We give a new perspective of the relationship between simple matroids of rank 3 and pairwise balanced designs, connecting Wilson’s theorems and tools with the theory of truncated boolean representable simplicial complexes. We also introduce the concept of Wilson monoid of a pairwise balanced design . We present some general algebraic properties and study in detail the cases of Steiner triple systems up to 19 points, as well as the case where a single block has more than 2 elements.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.106
Keywords: Matroid, boolean representable simplicial complex, truncation, pairwise balanced design, Wilson monoid.
Margolis, Stuart 1; Rhodes, John 2; Silva, Pedro V. 3
@article{ALCO_2020__3_3_637_0, author = {Margolis, Stuart and Rhodes, John and Silva, Pedro V.}, title = {On the {Wilson} monoid of a pairwise balanced design}, journal = {Algebraic Combinatorics}, pages = {637--665}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.106}, mrnumber = {4113601}, zbl = {1441.05030}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.106/} }
TY - JOUR AU - Margolis, Stuart AU - Rhodes, John AU - Silva, Pedro V. TI - On the Wilson monoid of a pairwise balanced design JO - Algebraic Combinatorics PY - 2020 SP - 637 EP - 665 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.106/ DO - 10.5802/alco.106 LA - en ID - ALCO_2020__3_3_637_0 ER -
%0 Journal Article %A Margolis, Stuart %A Rhodes, John %A Silva, Pedro V. %T On the Wilson monoid of a pairwise balanced design %J Algebraic Combinatorics %D 2020 %P 637-665 %V 3 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.106/ %R 10.5802/alco.106 %G en %F ALCO_2020__3_3_637_0
Margolis, Stuart; Rhodes, John; Silva, Pedro V. On the Wilson monoid of a pairwise balanced design. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 637-665. doi : 10.5802/alco.106. https://alco.centre-mersenne.org/articles/10.5802/alco.106/
[1] Geometric Algebra, Wiley, New York, 2011 | Zbl
[2] Almost all Steiner triple systems are asymmetric, Ann. Discrete Math., Volume 7 (1980), pp. 37-39 (Topics on Steiner systems) | DOI | MR | Zbl
[3] The Theory of Finite Linear Spaces: Combinatorics of Points and Lines, Cambridge University Press, Cambridge, England, 1993 | Zbl
[4] A bound for Wilson’s theorem. (I), J. Combin. Des., Volume 3 (1995) no. 1, pp. 25-39 | DOI | MR | Zbl
[5] A bound for Wilson’s theorem. (II), J. Combin. Des., Volume 4 (1996) no. 1, pp. 11-26 | DOI | MR | Zbl
[6] A bound for Wilson’s theorem. (III), J. Combin. Des., Volume 4 (1996) no. 2, pp. 83-93 | DOI | MR | Zbl
[7] The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, American Mathematical Society, Providence, R.I., 1961 no. 7, xv+224 pages | MR | Zbl
[8] Handbook of combinatorial designs, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007, xxii+984 pages | Zbl
[9] Triple Systems, Clarendon Press, Oxford England, 1999 | Zbl
[10] Erecting geometries, Ann. New York Acad. Sci., Volume 175 (1970), pp. 89-92 | DOI | MR | Zbl
[11] On the foundations of combinatorial theory: Combinatorial geometries, The M.I.T. Press, Cambridge, Mass.-London, 1970, iv+289 pages | MR | Zbl
[12] Continuous maps in finite projective space, Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982), Volume 35 (1982), pp. 239-244 | MR | Zbl
[13] Continuous maps on block designs, Ars Combin., Volume 14 (1982), pp. 21-45 | MR | Zbl
[14] Sur la structure de certains systèmes triples de Steiner, Math. Z., Volume 111 (1969), pp. 289-300 | DOI | MR | Zbl
[15] Projective planes, Trans. Amer. Math. Soc., Volume 54 (1943), pp. 229-277 | DOI | MR | Zbl
[16] The Steiner triple systems of order 19, Math. Comp., Volume 73 (2004) no. 248, pp. 2075-2092 | DOI | MR | Zbl
[17] Enumeration of Steiner triple systems with subsystems, Math. Comp., Volume 84 (2015) no. 296, pp. 3051-3067 | DOI | MR | Zbl
[18] Steiner triple systems of order 19 and 21 with subsystems of order 7, Discrete Math., Volume 308 (2008) no. 13, pp. 2732-2741 | DOI | MR | Zbl
[19] The existence of designs (2019) (https://arxiv.org/abs/1401.3665) | Zbl
[20] Random matroids, Discrete Math., Volume 12 (1975) no. 4, pp. 341-358 | DOI | MR | Zbl
[21] Algebraic Theory of Machines, Languages, and Semigroups, Edited by Michael A. Arbib. With a major contribution by Kenneth Krohn and John L. Rhodes, Academic Press, New York, 1968, xvi+359 pages (Chapters 1, 5–9) | MR
[22] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR | Zbl
[23] Translational hulls and block designs, Semigroup Forum, Volume 27 (1983) no. 1-4, pp. 247-263 | DOI | MR | Zbl
[24] Truncated boolean representable simplicial complexes (2019) (https://arxiv.org/abs/1904.03843) | Zbl
[25] Constructing the free erection of a geometry, J. Combin. Theory Ser. B, Volume 27 (1979) no. 2, pp. 216-224 | DOI | MR | Zbl
[26] Matroid theory, Oxford Science Publications, Oxford University Press, Oxford, England, 1992, xii+532 pages | Zbl
[27] Enumerating matroids of fixed rank, Electron. J. Combin., Volume 24 (2017) no. 1, Paper no. Paper 1.8, 28 pages | MR | Zbl
[28] Some results on finite semigroups, J. Algebra, Volume 4 (1966), pp. 471-504 | DOI | MR | Zbl
[29] Boolean representations of simplicial complexes and matroids, Springer Monographs in Mathematics, Springer, Cham, 2015, x+173 pages | DOI | Zbl
[30] The -theory of finite semigroups, Springer Monographs in Mathematics, Springer, New York, 2009, xxii+666 pages | DOI | Zbl
[31] The Representation Theory of Finite Monoids, Springer, 2016 | DOI | Zbl
[32] Combinatorial Designs: Constructions and Analysis, Springer-Verlag, New York, 2004 | Zbl
[33] Complexity of Semigroups and Morphisms, Automata, Languages and Machines, Vol. B (Pure and Applied Mathematics), Volume 59, Academic Press, New York, 1976, pp. 313-384 | DOI | MR
[34] Depth Decomposition Theorem, Automata, Languages and Machines, Vol. B (Pure and Applied Mathematics), Volume 59, Academic Press, New York, 1976, pp. 287-312 | DOI | MR
[35] An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A, Volume 13 (1972), pp. 220-245 | DOI | MR | Zbl
[36] An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A, Volume 13 (1972), pp. 246-273 | DOI | MR | Zbl
[37] Nonisomorphic Steiner triple systems, Math. Z., Volume 135 (1973/74), pp. 303-313 | DOI | MR | Zbl
[38] An existence theory for pairwise balanced designs. III. Proof of the existence conjectures, J. Combinatorial Theory Ser. A, Volume 18 (1975), pp. 71-79 | DOI | MR | Zbl
[39] Yet another proof of the cascade decomposition theorem for finite automata, Math. Systems Theory, Volume 1 (1967) no. 3, pp. 225-228 | DOI | MR | Zbl
Cited by Sources: