In this paper, we provide explicit formula for the dual Schubert polynomials of a special class of permutations using certain involution principals on RC-graphs, resolving a conjecture by Postnikov and Stanley.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.105
Keywords: Schubert polynomial, dual Schubert polynomial, Bruhat chains
Gao, Yibo 1
@article{ALCO_2020__3_3_593_0, author = {Gao, Yibo}, title = {An involution on {RC-graphs} and a conjecture on dual {Schubert} polynomials by {Postnikov} and {Stanley}}, journal = {Algebraic Combinatorics}, pages = {593--602}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.105}, zbl = {1447.14007}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.105/} }
TY - JOUR AU - Gao, Yibo TI - An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley JO - Algebraic Combinatorics PY - 2020 SP - 593 EP - 602 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.105/ DO - 10.5802/alco.105 LA - en ID - ALCO_2020__3_3_593_0 ER -
%0 Journal Article %A Gao, Yibo %T An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley %J Algebraic Combinatorics %D 2020 %P 593-602 %V 3 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.105/ %R 10.5802/alco.105 %G en %F ALCO_2020__3_3_593_0
Gao, Yibo. An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 593-602. doi : 10.5802/alco.105. https://alco.centre-mersenne.org/articles/10.5802/alco.105/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] Some combinatorial properties of Schubert polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[3] Yang–Baxter equation, symmetric functions and Grothendieck polynomials (1993) (arXiv preprint https://arxiv.org/abs/hep-th/9306005) | Zbl
[4] Schubert polynomials and the nil-Coxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | DOI | MR | Zbl
[5] Padded Schubert polynomials and weighted enumeration of Bruhat chains (2019) (arXiv preprint https://arxiv.org/abs/1905.00047) | Zbl
[6] A combinatorial duality between the weak and strong Bruhat orders, J. Comb. Theory, Ser. A, Volume 171 (2020), pp. 105-178 | DOI | MR | Zbl
[7] Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | MR | Zbl
[8] Chains in the Bruhat order, J. Algebr. Comb., Volume 29 (2009) no. 2, pp. 133-174 | DOI | MR | Zbl
[9] A weighted enumeration of maximal chains in the Bruhat order, J. Algebr. Comb., Volume 15 (2002) no. 3, pp. 291-301 | DOI | MR | Zbl
Cited by Sources: