Garside combinatorics for Thompson’s monoid F + and a hybrid with the braid monoid B +
Algebraic Combinatorics, Volume 2 (2019) no. 4, p. 683-709

On the model of simple braids, defined to be the left divisors of Garside’s elements Δ n in the monoid B + , we investigate simple elements in Thompson’s monoid F + and in a larger monoid H + that is a hybrid of B + and F + : in both cases, we count how many simple elements left divide the right lcm of the first n-1 atoms, and characterize their normal forms in terms of forbidden factors. In the case of H + , a generalized Pascal triangle appears.

Received : 2018-03-08
Accepted : 2018-11-28
Published online : 2019-08-01
DOI : https://doi.org/10.5802/alco.52
Classification:  05E15,  20M05,  20E22,  68Q42
Keywords: presented monoid, divisibility relation, simple elements, Thompson’s group, braid group, normal form, Garside element, directed animal
@article{ALCO_2019__2_4_683_0,
     author = {Dehornoy, Patrick and Tesson, Emilie},
     title = {Garside combinatorics for Thompson's monoid $F^+$ and a hybrid with the braid monoid $B\_{\infty }^{+}$},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {2},
     number = {4},
     year = {2019},
     pages = {683-709},
     doi = {10.5802/alco.52},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2019__2_4_683_0}
}
Garside combinatorics for Thompson’s monoid $F^+$ and a hybrid with the braid monoid $B_{\infty }^{+}$. Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 683-709. doi : 10.5802/alco.52. https://alco.centre-mersenne.org/item/ALCO_2019__2_4_683_0/

[1] Adyan, Sergey I. Fragments of the word Δ in the braid group, Mat. Zametki, Volume 36 (1984) no. 1, pp. 25-34 | MR 757642 | Zbl 0599.20044

[2] Bétréma, Jean; Penaud, Jean-Guy Animaux et arbres guingois, Theoret. Comput. Sci., Volume 117 (1993) no. 1-2, pp. 67-89 (Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991)) | Article | MR 1235169 | Zbl 0780.68098

[3] Birman, Joan; Ko, Ki Hyoung; Lee, Sang Jin A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | Article | MR 1654165 | Zbl 0937.20016

[4] Brieskorn, Egbert; Saito, Kyoji Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | Article | MR 0323910 | Zbl 0243.20037

[5] Brin, Matthew G. On the Zappa–Szép product, Comm. Algebra, Volume 33 (2005) no. 2, pp. 393-424 | Article | MR 2124335 | Zbl 1078.20062

[6] Brin, Matthew G. The algebra of strand splitting. II. A presentation for the braid group on one strand, Internat. J. Algebra Comput., Volume 16 (2006) no. 1, pp. 203-219 | Article | MR 2217649 | Zbl 1170.20306

[7] Brin, Matthew G. The algebra of strand splitting. I. A braided version of Thompson’s group V, J. Group Theory, Volume 10 (2007) no. 6, pp. 757-788 | Article | MR 2364825 | Zbl 1169.20021

[8] Cannon, James W.; Floyd, William. J.; Parry, Walter R. Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), Volume 42 (1996) no. 3-4, pp. 215-256 | MR 1426438 | Zbl 0880.20027

[9] Clifford, Alfred H.; Preston, Gordon B. The algebraic theory of semigroups. Vol. I, American Mathematical Society, Providence, R.I., Mathematical Surveys and Monographs, Volume 7 (1961), xv+224 pages | MR 0132791 | Zbl 0111.03403

[10] Dehornoy, Patrick Groups with a complemented presentation, J. Pure Appl. Algebra, Volume 116 (1997) no. 1-3, pp. 115-137 (Special volume on the occasion of the 60th birthday of Professor Peter J. Freyd) | Article | MR 1437615 | Zbl 0870.20023

[11] Dehornoy, Patrick The group of parenthesized braids, Adv. Math., Volume 205 (2006) no. 2, pp. 354-409 | Article | MR 2258261 | Zbl 1160.20027

[12] Dehornoy, Patrick The subword reversing method, Internat. J. Algebra Comput., Volume 21 (2011) no. 1-2, pp. 71-118 | Article | MR 2787454 | Zbl 1256.20053

[13] Dehornoy, Patrick Tamari lattices and the symmetric Thompson monoid, Associahedra, Tamari lattices and related structures, Birkhäuser/Springer, Basel (Prog. Math.) Volume 299 (2012), pp. 211-250 | Article | MR 3221540 | Zbl 1284.06004

[14] Dehornoy, Patrick A cancellativity criterion for presented monoids (2018) (Semigroup Forum, to appear, https://arxiv.org/abs/1802.04607) | Article

[15] Dehornoy, Patrick; Digne, François; Godelle, Eddy; Krammer, Daan; Michel, Jean Foundations of Garside theory, European Mathematical Society (EMS), Zürich, EMS Tracts in Mathematics, Volume 22 (2015), xviii+691 pages | Article | MR 3362691 | Zbl 1370.20001

[16] Deligne, Pierre Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972) no. 4, pp. 273-302 | Article | MR 0422673 | Zbl 0238.20034

[17] Epstein, David B. A.; Cannon, James W.; Holt, Derek F.; Levy, Silvio V. F.; Paterson, Michael S.; Thurston, William P. Word processing in groups, Jones and Bartlett Publishers, Boston, MA (1992), xii+330 pages | MR 1161694 | Zbl 0764.20017

[18] Garside, F. A. The braid group and other groups, Quart. J. Math. Oxford Ser. (2), Volume 20 (1969) no. 1, pp. 235-254 | Article | MR 0248801 | Zbl 0194.03303

[19] Gouyou-Beauchamps, Dominique; Viennot, Gérard Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., Volume 9 (1988) no. 3, pp. 334-357 | Article | MR 956559 | Zbl 0727.05036

[20] Holt, Derek F.; Rees, Sarah; Röver, Claas E. Groups, languages and automata, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, Volume 88 (2017), xi+294 pages | Article | MR 3616303 | Zbl 06691444

[21] Newman, M. H. A. On theories with a combinatorial definition of “equivalence.”, Ann. of Math. (2), Volume 43 (1942), pp. 223-243 | Article | MR 0007372 | Zbl 0060.12501

[22] Ore, Oystein Linear equations in non-commutative fields, Ann. of Math. (2), Volume 32 (1931) no. 3, pp. 463-477 | Article | MR 1503010 | Zbl 0001.26601

[23] Sloane, Neil J. A. The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Volume 65 (2018) no. 9, pp. 1062-1074 | MR 3822822 | Zbl 06989892

[24] Szép, Jenö On factorisable, not simple groups., Acta Sci. Math., Volume 13 (1950), pp. 239-241 | MR 48434 | Zbl 0039.25503

[25] Terese Term rewriting systems, Cambridge University Press, Cambridge, Cambridge Tracts in Theoretical Computer Science, Volume 55 (2003), xxii+884 pages | MR 2007186

[26] Tesson, Émilie Un hybride du groupe de Thompson F et du groupe de tresses B , Université de Caen (France) (2018) (PhD Thesis)

[27] Thompson, R.J. Tranformation structure of algebraic logic, University of Berkeley (USA) (1979) (PhD Thesis)

[28] Viennot, Gérard Problèmes combinatoires posés par la physique statistique, Séminaire Bourbaki : volume 1983/84, exposés 615-632, Société mathématique de France (Astérisque) (1985) no. 121-122, pp. 225-246 | MR 768962 | Zbl 0563.60095

[29] Zappa, Guido Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, Edizioni Cremonense, Rome (1942), pp. 119-125 | MR 0019090 | Zbl 0026.29104