Scattering diagrams arose in the context of mirror symmetry, but a special class of scattering diagrams (the cluster scattering diagrams) were recently developed to prove key structural results on cluster algebras. We use the connection to cluster algebras to calculate the function attached to the limiting wall of a rank-2 cluster scattering diagram of affine type. In the skew-symmetric rank-2 affine case, this recovers a formula due to Reineke. In the same case, we show that the generating function for signed Narayana numbers appears in a role analogous to a cluster variable. In acyclic finite type, we construct cluster scattering diagrams of acyclic finite type from Cambrian fans and sortable elements, with a simple direct proof.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.107
Keywords: Cluster algebra, cluster scattering diagram, root system, Narayana number, exchange matrix, Cambrian fan, broken line.
Reading, Nathan 1
@article{ALCO_2020__3_3_603_0, author = {Reading, Nathan}, title = {A combinatorial approach to scattering diagrams}, journal = {Algebraic Combinatorics}, pages = {603--636}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.107}, mrnumber = {4113600}, zbl = {1446.13016}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.107/} }
TY - JOUR AU - Reading, Nathan TI - A combinatorial approach to scattering diagrams JO - Algebraic Combinatorics PY - 2020 SP - 603 EP - 636 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.107/ DO - 10.5802/alco.107 LA - en ID - ALCO_2020__3_3_603_0 ER -
Reading, Nathan. A combinatorial approach to scattering diagrams. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 603-636. doi : 10.5802/alco.107. https://alco.centre-mersenne.org/articles/10.5802/alco.107/
[1] The shard intersection order on permutations (2011) (https://arxiv.org/abs/1103.1910)
[2] Chains in shard intersection lattices and parabolic support posets, J. Comb., Volume 9 (2018) no. 2, pp. 309-325 | DOI | MR | Zbl
[3] Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom., Volume 4 (2017) no. 5, pp. 523-561 | DOI | MR | Zbl
[4] Cluster algebras and continued fractions, Compos. Math., Volume 154 (2018) no. 3, pp. 565-593 | DOI | MR | Zbl
[5] A tropical view of Landau-Ginzburg models (2010) (http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf)
[6] The greedy basis equals the theta basis: a rank two haiku, J. Comb. Theory, Ser. A, Volume 145 (2017), pp. 150-171 | DOI | MR | Zbl
[7] Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 6, pp. 865-930 | DOI | Numdam | MR | Zbl
[8] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[9] Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl
[10] Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | DOI | MR | Zbl
[11] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008) (https://arxiv.org/abs/0811.2435) | Zbl
[12] Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry (Lect. Notes Unione Mat. Ital.), Volume 15, Springer, Cham, 2014, pp. 197-308 | DOI | MR | Zbl
[13] Greedy elements in rank 2 cluster algebras, Sel. Math., New Ser., Volume 20 (2014) no. 1, pp. 57-82 | DOI | MR | Zbl
[14] On the shard intersection order of a Coxeter group, SIAM J. Discrete Math., Volume 27 (2013) no. 4, pp. 1880-1912 | DOI | MR | Zbl
[15] Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015, xviii+456 pages (With a foreword by Richard Stanley) | DOI | MR | Zbl
[16] Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Univers., Volume 50 (2003) no. 2, pp. 179-205 | DOI | MR | Zbl
[17] The order dimension of the poset of regions in a hyperplane arrangement, J. Comb. Theory, Ser. A, Volume 104 (2003) no. 2, pp. 265-285 | DOI | MR | Zbl
[18] Lattice congruences of the weak order, Order, Volume 21 (2004) no. 4, pp. 315-344 | DOI | MR | Zbl
[19] Lattice congruences, fans and Hopf algebras, J. Comb. Theory, Ser. A, Volume 110 (2005) no. 2, pp. 237-273 | DOI | MR | Zbl
[20] Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | DOI | MR | Zbl
[21] Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 5931-5958 | DOI | MR | Zbl
[22] Sortable elements and Cambrian lattices, Algebra Univers., Volume 56 (2007) no. 3-4, pp. 411-437 | DOI | MR | Zbl
[23] Noncrossing partitions and the shard intersection order, J. Algebr. Comb., Volume 33 (2011) no. 4, pp. 483-530 | DOI | MR | Zbl
[24] Universal geometric cluster algebras, Math. Z., Volume 277 (2014) no. 1-2, pp. 499-547 | DOI | MR | Zbl
[25] Scattering Fans, Int. Math. Res. Not. (2018), Paper no. rny260 | DOI | Zbl
[26] Cambrian fans, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 2, pp. 407-447 | DOI | MR | Zbl
[27] Sortable elements in infinite Coxeter groups, Trans. Am. Math. Soc., Volume 363 (2011) no. 2, pp. 699-761 | DOI | MR | Zbl
[28] A Cambrian framework for the oriented cycle, Electron. J. Comb., Volume 22 (2015) no. 4, Paper no. Paper 4.46, 21 pages | MR | Zbl
[29] Combinatorial frameworks for cluster algebras, Int. Math. Res. Not. (2016) no. 1, pp. 109-173 | DOI | MR | Zbl
[30] Cambrian frameworks for cluster algebras of affine type, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1429-1468 | DOI | MR | Zbl
[31] An affine almost positive roots model (2017) (to appear in Journal of Combinatorial Algebra, https://arxiv.org/abs/1707.00340) | Zbl
[32] Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, Volume 9 (2010) no. 3, pp. 653-667 | DOI | MR | Zbl
[33] Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 855-895 | DOI | MR | Zbl
[34] Stable cluster variables (2016) (REU Report, http://www-users.math.umn.edu/~reiner/REU/Zhang2016.pdf)
Cited by Sources: