of the coproduct
� : U ! U 
 U. �

It follows that for � 2 P+
k the images ofS� and M � in EndR Vk can be written

in terms of the variables f X 1; : : : ; X k g using the familiar de�nitions of Schur and
monomial symmetric functions by projecting onto � k = C[x1; : : : ; xk ]Sk ,

(50) � k � 1(S� ) =
X

jT j= �

X T and � k � 1(M � ) =
X

� � �

X � ;

where the �rst sum runs over all semi-standard tableauxT of shape� and the second
sum runs over all distinct permutations � of � . The analogous expressions apply to
� k � 1(S�

� ) and � k � 1(M �
� ) by replacing X i with X �

i = X � 1
i . In what follows, we will

drop the coproduct � k � 1 from the notation to unburden formulae and it will always
be understood that the elementsM � , S� and their adjoints act on tensor products
via the natural action given by the coproduct.

Since the power sumsf p� g� 2 P+
k

with p� = p� 1 : : : p� k form a basis of� k , we have
as an immediate consequence the following corollary.

Corollary 3.5. Let A be the image ofZ (H k ) and B the image ofU0 in EndR Vk ,
then A = B . In particular, B � EndH k Vk .
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3.4. The cyclotomic quotient and the generalised symmetric group. In
the context of a�ne Hecke algebras one is usually interested in representations where
the action of the polynomial part R[x � 1

1 ; : : : ; x � 1
k ] � H k is semi-simple, that is, there

should exist a common eigenbasis of theX � 1
i . To this end, we consider

(51) H 0
k = R0 
 R H k ; R0 = R[t]=(z � tn )

and the R0-module

(52) V0
k = R0 
 C V 
 k =

L

� 2A +
k (n )

V0
� ; V0

� = R0 
 C V 0
� ;

where V 0
� = f v j e0

ii v = mi (� )v g are the gln -weight spaces of the Cartan subalgebra
h0 in apposition de�ned in (15) and the direct sum runs over weights in the following
set

(53) A +
k (n) = f � 2 P+

k j n > � 1 > � � � > � k > 1g:

This decomposition into weight spaces ofh0 should be seen in connection with the
algebra isomorphism � : U ! U 
 , where U 
 = U(gl
 [t; t � 1]) is the enveloping
algebra of the twisted loop algebra. Recall that the change in Cartan subalgebras and
the isomorphism� is implemented via the similarity transformation with S(t) de�ned
in (29).

De�ne a H 0
k -action on V0

k analogous to (47) but setting z� 1 = t � n in (45).

Proposition 3.6.
(i) The action of H 0

k on V0
k factors through the cyclotomic quotientH 0

k (n) =
H 0

k =I n , where I n is the two-sided ideal generated by the degreen polynomial

(54) f (x1) = ( x1 � t)(x1 � t� ) � � � (x1 � t� n � 1) = xn
1 � tn :

(ii) The action of the abelian subalgebraR0[x � 1
1 ; : : : ; x � 1

k ] � H 0
k on V0

� is diagonal
and, in particular, the centre Z (H 0

k ) acts by multiplication with symmetric
functions in the variables (t � 1� � � 1 ; : : : ; t � 1� � � k ).

Proof. The assertion (i) is a direct consequence of the matrix identities (46) when
r 2 nZ: setting z = tn they imply that the ideal I n de�ned via (54) is mapped to
zero. Statement (ii) follows from exploiting the S-matrix de�ned in (20) and its t-
deformed version (29) which diagonalises the principal Heisenberg algebra; compare
with Lemma 2.6. Thus, we deduce from (46) that the similarity transformation with
S(t) 
 k on V0

k diagonalises the action ofR0[x � 1
1 ; : : : ; x � 1

k ] � H n;k on each of the weight
spacesV0

� in (52). �

The quotient H 0
k (n) is closely related to the group ring of thegeneralised symmetric

group G(n; 1; k) [46]. Recall that the generalised symmetric group is a special case of
the family G(n; p; k) of complex re�ection groups in the Shephard�Todd classi�cation
with p = 1 . It can be de�ned as the wreath product of the symmetric group Sk with the
cyclic group Cn of order n (which we identify with the roots of unity of order n in C),

(55) G(n; 1; k) = C � k
n o Sk :

HereSk acts on thek-fold direct product C � k
n by permutation of indices. Consider the

following exact sequence of groups,1 ! C � k
n ,! G(n; 1; k) � Sk ! 1, then we denote

by N the normal subgroup which is the image ofC � k
n . Let yi 2 N be the image of

the generator of the i th copy of Cn under the natural isomorphism N �= C � k
n .

Lemma 3.7. The map

(56) wx � 7! t
P

i
� i wy� ; � 2 Pk

de�nes a ring isomorphism H 0
k (n) �= R0[G(n; 1; k)].
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Proof. Because of Lemma 3.1 (i) one deduces that a basis ofH 0
k (n) is given by

f x � w j n > � i > 1; w 2 Sk g. Since f y� w j n > � i > 1; w 2 Sk g is a basis
of R0[G(n; 1; k)] and tn yn

i = tn for all i = 1 ; : : : ; k as well as � i yi � i = yi +1 and
� i yj = yj � i for j 6= i; i + 1 the assertion follows. �

Note that in general the centre Z (H 0
k ) does not map surjectively onto the centre of

R0[G(n; 1; k)]. For example, setn = 3 and k = 2 then the centre of the group algebra
of G(3; 1; 2) is 9-dimensional while the image of the centre ofZ (H 0

k ) for t = 1 is
six-dimensional; see the example [3, p. 792]. A basis of the centre for general wreath
products with Sk has been put forward in [42]. However, in this article we are only
interested in the image of the centreZ (H 0

k ) as we will be projecting onto the subspaces
of symmetric and alternating tensors in (52) below.

Corollary 3.8. Let M be aR0[G(n; 1; k)]-module thenM is a H 0
k -module.

Proof. This is a direct consequence of Lemma 3.7. �

Since H 0
k (n) is essentially the group algebra ofG(n; 1; k) its irreducible modules

are given in terms of the irreducible modules ofG(n; 1; k). The latter are known [40]
to be the modules induced by the irreducible representations� : y� 7! � ( �;� ) , � 2
A +

k (n) of the normal subgroup N �= C� k
n and their associated stabiliser subgroup

G� � G(n; 1; k); see Appendix B for details. The following proposition identi�es the
weight spaces of the twisted loop algebra as irreducibleR0[G(n; 1; k)]-modules.

Proposition 3.9. The weight spacesV0
� are irreducible H 0

k (n)-modules that for t = 1
are isomorphic to the irreducibleG(n; 1; k)-modulesL � that are induced by the trivial
representation of G�

�= S� .

Proof. We state the isomorphismV 
 k !
L

� 2A +
k (n ) L � . De�ne a basis in V0

k in terms
of the discrete Fourier transform (29) by setting

v0
p1


 � � � 
 v0
pk

= t
P

i
pi

X

16 a1 ;:::;a k 6 n

S� 1
p1 a1

va1 
 � � � 
 S � 1
pk ak

vak

= t
P

i
pi

X

16 a1 ;:::;a k 6 n

� � (a;p )

nk=2
va1 
 � � � 
 vak

where p 2 A +
k (n)Sk is any distinct permutation of an element in the alcove (53).

We map the vector 
 i v0
pi

onto the unique n-tableau Tp = T (1) 
 � � � 
 T (n ) of
shape (m1(p); : : : ; mn (p)) that �lls the horizontal strip of length mj (p) with those
i 2 f 1; : : : ; kg for which pi = j ; see Appendix B. Since all entries in each hori-
zontal strip have to increase strictly from left to right this �xes the n-tableau Tp =
T (1) 
� � �
 T (n ) uniquely. Conversely, anyn-tableau of the same shape de�nes uniquely
a vector 
 i v0

qi
with q 2 pSk . The latter span the irreducible representation L � with

� = (1 m 1 (p) : : : nm n (p) ). By construction the map 
 i v0
pi

7! Tp preserves the (left)
action of the normal subgroup N , (
 i v0

pi
):x � = � ( �;p ) (
 i v0

pi
) = y� (
 i v0

pi
) for t = 1

see (186), and of the stabiliser groupGp � G(n; 1; k). �

3.5. Characters and fusion product. Recall from Appendix B that the ir-
reducible representationsL(� ) of G(n; 1; k) are labelled by n-multipartitions � =
(� (1) ; : : : ; � (n ) ) with

P n
i =1 j� ( i ) j = k. Given such a � we call the unique partition

� = (1 m 1 2m 2 � � � nm n ) 2 A +
k (n) with mi = j� ( i ) j its type and call two irreducible

modules L(� ) and L(� ) of the same type, if � = � . The following result is taken
from [40].
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Lemma 3.10.

(i) The restricted modulesResG(n; 1;k )
N L(� ) and ResG(n; 1;k )

N L(� ) are isomorphic
as N -modules if and only if they are of the same type.

(ii) The characters ofL (� ) restricted to the normal subgroupN are given by

(57) � � (yp) = Tr L ( � ) yp = f � m� (� p); f � =
nY

i =1

f � ( i ) ;

where p 2 Pk , f � ( i ) is the number of standard tableaux of shape� ( i ) and m�

denotes the monomial symmetric function. That is,

m� (� p) =
X

�

� p1 � 1 � � � � pk � k ;

where the sum runs over alldistinct permutations � of � .

Proof. From (186), notice that the action of yp on T does not depend on the shape
of each� ( i ) , but only on j� ( i ) j. We thus have

(58) � � (yp) = f � � � (yp); 8p 2 Pk ;

where � � is the character of the irreducible modules appearing in Proposition 3.9.
This proves, (i) and (ii). �

Denote byRepG(n; 1; k) the representation ring of the generalised symmetric group
with structure constants

L(� ) 
 L (� ) =
L

�
c�

�� L(� ) :

Since the normal subgroup N is abelian and �nite, we can identify its repre-
sentation ring RepN with its character ring, Char(N ) �= Zk

n . Consider the map
RepG(n; 1; k) ! Char(N ) given by L(� ) 7! � � jN . Its inverse image leads to the
de�nition of equivalence classes[L (� )] of irreducible G(n; 1; k)-modules of type
� 2 A +

k (n). That is, L (� ) � L (� ) if the multipartitions � and � are of the same type.
In particular, the irreducible modules f L � g� 2A +

k (n ) whosen-multipartitions are given
by n horizontal strips of boxes of length mi (� ), form a set of class representatives.
These irreducible modules are the ones induced by the trivial representation of the
Young subgroup S�

�= G� . Thus, we have arrived at the following:

Proposition 3.11. The quotient RepG(n; 1; k)=s endowed with thefusion product

(59) [L � ][L � ] =
L

� 2A +
k (n )

N �
�� [L � ]; N �

�� =
X

type( � )= �

c�
� �

f �

f � f �
;

is isomorphic to Char(N ). Here � and � in the de�nition of N �
�� are any pair of

multi-partitions of type � and � .

A combinatorial version of the same result is the following product expansion of
specialised monomial symmetric functions.

Corollary 3.12. We have the following product expansion of monomial symmetric
functions at roots of unity

(60) m� (� p)m� (� p) =
X

� 2A +
k (n )

N �
�� m� (� p); 8p 2 Pk ;

where the expansion coe�cients are the fusion coe�cients in (59).
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Noting that m� (1; : : : ; 1) = d� for any � 2 A +
k (n), we obtain as a special case of

the last result the following identity for the quantum dimensions (39),

(61) d� d� =
X

� 2A +
k (n )

N �
�� d� ; d� = dim L � :

Of course the same identity follows directly from (59) and (190).

4. Frobenius structures on symmetric and alternating tensors

Recall the de�nition of the symmetriser and antisymmetriser in C[Sk ],

(62) e�
k =

1
k!

X

w2 Sk

(� 1)` (w ) w :

In what follows we exploit Schur�Weyl duality and consider the U 
 -modules obtained
by projecting onto the symmetric, Sk V = e+

k V 
 k , and antisymmetric,
V k V = e�

k V 
 k ,
subspaces for each �xedk. Applying the idempotents e�

k each weight spaceV0
� is

mapped to a one-dimensional subspace simplifying the combinatorial description of
the action of the subalgebraU0 in the next section.

In this section we shall show that both subspaces, the symmetric and alternat-
ing tensors, carry the structure of symmetric Frobenius algebras with the algebra
product de�ned in terms of the action of U0. As mentioned in the introduction Frobe-
nius algebras are categorically equivalent to 2D TQFTs. In the language of category
theory a 2D TQFT is a monoidal functor Z : 2Cob ! Vec from the category of
two-dimensional cobordisms2Cob (generated via concatenation from the elementary
2-cobordisms shown below),

(63) and ;

to the category of �nite-dimensional vector spacesVec (here over C); see the text-
book [29] for further details. Identifying 2-cobordisms which are homeomorphic im-
plies that the image V of a circle under Z must carry the structure of a symmetric
Frobenius algebra with the 2-cobordisms in (63) (from left to right) corresponding
to the identity map id : V ! V , multiplication m : V 
 V ! V , bilinear form
� : V 
 V ! C, unit e : C ! V and coproduct � : V ! V 
 V , co-form � � : C ! V 
 V ,
co-unit or Frobenius trace " : V ! C. We now de�ne for eachk and n such monoidal
functors by explicitly constructing the latter maps for symmetric and alternating
tensors in V0

k .

4.1. Divided powers and a representation of the modular group. For � 2
A +

k (n) de�ne the associateddivided powersas the vector

(64) v� = d� e+
k (v� k 
 � � � 
 v� 2 
 v� 1 );

which have the property that e+
2k (v� 
 v� ) = d� d� v� [ � =d� [ � . Here � [ � denotes

the composition (� 1; : : : ; � k ; � 1; : : : ; � k ). Let V � be the dual space ofV and de-
note by f v1; : : : ; vn g the dual basis with vi (vj ) = � ij . Then we denote by v� =
1
k !

P
w2 Sk

v� w ( k ) 
 � � � 
 v� w (1) the invariant tensor in (V � ) 
 k that under the natural
pairing satis�es hv� ; v� i = � �� .

Lemma 4.1. The matrix elements of theS-matrix (29) in the basis of divided powers
are given by

(65) S�� (t) = hv� ; S
 k (t)v� i = t �j � j m� (� � )
p

nk
= t j � j�j � j d�

d�
S�� (t) :
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In addition, the matrix elements of the inverse matrix are (setting �t = t � 1)

(66)
S� 1

�� (t) = t j � j m� (� � � )
p

nk
= t j � j�j � j S�� (t) = t j � j+ j � � j S� � � (t)

= t j � j+ j � j � �j � j S�� _ (t);

where � � = (1 m n � 1 ( � ) 2m n � 2 ( � ) : : : (n � 1)m 1 ( � ) nm n ( � ) ) and � _ = ( n + 1 � � k ; : : : ; n +
1� � 1). The matrix elements of theT -matrix (21) in the basis of divided powers read,

(67) T�� = hv� ; T 
 k v� i = � �� � � kn ( n � 1)
24

kY

i =1

�
� i ( n � � i )

2 :

Setting t = 1 the matrices S = S(1), T obey the relations (23) and (24) with the
matrix C given byC�� = hv� ; C
 k v� i = � � � � .

Proof. All of these identities are a direct consequence of the relations (23) and (24)
from Proposition 2.4 for k = 1 and the de�nition of the matrix elements in the basis of
divided powers. (N.B. here we have changed conventions and settingk = 1 all of the
resulting matrices are the transpose of the matrices considered previously fork = 1
in Section 2.) In particular, note that the matrices C and Ĉ from (22) in the basis of
divided powers readC�� = hv� ; C
 k v� i = � � � � and Ĉ�� = hv� ; Ĉ
 k v� i = � rot( � ) � with
rot( � ) = (1 m n ( � ) 2m 1 ( � ) : : : nm n � 1 ( � ) ). Their product then yields (ĈC) �� = � � _ � and
the last identity in (66) then follows. �

As we will be making repeated use of them, it is worthwhile to express some of
the modular S-matrix relations in terms of the matrix elements (65) which amount
to non-trivial summation formulae of monomial symmetric functions m� and their
augmented counterpartsm� = jS� jm� with � 2 A +

k (n) when specialised at roots of
unity.

Corollary 4.2. We have the identities

(68)
X

� 2A +
k (n )

m� (� � )m� (� � � )
nk jS� j

=
X

� 2A +
k (n )

m� (� � )m� �
(� � )

nk jS� j
= � ��

and

(69)
X

� 2A +
k (n )

m� (� � )m� (� � � ) = � �� nk jS� j = � ��
jG(n; 1; k)j

dim L �
:

Proof. All identities are a direct consequence of the relations (23) and (24) for
k = 1 . �

Corollary 4.3. Recall the de�nition (36) of the loop algebra elementM � 2 U+ and
denote byM �

� 2 U� its adjoint. Then we have the following Verlinde-type formula for
their matrix elements,

(70)
hv� ; M �

� v� i =
jS� j
jS� j

hv� ; M � v� i =
X

� 2A +
k (n )

S�� (t)S�� (t)S� 1
�� (t)

tkn Sn k � (t)

= t j � j�j � j�j � j N �
�� ;

where N �
�� are the fusion coe�cients (59). In particular, N �

�� = 0 unless j� j + j� j �
j� j = 0 mod n.
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Proof. Note that v0
� = ( S� 1(t)) 
 k v� is an eigenvector ofM �

� 2 U� with eigenvalue

t �j � j m� (� � ) and Sn k � (t) = t � nk m� (1; : : : ; 1)=
p

nk d� = t � nk =
p

nk . Therefore,

hv� ; M �
� v� i =

X

� 2A +
k (n )

hv� ; v0
� i

S�� (t)S�� (t)
tnk Sn k � (t)

which gives the �rst equality in (70). To prove the second equality we set �rst t = 1 .
Then the identity (60) can be rewritten as

S��

Sn k �

S��

Sn k �
=

X

� 2A +
k (n )

N �
��

S��

Sn k �
:

Multiplying on both sides with S� 1
�� Sn k � and summing over � 2 A +

k (n) gives the
desired result for t = 1 . The identity for general t then follows by noting that the
monomial symmetric function m� is homogeneous of degreej� j. The �nal statement
is a direct consequence of observing that the matrix elements ofM �

� =
P

p X � p,
with the sum running over all distinct permutations p of � , only depend on powers of
z� 1 = t � n according to the de�nition (45). �

Note the identity d� = dim L � = S�n k =Sn k n k which explains our earlier convention
to call the multinomial coe�cients (39) quantum dimensions: they are the largest
(integral) eigenvalue of the fusion matrix N � with � 2 A +

k (n).
As an easy consequence of these previous results one now derives several identities

for the fusion coe�cients noting that d� = d� � for � 2 A +
k (n).

Corollary 4.4. One has the following equalities:

(i) N �
�n k = � �� and N �

�� = N �
��

(ii) N �
�� = N � �

� � � � = d� N � �

�� � =d� and N n k

�� = � � � � d�

(iii) N rot c �
rot a � rot b � = N �

�� for a; b; c2 Z with a + b = c mod n, where

rota � = (1 m 1 � a ( � ) : : : nm n � a ( � ) )

and all indices are understood modulon.

Proof. The identities (i) and (ii) follow from the S-matrix identities (65), (66) for
t = 1 . Similarly, (iii) can be deduced from the S-matrix identity (for t = 1 )

Srot( � ) � = � j � j S�� = S
� 1
�; rot( � )

which follows from observing that mrot � (� � ) = ek (� � )m� (� � ) = � j � j m� (� � ). �

We now endow V+
k = Sk V 
 R0 with the structure of a Frobenius algebra. First

note that V+
k is a freeR0-module of �nite rank. De�ne a R0-linear map " : V+

k ! R0

by setting
"(v� ) = t � kn nk � �n k :

Then the induced map V+
k ! HomR 0(V+

k ; R0) is a R0-module isomorphism.

Theorem 4.5. Let t0 2 C� with jt0j = 1 . Then V+
k =(t � t0)V+

k together with the
fusion product v� v� := M �

� v� and the trace functional induced by" is a commuta-
tive Frobenius algebra. Moreover, this algebra is semi-simple with idempotentse� =
tnk
0 Sn k � (t0)v0

� .

Proof. It follows from (70) that the product m : V+
k 
V +

k ! V +
k given by m(v� ; v� ) �

v� v� = M �
� v� is commutative. Associativity is then an easy consequence,v� (v� v� ) =
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M �
� (M �

� v� ) = M �
� (M �

� v� ) = ( v� v� )v� . De�ne a bilinear form � : V+
k 
 V +

k ! C and
its dual � � : C ! V +

k 
 V +
k via

(71) � (v� ; v� ) = " (v� v� ) = t � nk
0 nk N n k

�� and � � (1) =
X

� 2A +
k (n )

m� 
 m� �
;

wherem� = jS� jm� with � 2 A +
k (n) is the augmented monomial symmetric function.

Employing Corollary 4.4 (ii) one deduces that � is non-degenerate and, by de�nition,
invariant. All the remaining maps corresponding to the other 2-cobordisms shown
in (63) can now also be constructed. For example, using the 2-cobordisms in (63) one
obtains for the coproduct � : V+

k ! V +
k 
 V +

k (the inverted pair-of-pants cobordism),

(72) � = (id 
 m) � (� � 
 id) = ( m 
 id) � (id 
 � � ) :

To show that the algebra is semi-simple, recall from the proof of Corollary 4.3 that
the modular S-matrix diagonalises the fusion matricesM �

� in the de�nition of the
algebra product. This �xes the idempotents in terms of the eigenvectorsv0

� . That the
set of idempotents is complete follows from observing that theS-matrix is invertible;
compare with the identities from Corollary 4.2. �

Consider the ring R0[x1; : : : ; xk ]Sk � Z (H 0
k ) of symmetric functions in k variables

over R0 and denote byJ n the ideal generated by

(73) J n = hpn � z k; pn +1 � z p1; : : : ; pn + k � 1 � z pk � 1i ;

where pr =
P k

i =1 x r
i are the power sums in the variablesx i and z = tn .

Theorem 4.6. The map R0[x1; : : : ; xk ]Sk =J n ! V +
k which sendsm� (x � 1

1 ; : : : ; x � 1
k ) 7!

v� is a ring isomorphism. Here x � 1
i = zxn � 1

i for i = 1 ; : : : ; k.

Proof. We �rst show that J n is equal to the ideal J 0
n generated by the relations

(74) hxn
1 � z; : : : ; xn

k � zi :

One direction is trivial, the relations (73) are obviously satis�ed if (74) hold. To show
the converse recall the generating function for power sums,P(u) =

P
i > 1 pi ui � 1 =

P k
i =1

x i
1� ux i

, where the last expression is understood in terms of a geometric series
expansion. From Newton's formulae it follows via a proof by induction that (73)
implies pn + r � z pr = 0 for all r > 0 and, hence, one shows that

P(u) =
nX

i =1

pi ui � 1 + zun
X

i > 1

pi ui � 1 =
nX

i =1

pi ui � 1 + zun P(u)

which can be rearranged as (replacingu with u� 1)

nX

i =1

pi un +1 � i = ( un � z)P(u� 1) = ( un � z)
kX

i =1

ux i

u � x i
:

This implies that the formal series expansion of(un � z)P(u� 1) in u terminates
after �nitely many terms. Therefore, the residues of (un � z)P(u� 1) at u = x i , for
i = 1 ; : : : ; k must vanish which is equivalent to (74). This proves the claim.

The relations (74) imply that the x i are invertible, x � 1
i = zxn � 1

i . Recall that Z (H 0
k )

acts on the one-dimensional subspacee+
k V0

� 
 R00 by multiplication with symmetric
polynomials in the variables (t � 1� � � 1 ; : : : ; t � 1� � � k ) with � 2 A +

k (n). Hence, employ-
ing the Nullstellensatz we see thatR0[x1; : : : ; xk ]Sk =J n is isomorphic to the image of
Z (H 0

k ) in EndR 0 V+
k . But the action of Z (H 0

k ) on V+
k �xes the ring structure upon

noting that v� = zk M �
� vn k and M �

� =
P

� � � X � � in EndR 0 V+
k . �
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4.2. Alternating tensors and Gromov�Witten invariants. We now turn to
the subspaces

V k V � V 
 k of alternating tensors. Consider the alcove of strict parti-
tions,

(75) A ++
k (n) = A +

k (n) \ P++
k = f � j n > � 1 > � � � > � k > 0g :

Obviously the latter have mi (� ) = 0 or 1 and, therefore, the stabiliser groupsS� are
trivial for � 2 A ++

k (n). Note also that A ++
k (n) = ? unlessk 6 n. For � 2 A ++

k (n)
�x the basis

(76) v�� = v� k ^ � � � ^ v� 2 ^ v� 1 = e�
k v� k 
 � � � 
 v� 2 
 v� 1 ;

where �� = � � � with � = ( k; : : : ; 2; 1) is the reduced partition whose Young di-
agram lies inside a bounding box of width n � k and height k. Denote by v �� =P

w2 Sk
(� 1)` (w ) v� w ( k ) 
 � � � 
 v� w (1) its dual basis in (V � ) 
 k with respect to the nat-

ural pairing.
Along a similar vein as in the symmetric case one �nds the following presentation

of PSL(2; Z) on alternating tensors if k is odd. Let �; � 2 A ++
k (n) and denote by

a� (x1; : : : ; xk ) = det( x � i
j )16 i;j 6 k the alternating monomial.

Lemma 4.7. The matrix elements of the t-deformed modular S-matrix (29) in the
basis of alternating tensors read

(77) S�� (t) = ( � 1)
k ( k � 1)

4 hv �� ; S
 k (t)v�� i = ( � 1)
k ( k � 1)

4 t �j � j a� (� � )
p

nk

while the inverse matrix elements obey the identities

(78) S� 1
�� (t) = ( � 1)(k � 1) � � 1 n S�� � (t � 1) = t (n +1) k � �j � j S� _ � (t) = S�� (t) :

For the T -matrix we obtain similar to the symmetric case

(79) T�� = ( � 1)� k ( k � 1)
12 hv �� ; T 
 k v�� i = � �� � � kn ( n � 1)+ k ( k � 1)

24

kY

i =1

�
� i ( n � � i )

2

But only for k odd (and t = 1 ) do both matrices, S = S(1) and T , obey the rela-
tions (23), (24) with C�� = � �� � .

Proof. The relations are a straightforward consequence of the de�nitions and the
properties ofS; T for k = 1 . Note that the additional factor (� 1)

k ( k � 1)
4 in the S-matrix

is inserted becausea� (� � ) = a� (� � ) = ( � 1)
k ( k � 1)

2 (� 1)(k � 1) � � 1 n a� � (� � ). Similarly, we

entered a factor (� 1)� k ( k � 1)
12 in the T -matrix so that S2 = ( ST)3 continues to hold.

However, note that

C
 k v�� = vn � � k ^ � � � ^ vn � � 1 = ( � 1)
k ( k � 1)

2 (� 1)(k � 1) � � 1 n v�� � :

Hence the equalityS2 = C only continues to hold for k odd. �

Remark 4.8. The presentation of PSL(2; Z) for t = 1 and k odd has been previously
considered by Naculich and Schnitzer [39] in connection with theU(n) Wess�Zumino�
Witten model.

In complete analogy with the previous case of divided powers we now consider the
Verlinde formula for the case of alternating tensors.

Proposition 4.9. The matrix elements of the loop algebra elementS�� 2 U+ de�ned
in (31) with � 2 A ++

k (n) and its adjoint S�
��

2 U� read
(80)

hv �� ; S�
�� v�� i = hv �� ; S�� v�� i =

X

� 2A ++
k (n )

S�� (t)S�� (t)S� 1
�� (t)

S�� (t)
= ( � 1)d(k � 1) t � nd C ��;d

�� ��
;
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where nd = j �� j + j �� j � j �� j and the structure constantsC ��;d
�� ��

are determined by the
following product expansion of Schur functions at roots of unity,

(81) s�� (� � )s�� (� � ) =
X

� 2A ++
k (n )

(� 1)d(k � 1) C ��;d
�� ��

s�� (� � )

with � = �� + � . Setting t = �
k +1

2 q� 1
n the matrix elements (80) are equal to the 3-

point genus zero Gromov�Witten invariants of qH � (Gr( k; n)) . In particular, C ��;d
�� ��

= 0

unlessj �� j + j �� j � j �� j = 0 mod n.

Proof. The proof follows along the same lines as in the previous case of symmetric
tensors and employing that

t �j �� j s�� (� � ) = t �j �� j a� (� � )
a� (� � )

=
S�� (t)
S�� (t)

:

In particular, the matrix elements can be rewritten as

(82) C ��
�� �� (t) = ( � 1)d(k � 1) t � nd C ��;d

�� ��
= t j �� j�j �� j�j �� j

X

� 2A ++
k (n )

a� (� � )a� (� � )a� (� � � )
nk a� (� � )

and one then recognises for the stated value oft the Bertram�Vafa�Intriligator formula
for Gromov�Witten invariants; see e.g. [7] and [43] and references therein. �

Note that the last proposition implies that C ��
�� ��

(�
k +1

2 ) = C ��;d
�� ��

is a non-negative
integer.

Corollary 4.10. We have the following identities for the matrix elements(80):

(83) C ��
�� �� (t) = C ��

�� �� (t) = C
�� _

�� _ �� (t) and C ��
? �� (t) = � �� :

Proof. All of the asserted equalities follow from (80) and the identities (78) for the
inverse of the modularS-matrix. In particular, C�� �� �� (t) := C �� _

�� ��
(t) is invariant under

permutations of ��; �� and �� . �

Having identi�ed the matrix elements (80) for t = �
k +1

2 with the Gromov�Witten

invariants C
��;d
�� �� , we obtain as a corollary the simplest case of the Satake correspondence

for quantum cohomology (c.f. [22]):

Corollary 4.11. Let V�
k =

V k V 
 R0 be the subspace of alternating tensors. Then
V�

k =(t � �
k +1

2 )V�
k together with the productv�� v�� := S�

��
v�� and trace functional " (v�� ) =

� ��; �� _ is a commutative semi-simple Frobenius algebra, which is isomorphic to the
specialisation of qH � (Gr( k; n)) at q = 1 .

Proof. That the product m : V�
k 
 V �

k ! V �
k with m(v�� ; v�� ) := S�

��
v�� is commutative

is a direct consequence of (80). Associativity then follows by the analogous argument
used in the case of symmetric tensors; see the proof of Theorem 4.5. The invariance
of the bilinear form � (v�� ; v�� ) := " (v�� v�� ) = � �� _ �� is proved using the identities in (83).
Since the map �� 7! �� _ is an involution one easily veri�es that � is non-degenerate.
The remaining maps corresponding to the 2-cobordisms in (63) are then constructed
from � and the multiplication map m as in the case of symmetric tensors.

For semi-simplicity we again employ the modularS-matrix which encodes the idem-
potents and that the latter span V�

k sinceS is invertible. Proposition 4.9 then entails
that the map which sends v�� onto a Schubert class gives an algebra isomorphism
V�

k =(t � �
k +1

2 )V�
k

�= qH � (Gr( k; n))=hq � 1i . �
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For completeness we mention here some di�erences with the case of symmetric
tensors. Firstly recall that qH � (Gr( k; n)) has the following known presentation (see
e.g. [1]) in terms of the Landau�Ginzburg or super-potential

Wq(x1; : : : ; xk ) =
pn +1 (x1; : : : ; xk )

n + 1
+ ( � 1)k qp1(x1; : : : ; xk ) ;

where pr (x1; : : : ; xk ) =
P k

i =1 x r
i are the power sums,

qH � (Gr( k; n)) �= C[q][e1; : : : ; ek ]=h
@Wq

@e1
; : : : ;

@Wq

@ek
i :

We were unable to �nd an analogous super-potential for the ideal (73) used in the case
of symmetric tensors. However, one readily sees the similarity with the equations (74)
which are a direct consequence of (54).

The other di�erence lies in the Frobenius structure �xed via the Frobenius trace
" , which is di�erent from the trace functional the algebra would inherit viewed as a
Verlinde algebra: there one �xes the value of" on the idempotents in terms of the
quantum dimensionsS�� =S�� . However, in contrast to the case of symmetric tensors,
the latter are (in general) neither positive nor real for alternating tensors. Instead the
ring qH � (Gr( k; n)) inherits the intersection form from H � (Gr( k; n)) . Thus, even for
k = 1 both Frobenius algebras are di�erent due to the di�erent bilinear forms, V+

1
�=

V1( bsln ), the Verlinde algebra of the bsln -WZW model, and V�
1

�= qH � (Pn � 1)=(q � 1),
the specialised quantum cohomology of projective space.

5. Cylindric symmetric functions

In the previous section we have computed the matrix elements ofM � and S� (as
well as those of their adjoints) and identi�ed them with the fusion coe�cients of 2D
TQFTs (structure constants of symmetric Frobenius algebras), which for particular
values of the loop parameter, turn out to be non-negative integers. It is therefore
natural to ask for a combinatorial description: we show that the fusion coe�cients
give the expansion coe�cients of so-called cylindric symmetric functions by taking
matrix elements of the following Cauchy identities in EndR Vk .

Lemma 5.1. Recall the de�nitions (33) and (34). The following equalities hold in
EndR Vk ,

(84)
Y

j > 1

H (uj ) =
kY

i =1

Y

j > 1

(1 � X i uj ) � 1 =
X

� 2 P+
k

M � h� (u) =
X

� 2 P+
k

S� s� (u);

and

(85)
Y

j > 1

E(uj ) =
kY

i =1

Y

j > 1

(1 + X i uj ) =
X

� 2 P+
k

M � e� (u) =
X

� 2 P+
k

S� s� 0(u);

where the X i are the matrices (45) de�ned in the presentation of H k discussed in
the previous section and theuj are some commuting indeterminates. The analogous
identities hold for H � (uj ), E � (uj ) and M �

� , S�
� with the X i replaced byX � 1

i .

Proof. Employing the Hopf algebra homomorphisms� � from Lemma 2.8 the Cauchy
identities are a direct consequence of the corresponding identities in� . The restriction
of the sums to partitions � 2 P+

k follows from observing that M � and S� must
identically vanish on Vk for `(� ) > k . Again this follows from the familiar relations in
the ring of symmetric functions: recall the projection � � � k = C[x1; : : : ; xk ]Sk by
setting x i = 0 for i > k . This introduces linear dependencies among the power sums
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allowing one to expressp� with `(� ) > k in terms of f p� g� 2 P+
k

as the latter form a
basis of � k ; see [36]. As a result the projections of monomial symmetric and Schur
functions are identically zero for `(� ) > k . Employing Lemma 3.4 the same linear
dependencies among thef P� g� 2 P+ then ensure that M � and S� are both the zero
map for `(� ) > k . The analogous identities for the adjoint operators are obtained by
the same arguments using� � and Lemma 2.10. �

Note that the X i in (84), (85) all (trivially) commute. Hence, each matrix element
must yield a symmetric function in the uj and the latter are the mentioned cylindric
symmetric functions. Their name originates from their de�nition as sums over so-
called cylindric tableaux; see e.g. [20, 41, 37]. The latter are �llings of skew shapes
(lattice paths) on the cylinder Ck;n = Z2=(� k; n)Z. The aspect in our work we like to
stress here is the de�nition of new families of cylindric functions as well as the linking
of all of them to the same combinatorial action of the extended a�ne symmetric group
in terms of �in�nite permutations�.

5.1. Infinite permutations and the extended affine symmetric group. Re-
call the realisation of the a�ne symmetric group ~Sk = Qk o Sk in terms of bijections
~w : Z ! Z; see [35, 10, 12, 44]. Here we state a generalisation of this presentation for
the extended a�ne symmetric group Ŝk = Pk o Sk .

Proposition 5.2. The extended a�ne symmetric group Ŝk can be realised as the set
of bijections ŵ : Z ! Z subject to the two conditions

(86) ŵ(m + k) = ŵ(m) + k; 8m 2 Z and
kX

m =1

ŵ(m) =
�

k
2

�
mod k :

The group multiplication is given via composition. The subset of bijections~w for whichP k
m =1 ~w(m) =

� k
2

�
gives the a�ne symmetric group ~Sk � Ŝk .

Proof. For ~Sk this is the known presentation for the a�ne symmetric group from [35].
In particular, the simple Weyl re�ections f � 0; � 1; : : : ; � k � 1g are the maps Z ! Z
de�ned via

(87) � i (m) =

8
><

>:

m + 1 ; m = i mod k
m � 1; m = i + 1 mod k
m; otherwise .

Introduce the shift operator � : Z ! Z by m 7! � (m) = m � 1. Then one has the
identities � � � i +1 = � i � � , where indices are understood modulok. One easily veri�es
that any ŵ = ~w � � d with ~w 2 ~Sk and d 2 Z obeys the stated conditions. Likewise
any such map can be written in the form ŵ = ~w � � d. Thus, the group generated by
h�; � 0; � 1; : : : ; � k � 1i is the extended a�ne symmetric group Ŝk . �

Our main interest in this realisation of Ŝk is that it naturally leads to the consid-
eration of cylindric loops.

5.2. Cylindric skew shapes and reverse plane partitions. Fix n 2 N. We are
now generalising the notion of the weight lattice in order to de�ne a level-n action of
the extended a�ne symmetric group. Let Pk;n denote the set of functions� : Z ! Z
subject to the constraint � i + k = � i � n for all i 2 Z.

Lemma 5.3. The map Pk;n � Ŝk ! Pk;n with (�; ŵ) 7! � � ŵ, where the �in�nite
permutation� ŵ : Z ! Z is a bijection satisfying (86), de�nes a right action.

Proof. A straightforward computation. �
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One can convince oneself that the above is the familiar level-n action of Ŝk on the
weight lattice Pk by observing that each � 2 Pk;n is completely �xed by its values
(� 1; : : : ; � k ) on the set [k]. Employing this identi�cation between weights in � 2 Pk

and their associated maps in� 2 Pk;n (which we shall denote by the same symbol), the
set of partitions (53) de�ned earlier, constitutes an �alcove�: a fundamental domain
with respect to the above level-n action of Ŝk on Pk;n . That is, for any � 2 Pk;n the
orbit � Ŝk intersects A +

k (n) in a unique point.
Note that when employing this identi�cation of weights and maps one needs to be

careful not to identify the sum � + � of two weights �; � 2 Pk with the usual addition
of maps, where� + � : Z ! Z is de�ned as (� + � ) i = � i + � i .

Given � 2 A +
k (n) and d 2 Z denote by � [d] the (doubly) in�nite sequence

� [d] = ( : : : ; � [d]� 1; � [d]0; � [d]1; : : : ) = ( : : : ; � � d� 1; � � d; � 1� d; : : : ) ;

that is, the image � � � d(Z) of the map � � � d : Z ! Z. This sequence de�nes a lattice
path f (i; � [d]i )gi 2 Z � Z � Z which projects onto the cylinder Ck;n = Z2=(� k; n)Z and
is therefore called acylindric loop.

While we have adopted here the notation from [41], see also [37], our de�nition of
cylindric loops is di�erent from the one used in these latter works. Inloc. cit. � [d] is
obtained by shifting � [0] in the direction of the lattice vector (1; 1) in Z2, while we
shift here by the lattice vector (1; 0) instead. We will connect with the cylindric loops
from [41, 37] below when discussing the shifted level-n action (142) of Ŝk .

A cylindric skew diagram or cylindric shape is de�ned as the number of lattice
points between two cylindric loops: let �; � 2 A +

k (n) be such that � i 6 � i � d = ( � � � d) i

for all i 2 Z, then we write � [0] 6 � [d] and say that the set

(88) �=d=� = f (i; j ) 2 Z2 j � [0]i < j 6 � [d]i g

is a cylindric skew diagram (or shape) of degreed.

Definition 5.4. A cylindric reverse plane partition (CRPP) of shape � = �=d=� is
a map �̂ : � ! N such that for any (i; j ) 2 � one has�̂ (i; j ) = �̂ (i + k; j � n) together
with

�̂ (i; j ) 6 �̂ (i + 1 ; j ) and �̂ (i; j ) 6 �̂ (i; j + 1) ;

provided (i +1 ; j ); (i; j +1) 2 � . In other words, the entries in the squares between the
cylindric loops � [0] and � [d] are non-decreasing from left to right in rows and down
columns.

Alternatively, �̂ can be de�ned as a sequence of cylindric loops

(89) (� (0) [0] = � [0]; � (1) [d1]; : : : ; � ( l ) [dl ] = � [d])

with � ( i ) 2 A +
k (n) and di � di � 1 > 0 such that �̂ � 1(i ) = � ( i ) =(di � di � 1)=� ( i � 1) is a

cylindric skew diagram; see Figure 1 for examples whenn = 4 and k = 3 . The weight
of �̂ is the vector wt( �̂ ) = (wt 1(�̂ ); : : : ; wt l (�̂ )) where wt i (�̂ ) is the number of lattice
points (a; b) 2 � ( i ) =(di � di � 1)=� ( i � 1) with 1 6 a 6 k.

5.3. Cylindric complete symmetric functions. Using CRPPs we now intro-
duce a new family of symmetric functions which can be viewed as generalisation of
functions which arise from the coproduct of complete symmetric functions; see Ap-
pendix A for details. In the last part of this section we then show that they form
a positive subcoalgebra of� whose structure constants are the fusion coe�cients
from (59) and (70).

Given � 2 A +
k (n) note that � 1 � � k < n and, hence, its stabiliser groupS� �

Sk � Ŝk . De�ne ~S� as the minimal length representatives of the cosetsS� n~Sk . The
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following is a generalisation of the set (178) in Appendix A to the cylindric case: for
�; � 2 A +

k (n) and d 2 Z> 0 de�ne the set

(90) f ~w 2 ~S� j � � ~w 6 � � � dg

and denote by � �=d=� its cardinality.

Lemma 5.5. The set (90) is non-empty if and only if �=d=� is a valid cylindric skew
shape, i.e. if � 6 � � � d. In the latter case we have the following expression for its
cardinality,

(91) � �=d=� =
nY

i =1

�
(� � � d)0

i � � 0
i +1

� 0
i � � 0

i +1

�
�

nY

i =1

�
(� � � d� 1)0

i � � 0
i +1

� 0
i � � 0

i +1

�
;

where the binomial coe�cients are understood to vanish whenever one of their argu-
ments is negative.

Proof. First note that if d = 0 then we must have ~w 2 S� , because�; � 2 A +
k (n). In

this case we recover (168) and Lemma A.2 proved in Appendix A.
Assume now that d > 0. Restricting the maps � and � � � d to the set [k] we

recover the corresponding weights inP+
k . By a similar argument as in the cased = 0 ,

however with more involved steps due to the level-n action of the a�ne symmetric
group, one then arrives at the �rst statement, i.e. that (90) is non-empty if and only
if � i 6 (� � � d) i for i 2 [k]. This inequality is then extended to all i 2 Z using that
� i + k = � i � n and (� � � d) i + k = ( � � � d) i � n which implies that �=d=� is a valid
cylindric skew shape. Since� 6 (� � � d) if and only if � 0 6 (� � � d)0 the right hand
side in (91) is zero if �=d=� is not a cylindric skew shape.

Thus, we now assume� 6 � � � d for the remainder of the proof. To compute the
cardinality we will rewrite the set (90) such that it can be expressed in terms of non-
cylindric weights for Sk+ d and then apply again the result from Appendix A with k
replaced by k + d.

Each element in~S� can be expressed asw � x � � with w 2 S� and � 2 Qk (that is,
j� j =

P
i � i = 0 ). Thus, the set (90) can be rewritten as

�
(w; � ) 2 S� � Qk j � � w � x � � � � � d 6 �

	
:

Since� = xk � � k � 1�� � �� � 1 it follows that � � d = ( � k � 1�� � �� � 1) � d � x � � for some� 2 Pk

with j� j = d. Noting further that for any w0 2 Sk we have that x � � � w0 = w0� x � � � w 0
,

we can conclude that� 0 = � (� � w0+ � ) ranges over all the elements inPk with j� 0j = d
if � ranges over all the elements inQk . Thus, we arrive at the alternative expression

�
(w; � 0) 2 S� � Pk j � � w � (� k � 1 � � � � � � 1) � d � x � � 0

6 �; j� 0j = d
	

:

Each elementw� (� k � 1 � � � � � � 1) � d has a unique decompositionw� � w� , with w� 2 S�

and w� 2 S� , such that distinct w correspond to distinct w� . Therefore, the set (90)
is in bijection with the set

(92) A =
�

(w; � ) 2 S� � Pk j � � w � x � � 6 �; j� j = d
	

;

where � 2 Pk can only have non-negative parts� i > 0 as �; � 2 A +
k (n).

We now express the cardinality of the set (92) forŜk in terms of the cardinality
of the (non-cylindric) set (178) for Sk+ d. De�ne the two weights in P+

k+ d setting
� (d) = ( n; n; : : : ; n; � 1; : : : ; � k ) and � (d) = ( � 1; : : : ; � k ; 0; : : : ; 0). We now construct a
bijection between (92) and the set

(93) B = f �w 2 S� ( d )
j � (d) � �w 6 � (d) ; (� (d) � �w)1 > 0g :
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Fix (w; � ) 2 A and let J (� ) = f j 1; : : : ; j l g � [k] be the set of indices for which
� j i > 0, i = 1 ; : : : ; l . Denote by �J (� ) = [ k]nJ (� ) its complement. De�ne a weight

 = 
 (w; �; d; � ) 2 Pk+ d whose parts
 j for 1 6 j 6 d are �xed by the vector

�
(� � w) j 1 ; 0; : : : ; 0

| {z }
� j 1 � 1

; (� � w) j 2 ; 0; : : : ; 0
| {z }

� j 2 � 1

; : : : ; (� � w) j l ; 0; : : : ; 0
| {z }

� j l � 1

�
:

and for 1 6 j 6 k we set


 j + d =

(
(� � w) j ; if j 2 �J (� )
0; else:

See Figure 2 for an illustration. De�ne �w(w; � ) 2 S� ( d )
� Sk+ d to be the unique

permutation such that 
 = � (d) � �w. By construction, it follows that 
 6 � (d) and

 1 > 0. Hence, �w(w; � ) 2 B.

Conversely, given �w 2 B, de�ne 
 = 
 ( �w) = � (d) � �w. Then the parts of 
 �x
the weight � ( �w) 2 Pk in A by reversing the above construction. In particular, the
positions of nonzero parts
 j with d + 1 6 j 6 d + k �x the set �J (� ). From �J (� )
and its complement J (� ) in [k] one constructs a vector�
 2 Pk by setting �
 j = 
 j + d

if j 2 �J (� ) and if j = j i 2 J (� ) then let �
 j be the i th nonzero part among the �rst
d parts of 
 . De�ne w = w( �w) 2 S� � Sk via �
 = � � w. It then follows again by
construction that (w( �w); � ( �w)) 2 A.

By distinguishing the cases(� (d) � w0)1 > 0 and (� (d) � w0)1 = 0 with w0 2 S� ( d )
�

Sk+ d, the cardinality of the set (93) can be written as the di�erence of the cardinalities
of the sets f w0 2 S� ( d )

j � (d) � w0 6 � (d) g � Sk+ d and f w002 S� ( d � 1)
j � (d� 1) � w006

� (d� 1) g � Sk+ d� 1. Namely, suppose(� (d) � w0)1 = 0 , then we may assumew0(1) =
k + d, because otherwise we simply apply a permutationw0002 S� ( d ) such that the
assumption holds (recall that the last d parts of � (d) are all zero by de�nition). De�ne
w00 2 Sk+ d� 1 by setting w00(i ) = w0(i + 1) for i = 1 ; : : : ; k + d � 1. Thus, using
Lemma A.2 and (178) from the appendix we arrive at

� �=d=� = � � ( d ) =� ( d ) � � � ( d � 1) =� ( d � 1) ;

and since(� (d) )0
i = � 0

i + d = ( � � � d)0
i equation (91) follows. �

Similar to the non-cylindric case treated in Lemma A.3 in the appendix, we em-
ploy (91) to de�ne weighted sums over cylindric reverse plane partitions: given a
CRPP �̂ set

(94) � �̂ =
Y

i > 1

� � ( i ) =(di � di � 1 )=� ( i � 1) ;

where the cylindric skew diagram� ( i ) =(di � di � 1)=� ( i � 1) is the pre-image�̂ � 1(i ), and
we denote byu�̂ the monomial uwt 1 ( �̂ )

1 uwt 2 ( �̂ )
2 � � � in some commuting indeterminates

ui . If d = 0 we recover the de�nition (169) from Appendix A, i.e. � �= 0=� = � �=� .

Definition 5.6. For �; � 2 A +
k (n) and d 2 Z> 0, de�ne the cylindric complete sym-

metric function h�=d=� as the weighted sum

(95) h�=d=� (u) =
X

�̂

� �̂ u�̂

over all cylindric reverse plane partitions �̂ of shape�=d=� .

Note that when setting d = 0 we recover the (non-cylindric) skew complete cylindric
function discussed in Appendix A, that is h�= 0=� = h�=� . We now prove for d > 0
that h�=d=� is a symmetric function by expanding it into the bases of monomial and
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Figure 2. A graphical depiction of the construction of the weight
vector 
 2 Pk+ d (shown on the right) in the proof of Lemma 5.5.

complete symmetric functions. Proceeding in close analogy to the non-cylindric case
d = 0 discussed in Appendix A, we �rst link the expansion coe�cients to product
identities in the quotient ring � k 
 R0=J n from Theorem 4.6. As the latter is isomorphic
to V+

k we shall use the same notation for both of them in what follows.
Let �; � 2 A +

k (n), � 2 P+ , d 2 Z> 0 and de�ne

(96) � �=d=� (� ) =
X

�̂

� �̂ ;

where the sum is restricted to CRPP �̂ of shape�=d=� and weight � .

Lemma 5.7. The following product rule holds inV+
k

(97) m� (x � 1
1 ; : : : ; x � 1

k )h� (x � 1
1 ; : : : ; x � 1

k ) =
X

� 2A +
k (n )

z� d � �=d=� (� )m� (x � 1
1 ; : : : ; x � 1

k ) :

where d = j � j+ j � j�j � j
n in the sum on the right hand side. In particular, � �=d=� (� ) is

nonzero only if dn + j� j = j� j + j� j.

Proof. It su�ces to show that in V+
k

(98) m� (x � 1
1 ; : : : ; x � 1

k )hr (x � 1
1 ; : : : ; x � 1

k ) =
X

� 2A +
k (n )

z� d � �=d=� m� (x � 1
1 ; : : : ; x � 1

k );

where the sum runs over all� 2 A +
k (n) such that � 6 � � � d with d = r + j � j�j � j

n 2 Z> 0.
The general case (97) then follows by repeatedly applying the latter expansion.

First note that the coe�cient of m� in m� hr must equal the coe�cient of the
monomial term x � � in the same product. Sincem� and hr are polynomials of degree�
and r , respectively, andx � n

i = z� 1, it follows that r + j� j � j � j = 0 mod n. Hence, the
term x � � with � 2 A +

k (n) occurs in the product expansion if and only if� � w 6 � � x � �

with � 2 Pk , � i > 0, and j� j = r + j� j � nj� j. (N.B. the symbol x appears here twice,
once in the role as variable and another time as translation acting on a weight.) Thus,
for any such � 2 A +

k (n) the coe�cient of x � � in m� (x � 1
1 ; : : : ; x � 1

k )hr (x � 1
1 ; : : : ; x � 1

k )
equalsz�j � j times the cardinality of the set

(99)
n

(w; � ) 2 S� � Pk j � i > 0; j� j = d; � � w 6 � � x �
o

;

where nd = r + j� j � j � j. Comparing with (92) we see that the coe�cient is equal to
z� d � �=d=� with d = r + j � j�j � j

n . �
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Note that the last lemma implies that � �=d=� (� ) = � �=d=� (� ) for � � � , where
� �=d=� (� ) with � a composition is de�ned analogous to (96). Thus, we have as imme-
diate corollary:

Corollary 5.8. The function (95) has the expansion

(100) h�=d=� =
X

� 2 P+

� �=d=� (� )m�

in the ring of symmetric functions � .

Note that if we set � = ( r; 0; 0; : : :) with r = dn + j� j � j � j then � �=d=� (� ) = 1 , as
long as�=d=� is a valid cylindric shape, since then there exists precisely one CRPP of
that weight, namely the cylindric shape �=d=� itself. Hence,h�=d=� is not identically
zero provided �=d=� is a valid cylindric skew diagram.

Similar to the product expansion (97) we also wish to express the fusion coe�cients
from (59), (60) which appear in the expansion of the productm� m� in V+

k in terms
of the cardinalities of sets involving a�ne permutations. To this end, we now extend
the de�nition of the fusion coe�cients to weights outside the alcove (53).

For �; �; � 2 P+
k de�ne �N �

�� as the cardinality of the set

(101)
�

(w; w0) 2 S� � S� j � � w + � � w0 = � � x � for some� 2 Pk

�
:

Note that any such weight � 2 Pk appearing in the above de�nition does have to
satisfy nj� j = j� j + j� j � j � j.

Lemma 5.9. For �; � 2 P+
k we have the following product expansion inV+

k
(102)

m� (x � 1
1 ; : : : ; x � 1

k )m� (x � 1
1 ; : : : ; x � 1

k ) =
X

� 2A +
k (n )

z
j � j�j � j�j � j

n �N �
�� m� (x � 1

1 ; : : : ; x � 1
k ) :

So, in particular, �N �
�� = N �

�� for �; �; � 2 A +
k (n). Moreover, we have the following

�reduction formula� for monomial symmetric functions in V+
k ,

(103) m �� (x � 1
1 ; : : : ; x � 1

k ) =
jS�� j
jS� j

m� (x � 1
1 ; : : : ; x � 1

k )z
�j �� j + j � j

n ;

where �� is the unique intersection point of the orbit � Ŝk with A +
k (n).

Because we have equality between the fusion coe�cients in (59) and the coe�cients
�N �

�� if �; �; � 2 A +
k (n), we shall henceforth use the same notation for both and it will

be understood that N �
�� is de�ned via the cardinality of the set (101) whenever one

of the weights lies outside the alcove (53).

Proof. Since the monomial symmetric function m� is homogeneous and of de-
gree j� j it follows from x � n

i � z� 1 = 0 , that we must have j� j + j� j � j � j = 0
mod n. Therefore, the monomial x � � 1

1 � � � x � � k
k can only occur in the product

m� (x � 1
1 ; : : : ; x � 1

k )m� (x � 1
1 ; : : : ; x � 1

k ) provided there exist w 2 S� and w0 2 S� such
that w(� ) + w0(� ) = � � x � for some� 2 Pk satisfying j� j + j� j � j � j = nj� j, which
proves the asserted product expansion.

To prove the reduction formula note that in � k we have that m� (x � 1
1 ; : : : ; x � 1

k ) =P
w2 S� x � � w = 1

jS� j

P
w2 Sk

x � � � w . Since x � n
i = z� 1 in the quotient we arrive at the

stated formula. �

Since the setf m� (x � 1
1 ; : : : ; x � 1

k )g� 2A +
k (n ) forms a basis of the quotient ringV+

k the

coe�cients N �
�� with �; �; � 2 P+

k must be expressible in terms of the coe�cients where
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�; �; � 2 A +
k (n). The following lemma together with the identities from Corollary 4.4

gives an explicit reduction formula.

Lemma 5.10. Let �; �; � 2 P+
k . Denote by �� 2 A +

k (n) the unique intersection point of
the orbit � Ŝk with the alcove(53). Then
(104)

N �
�� = N �

� ��

�
mn (�� )

m0(� ); mn (� ); m2n (� ); : : :

� n � 1Y

i =1

�
mi (�� )

mi (� ); mi + n (� ); mi +2 n (� ); : : :

�
;

where mj (� ) and mj (�� ) are the multiplicities of the part j in � and �� , respectively.

Proof. Recall that for � 2 P+
k the cardinality of S� is given by jS� j =

Q
i > 0 mi (� )!.

Noting the equalities mn (�� ) = m0(� ) + mn (� ) + m2n (� ) + : : : and mi (�� ) = mi (� ) +
mi + n (� ) + : : : , one applies the de�nition of multinomial coe�cients to arrive at the
relation

jS�� j = jS� j
�

mn (�� )
m0(� ); mn (� ); m2n (� ); : : :

� n � 1Y

i =1

�
mi (�� )

mi (� ); mi + n (� ); mi +2 n (� ); : : :

�
:

Applying equation (103) in (102) completes the proof. �

Let L �� be the number ofN0-matrices whose row sums are �xed by the components
of the vector � and whose column sums are �xed by the components of the vector� ;
see Appendix A. The next lemma is the generalisation of the �rst identity in (167) to
the cylindric case.

Lemma 5.11. Let �; � 2 A +
k (n) and � 2 P+ . Set d = j � j+ j � j�j � j

n , then the following
equality holds

(105) � �=d=� (� ) =
X

� 2 P+
k

L �� N �
�� :

Proof. Insert the known expansionh� (x � 1
1 ; : : : ; x � 1

k ) =
P

� 2 P+
k

L �� m� (x � 1
1 ; : : : ; x � 1

k )

(see Appendix A) into the product m� (x � 1
1 ; : : : ; x � 1

k )h� (x � 1
1 ; : : : ; x � 1

k ) in V+
k and com-

pare with (97), using the fact that f m� (x � 1
1 ; : : : ; x � 1

k )g� 2A +
k (n ) is a basis ofV+

k . Note
that L �� is nonzero only if j� j = j� j, which implies that on the right hand side of the
asserted equation only the coe�cients N �

�� appear for which j � j+ j � j�j � j
n = d. �

We have now all the results in place to state the main result of this section which
connects the cylindric complete symmetric functions with our discussion in the pre-
vious sections.

Theorem 5.12. Let �; � 2 A +
k (n) and d 2 Z> 0. Then

(i) the symmetric function h�=d=� has the expansion

(106) h�=d=� =
X

� 2 P+
k

N �
�� h�

into the basis f h� g� 2 P+ � � , where the sum is restricted to those� 2 P+
k for

which j� j = dn + j� j � j � j.
(ii) We have the following formal power series expansions inz,

(107) hv� _
;
Y

j > 1

H (uj )v� _ i = hv� ;
Y

j > 1

H � (uj )v� i =
X

d> 0

zdh�=d=� (u);

where � _ = (1 m n ( � ) 2m n � 1 ( � ) : : : nm 1 ( � ) ), �uj = uj and �z = z� 1.
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Proof. We only need to prove (i) as (ii) is then a direct consequence of (84) and
Corollary 4.4. Using (105) one sees that

P
� � �=d=� (� )L � 1

�� equalsN �
�� if d = j � j+ j � j�j � j

n
and `(� ) 6 k, and 0 otherwise. From (100) we then have

h�=d=� =
X

�;�

� �=d=� (� )hm� ; m� i h� =
X

�

� X

�

� �=d=� (� )L � 1
��

�
h�

which proves (106). �

There are several corollaries of the last theorem which are worth exploring. First
note that the expansion coe�cients in (106) from (i) in Theorem 5.12 do involve N �

��

where � 2 P+
k might be outside the alcove (53). While according to the reduction

formula (104) we can express these coe�cients in terms of the fusion coe�cientsN �
� ��

where �� 2 A +
k (n) there is an alternative expansion ofh�=d=� into the special set

f h�=d=n k g� 2A +
k (n ) of cylindric complete symmetric functions that only features the

original fusion coe�cients N �
�� with � , � and � 2 A +

k (n).

Corollary 5.13. Let �; � 2 A +
k (n) and d 2 Z> 0. Then we have the expansion

(108) h�=d=� =
d+ kX

d0=0

X

�

N �
�� h�=k + d� d0=n k ;

where the sum runs over all� 2 A +
k (n) such that j� j = d0n + j� j � j � j.

Proof. Starting from the second identity in (84) we take matrix elements in the sub-
space of symmetric tensors to �nd,

hv� ;
Y

i > 0

H � (ui )v� i =
X

d> 0

z� dh�=d=� (u)

=
X

� 2 P+
k

hv� ; M �
� v� i h� (u) = zk

X

� 2 P+
k

hv� ; M �
� M �

� vn k i h� (u)

=
X

� 2A +
k (n )

hv� ; M �
� v� i zk

X

� 2 P+
k

hv� ; M �
� vn k i h� (u)

=
X

� 2A +
k (n )

hv� ; M �
� v� i

X

d00> 0

zk � d00
h�=d 00=n k (u) :

In the second line of this computation we applied the product identity v� = zk v� vn k =
zk M �

� vn k in V+
k . Equating the coe�cients of the same powers in z� 1, we obtain the

asserted expansion. �

The cylindric functions used in the expansion (108) are particularly simple. To see
this we note that we can re-parametrise the cylindric complete symmetric functions
h�=d=� in terms of skew shapes~�= ~d=~� where ~� , ~� are the partitions obtained from
�; � 2 A +

k (n) by deleting all parts of sizen and setting ~d = d + mn (� ) � mn (� ). The
resulting set f ~� 2 P+

k j n > ~� 1 > � � � > ~� k > 0g of these �reduced� partitions forms an
alternative alcove for the Ŝk -action on cylindric loops. It is not di�cult to verify that
the skew shapes�=d=� and ~�= ~d=~� are the same up to a simple overall translation in
the Z2-plane and, hence, thath�=d=� = h~�= ~d=~� . Setting � = nk and shifting d by k,
this becomes

(109) h�=d + k=n k = h~�=d + k � ` ( � )=? = h�=d= ?

from which it is now evident that the latter functions are cylindric analogues of the
(non-skew) complete symmetric functionsh� .
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Lemma 5.14. Let � 2 A +
k (n) and d > � mn (� ), then we have the expansion

(110) h�=d= ? =
X

�

jS� j
jS� j

h� ;

where the sum runs over all� 2 � Ŝk � Pk with j� j � j � j = dn. For all other values
of d 2 Z the function h�=d= ? is identically zero. Moreover, the (non-skew) cylin-
dric complete symmetric functions f h�=d= ? j � 2 A +

k (n); d > � mn (� )g are linearly
independent.

Proof. The constraint on d follows trivially from observing that �=d=? for d < ` (~� ) �
k = � mn (� ) is not a valid cylindric skew shape. From Theorem 5.12 we have the
expansionh�=d= ? = h�=d + k=n k =

P
� 2 P+

k
N �

n k � h� , where the sum runs over all� 2 P+
k

such that dn = j� j � j � j. Employing Lemma 5.10 this can be rewritten ash�=d + k=n k =
P

� 2 P+
k

N �
n k ��

jS�� j
jS� j h� , where �� is the unique intersection point of the orbit � Ŝk with the

alcove (53). Using the equalityN �
n k �� = � � �� proved in Corollary 4.4, the claim follows

since the only weights� 2 P+
k for which �� = � are the ones satisfying the constraint

� 2 � Ŝk .
To show linear independence, note that each� 2 P+

k has a unique intersection
point with the alcove (53) under the level-n action of Ŝk . Hence, in an arbitrary linear
combination of non-skew cylindric complete symmetric functionsh�=d= ? we cannot
get any cancellation since theh� themselves are linearly independent. �

As another immediate consequence of Theorem 5.12, namely of (ii), one has the
following equalities between matrix elements and coe�cient functions,

(111) hv� ; H � v� i = zd � � _ =d=� _ (� ) and hv� ; H �
� v� i = z� d � �=d=� (� ) :

In particular, the identity jS� j � �=d=� (� ) = jS� j � � _ =d=� _ (� ) holds.

Corollary 5.15. Let �; � 2 A +
k (n) and d 2 Z> 0. Then

(112) h�=d=� =
jS� j
jS� j

h� _ =d=� _ :

One might ask whether there is a bijection between CRPP of shape�=d=� and
those of shape� _ =d=� _ which explains the above relation combinatorially.

Proposition 5.16. Let � k;n be the set of all CRPP. The map_ : � k;n ! � k;n which
sends the CRPP�̂ of shape�=d=� given by

(� (0) [0] = � [0]; � (1) [d1]; : : : ; � ( l ) [dl ] = � [d])

to the CRPP �̂ _ of shape� _ =d=� _ given by

(� _ [0]; � ( l � 1) _
[d � dl � 1]; : : : ; � (1) _

[d � d1]; � (0) _
[d � d0] = � _ [d])

is an involution. Moreover, we have the equality,

(113) � �̂ =
jS� j
jS� j

� �̂ _ :

Proof. First we show that the set of points �=d=� is a cylindric skew diagram if and
only if � _ =d=� _ is also one. Recall that �=d=� is a cylindric skew diagram if and
only if � [0] 6 � [d]. From the equality � [d]i � � [0]i = � _ [d]k+1 � i + d � � _ [0]k+1 � i + d for
i 2 Z, which is a straightforward computation, noting that � [d]i = � i � d, one sees that
� _ [0] 6 � _ [d] must hold. This proves the claim.
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Figure 3. Set n = 4 ; k = 3 ; d = 1 and choose� = (4 ; 3; 2), � =
(2; 2; 1) from A +

3 (4). Shown on the left is a CRPP �̂ of shape�=d=�
and weight (4; 3; 1). Note the bounding box with top left corner at
(d;0), height k and width n + 1 . The image �̂ _ of �̂ under the map
_ : � k;n ! � k;n is displayed on the right. This is a CRPP of shape
� _ =d=� _ and weight (1; 3; 4), where � _ = (4 ; 3; 3) and � _ = (3 ; 2; 1).
One sees hoŵ� _ is obtained from �̂ by a rotation of 180� and the
swapping the numbers1 $ 3.

After a manipulation of (91) using the identity (� � � d)0
i = � 0

i + d and � 0
i = k �

(� _ )0
n +2 � i , we arrive at

(114) � �=d=� =
jS� j
jS� j

� � _ =d=� _ :

This proves our assertion for CRPPs�̂ with l = 1 . The casel > 1 now follows by
observing that �̂ is a sequence of cylindric skew shapes and that

� �̂ =
lY

i =1

� � ( i ) =di � di � 1 =� ( i � 1) =
lY

i =1

jS� ( i ) j
jS� ( i � 1) j

� � ( i � 1) _ =(d� di � 1 ) � (d� di )=� ( i ) _ =
jS� j
jS� j

� �̂ _ :

�

5.4. Cylindric elementary symmetric functions. We now present the result
analogous to Theorem 5.12 for the second identity (85). As the line of argument apart
from minor di�erences parallels closely the one in the previous section, we will mostly
omit proofs unless there are important di�erences.

As a special case of cylindric reverse plane partitions one can de�ne cylindric
tableaux T̂ , where the entries are either strictly increasing down columns or along
rows from left to right. Here we are interested in row strict CRPP de�ned as follows.

Definition 5.17. A row strict CRPP of shape� = �=d=� is a map T̂ : � ! N such
that for any (i; j ) 2 � one has

T̂ (i; j ) = T̂ (i + k; j � n) ;

T̂ (i; j ) 6 T̂ (i + 1 ; j ); if (i + 1 ; j ) 2 � ;

T̂ (i; j ) < T̂ (i; j + 1) ; if (i; j + 1) 2 � :

Alternatively, a row strict CRPP T̂ can be de�ned as a sequence of cylindric loops

(115) (� (0) [0] = � [0]; � (1) [d1]; : : : ; � ( l ) [dl ] = � [d])

with � ( i ) 2 A +
k (n) and di � di � 1 > 0 such that T̂ � 1(i ) = � ( i ) =(di � di � 1)=� ( i � 1) is a

cylindric vertical strip. That is, in each row we have at most one box. We denote the
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weight of T̂ by wt( T̂ ) = (wt 1(T̂ ); : : : ; wt l (T̂ )) . An example of a row strict CRPP for
n = 4 and k = 3 is displayed in Figure 1.

We will now generalise the set (179) from Appendix A to the cylindric case and
proceed in a similar fashion to Section 5.3.

For �; � 2 A +
k (n) and d 2 Z> 0 de�ne the set

(116) f ~w 2 ~S� : (� � � d) i � (� � ~w) i = 0 ; 1; 8i 2 Zg ;

and denote by  �=d=� its cardinality.

Lemma 5.18. The set (116) is non-empty if and only if �=d=� is a cylindric vertical
strip. In the latter case we have that

(117)  �=d=� =
nY

i =1

�
(� � � d)0

i � (� � � d)0
i +1

(� � � d)0
i � � 0

i

�
:

Note once more that we de�ne the binomial coe�cients in (117) to be zero whenever
one of their arguments is negative.

Proof. The �rst part of the statement follows from an analogous line of argument as
in the proof of Lemma 5.5. Thus, we assume that�=d=� is a cylindric vertical strip
and proceed by a similar strategy as in the proof of Lemma 5.5 rewriting the set (116)
in the following alternative form,

(118) A =
n

(w; � ) 2 S� � Pk j � i � (� � w � x � � ) i = 0 ; 1; j� j = d; � i > 0
o

:

Next we construct a bijection betweenA and the set

(119) B = f �w 2 S� � � � d
j � i � (� � � � d � �w) i = 0 ; 1g ;

where in the latter the weights � and � � � � d belong to P+
k . Fix an element (w; � ) 2 A.

Because�; � 2 A +
k (n) it follows that � i is nonzero only if (� � w) i = n, in which case

� i = 1 . This implies that mi (� � w � x � � ) = mi (� � � � d) for i = 0 ; : : : ; n, and thus
there exists a unique permutation �w(w; � ) 2 S� � � � d

such that � � � � d � �w = � � w� x � �

as weights inPk . By construction �w(w; � ) 2 B.
Conversely, given �w 2 B de�ne a weight � ( �w) 2 Pk such that � i = 1 if (� � � � d �

�w) i = 0 and � i = 0 otherwise. Then there exists a unique permutationw( �w) 2 S� such
that � � w � x � � = � � � � d � �w as elements inPk;n . By construction (w( �w); � ( �w)) 2 A.

