Bases for cluster algebras from orbifolds with one marked point
Algebraic Combinatorics, Volume 2 (2019) no. 3, pp. 355-365.

We generalize the construction of the bangle, band and bracelet bases for cluster algebras from unpunctured orbifolds to the case where there is only one marked point on the boundary.

Received: 2018-01-29
Revised: 2018-10-01
Accepted: 2018-11-05
Published online: 2019-06-06
DOI: https://doi.org/10.5802/alco.48
Classification: 13F60
Keywords: cluster algebra, unpunctured orbifold, basis, snake graph
@article{ALCO_2019__2_3_355_0,
     author = {\c Canak\c c\i , \.Ilke and Tumarkin, Pavel},
     title = {Bases for cluster algebras from orbifolds with one marked point},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {2},
     number = {3},
     year = {2019},
     pages = {355-365},
     doi = {10.5802/alco.48},
     zbl = {07066879},
     language = {en},
     url={alco.centre-mersenne.org/item/ALCO_2019__2_3_355_0/}
}
Çanakçı, İlke; Tumarkin, Pavel. Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics, Volume 2 (2019) no. 3, pp. 355-365. doi : 10.5802/alco.48. https://alco.centre-mersenne.org/item/ALCO_2019__2_3_355_0/

[1] Çanakçı, İlke; Lee, Kyungyong; Schiffler, Ralf On cluster algebras from unpunctured surfaces with one marked point, Proc. Am. Math. Soc., Ser. B, Volume 2 (2015), pp. 35-49 | Article | MR 3422667 | Zbl 1350.13019

[2] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces, J. Algebra, Volume 382 (2013), pp. 240-281 | Article | MR 3034481 | Zbl 1319.13012

[3] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., Volume 281 (2015) no. 1-2, pp. 55-102 | Article | MR 3384863 | Zbl 1375.13029

[4] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Volume 2019 (2019) no. 4, pp. 1145-1226 | Article | MR 3915299

[5] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras and triangulated orbifolds, Adv. Math., Volume 231 (2012) no. 5, pp. 2953-3002 | Article | MR 2970470 | Zbl 1256.13014

[6] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. (2012) no. 8, pp. 1768-1804 | Article | MR 2920830 | Zbl 1283.13020

[7] Felikson, Anna; Tumarkin, Pavel Bases for cluster algebras from orbifolds, Adv. Math., Volume 318 (2017), pp. 191-232 | Article | MR 3689740 | Zbl 06769053

[8] Fock, Vladimir; Goncharov, Alexander Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | Article | Numdam | MR 2233852 | Zbl 1099.14025

[9] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | Article | MR 2448067 | Zbl 1263.13023

[10] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces Part II: Lambda lengths, Mem. Am. Math. Soc., Volume 255 (2018) no. 1223, v+97 pages | MR 3852257 | Zbl 07000309

[11] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | Article | MR 1887642 | Zbl 1021.16017

[12] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | Article | MR 2295199 | Zbl 1127.16023

[13] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | Article | MR 2807089 | Zbl 1331.13017

[14] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Bases for cluster algebras from surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 217-263 | Article | MR 3020308 | Zbl 1263.13024

[15] Schiffler, Ralf Cluster algebras from surfaces: lecture notes for the CIMPA School Mar del Plata, March 2016, Homological methods, representation theory, and cluster algebras, Springer (CRM Short Courses) (2018), pp. 65-99 | Article | MR 3823388

[16] Thurston, Dylan Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9725-9732 | Article | MR 3263305 | Zbl 1355.57015