Noting that (� � � � d)0
i = � 0

i � d the asserted equality then follows, since the cardi-
nality of (119) is equal to  �=� � � � d by Lemma A.4 and (179). Hence,

 �=d=� =  �=� � � � d =
nY

i =1

�
� 0

i � � 0
i +1

(� � � � d)0
i � � 0

i +1

�
=

nY

i =1

�
(� � � d)0

i � (� � � d)0
i +1

� 0
i � (� � � d)0

i +1

�
:

�

Given a row strict CRPP T̂ set  T̂ =
Q

i > 1  � ( i ) =(di � di � 1 )=� ( i � 1) , where the cylindric

skew diagram� ( i ) =(di � di � 1)=� ( i � 1) is the pre-imageT̂ � 1(i ), and denote by uT̂ the

monomial uwt 1 ( T̂ )
1 uwt 2 ( T̂ )

2 � � � in the indeterminates ui .

Definition 5.19. For �; � 2 A +
k (n) and d 2 Z> 0, introduce the cylindric elementary

symmetric function e�=d=� as the weighted sum

(120) e�=d=� (u) =
X

T̂

 T̂ uT̂

over all row strict CRPP T̂ of shape�=d=� .
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Since  �= 0=� =  �=� , according to Lemma 5.18, it follows that for d = 0 we
recover the (non-cylindric) skew elementary cylindric function e�= 0=� = e�=� from
Appendix A; see (174).

In a similar vein as in the case of cylindric complete symmetric functions one
proves that e�=d=� is also a symmetric function by deriving �rst the following product
expansion in the quotient ring V+

k .
Let �; � 2 A k;n , � 2 P+ , d 2 Z> 0 and de�ne

(121)  �=d=� (� ) =
X

T̂

 T̂ ;

where the sum is restricted to row strict CRPP T̂ of shape �=d=� and weight
wt( T̂ ) = � .

Lemma 5.20. The following product rule holds inV+
k ,

(122)
m� (x � 1

1 ; : : : ; x � 1
k )e� (x � 1

1 ; : : : ; x � 1
k ) =

X

� 2A +
k (n )

z� d �=d=� (� )m� (x � 1
1 ; : : : ; x � 1

k ) ;

where d = j � j+ j � j�j � j
n . In particular,  �=d=� (� ) is nonzero only if dn = j� j + j� j � j � j.

Analogous to the line of argument followed in Section 5.3, we deduce from (122)
that  �=d=� (� ) is invariant under permutations of � . Moreover, setting � = (1 r ) with
r = dn + j� j � j � j there exists at least oneT̂ of that weight and, hence,  �=d=� (1r )
is nonzero as long as�=d=� is a valid cylindric shape.

Because the proof of the following two statements parallels closely our previous
discussion we omit it.

Corollary 5.21.
(i) The function e�=d=� has the expansion

(123) e�=d=� =
X

� 2 P+

 �=d=� (� )m�

into monomial symmetric functions and, hence, is symmetric.
(ii) The expansion coe�cients (121) have the following alternative expression,

(124)  �=d=� (� ) =
X

� 2 P+
k

M �� N �
�� ;

whereM �� is the number of all (0; 1)-matrices with row sums equal to� i and
column sums equal to� i .

Taking matrix elements in the identity (85) we obtain the following:

Theorem 5.22. Let �; � 2 A +
k (n) and d 2 Z> 0. Then

(i) the symmetric function e�=d=� has the expansion

(125) e�=d=� =
X

� 2 P+
k

N �
�� e�

into the basis f e� g� 2 P+ � � , where the sum is restricted to those� 2 P+
k for

which j� j = dn + j� j � j � j, and
(ii) we have the formal power series expansions

(126) hv� _
;
Y

j > 1

E(uj )v� _ i = hv� ;
Y

j > 1

E � (uj )v� i =
X

d> 0

zde�=d=� (u) :
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Note that (ii) implies the following equalities between matrix elements and coe�-
cient functions,

(127) hv� ; E � v� i = zd � _ =d=� _ (� ) and hv� ; E �
� v� i = z� d �=d=� (� ) :

In particular, the identity jS� j  �=d=� (� ) = jS� j  � _ =d=� _ (� ) holds. By a similar line of
argument as in the case of cylindric complete symmetric functions one arrives at the
following �duality relations� for cylindric elementary symmetric functions and row
strict CRPP under the involution _ : � k;n ! � k;n :

Proposition 5.23. The involution _ : � k;n ! � k;n from Proposition 5.16 preserves
the subset of row strict CRPPT̂ and one has the equalities

(128)  T̂ =
jS� j
jS� j

 T̂ _ and e�=d=� =
jS� j
jS� j

e� _ =d=� _ :

We omit the proof as the steps are analogous to the ones when proving Proposi-
tion 5.16.

5.5. Cylindric symmetric functions as positive coalgebras. As an easy con-
sequence of Theorems 5.12 and 5.22 we now compute the coproduct of the cylindric
symmetric functions in � viewed as a Hopf algebra (see Appendix A). This will allow
us to identify certain subspaces of� whose non-negative structure constants are the
fusion coe�cients N �

�� 2 Z> 0 with �; �; � 2 A +
k (n) and for which we have derived

three equivalent expressions in (59), (70) and (102).

Corollary 5.24. The image of the cylindric complete symmetric functions under the
coproduct in the Hopf algebra� is given by

(129) �( h�=d=� ) =
X

d1 + d2 = d

X

� 2A +
k (n )

h�=d 1 =� 
 h�=d 2 =� :

The analogous formula holds fore�=d=� and both families of functions are related via

(130) 
 (h�=d=� ) = ( � 1)j � j�j � j+ dn e�=d=� ;

where 
 : � ! � is the antipode.

Note that (129) implies the recurrence formula

h�=d=� (u1; u2; : : :) =
X

d1 + d2 = d

X

� 2A +
k (n )

uj � j�j � j+ d2 n
1 � �=d 2 =� h�=d 1 =� (u2; u3; : : :)

with the coe�cient � �=d 2 =� given by (91). The analogous identity holds for e�=d=�

with  �=d 2 =� from (117) instead.

Proof. The coproduct expressions follow from inserting the identity map into (ii) of
Theorem 5.12,

hv� ; H � (u1)H � (u2) � � � H � (v1)H � (v2) � � � v� i

=
X

� 2A +
k (n )

hv� ; H � (u1)H � (u2) � � � v� ihv� ; H � (v1)H � (v2) � � � v� i :

Using the power series expansions from (ii) of Theorem 5.12 and comparing coe�cients
of each powerzd the asserted equality follows. The same trick applies to the coproduct
formula for e�=d=� .

The relation involving the antipode 
 (see Appendix A for its de�nition) follows
from the expansions (i) in Theorems 5.12 and 5.22 as well as the identity
 (h� ) =
(� 1)j � j e� . �
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Setting � = ? in (129) and using the expansion (108) as well as (130) we arrive at
the desired result:

Corollary 5.25. The respective subspaces spanned by
(131)
f h�=d= ? j � 2 A +

k (n); d > � mn (� )g and f e�=d= ? j � 2 A +
k (n); d > � mn (� )g

each form a positive subcoalgebra of� with structure constants N �
�� , �; �; � 2 A +

k (n),
(132)
�( h�=d= ? ) =

X

d1 + d2 = d

X

� 2A +
k (n )

h�=d 1 =� 
 h�=d 2 =? ; h�=d 1 =� =
X

d0
1 2 Z

X

�

N �
�� h�=d 1 � d0

1 =? ;

where the second sum runs over all� 2 A +
k (n) such that j� j = j� j + d0

1n � j � j. The
analogous coproduct expansion holds for the functionse�=d= ? .

5.6. Expansions into powers sums. In light of Theorems 5.12 and 5.22 and the
de�nitions (32), (33) and (34), we discuss the expansion of the cylindric functions from
the previous sections into power sums; compare with the formulae (181) in Appen-
dix A. The resulting expansions coe�cients describe the inverse image of the cylindric
functions under the characteristic map (159). Note that according to Theorems 5.12
and 5.22 the cylindric functions h�=d=� and e�=d=� have both degreem = j� j�j � j + dn.

We wish to obtain the analogue of Lemma A.10 for the cylindric case and start by
introducing the generalisation of an adjacent column tableau; see Appendix A.

Definition 5.26. For �; � 2 A +
k (n) and d > 0 call the cylindric skew shape�=d=�

a cylindric adjacent column strip (CACS) if it is either a cylindric horizontal strip
whose boxes lie in adjacent columns or a translation thereof, i.e. there exists0 < d 0 6 d
such that �=d � d0=� obeys the former conditions. We call a CRPP�̂ a cylindric
adjacent column plane partition (CACPP) if each cylindric skew shape �̂ � 1(i ) =
� ( i ) =di � di � 1=� ( i � 1) is a cylindric adjacent column strip.

Implicit in the above de�nition is that d0 can only take the values d0 = d or
d0 = d � 1, since the cylindric skew shape�=d � d0=� can only be a horizontal strip if
d � d0 = 0 ; 1. See Figure 1 for an example of a CACPP whenn = 4 and k = 3 .

By similar arguments as in the non-cylindric case discussed in Appendix A one
shows the following:

Lemma 5.27. Let �=d=� be a CACS withr = ( j� j � j � j + nd) 62nN. Then there exists
a unique 1 6 a 6 n such that � � � d = � (a; r ), where � (a; r ) is the unique element in
Pk;n whose cylindric loop is obtained as follows: starting in columnsa mod n of the
cylindric loop of � consecutively add one box in each of the(r � 1) adjacent columns
on the right.

This lemma explains our previous de�nition of a CACS: similar as in the non-
cylindric case discussed in Appendix A we consider cylindric skew shapes�=d=� that
are obtained by consecutively adding one box in adjacent columns; see Figure 4 for
an example.

However, in contrast to the non-cylindric case it can now happen that if r =
j� j � j � j + nd > n the strip �winds around the cylinder� and due to the periodicity
condition the �nal skew shape �=d=� with d > 1 will contain more than one box in
the same column; see once more Figure 4 for an example. If this is the case then the
skew shape can be reduced by applying the translation operator� � 1, say d0 times,
until �=d � d0=� contains less thann boxes. This �reduced skew shape� must again be
a horizontal strip. In particular, if r = j� j � j � j + nd = mn is a multiple of n then we
have the trivial case where� = � and the skew shape is obtained by actingm times
with � .
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