We study the relationship between the tensor product multiplicities of a compact semisimple Lie algebra and a special function associated to , called the volume function. The volume function arises in connection with the randomized Horn’s problem in random matrix theory and has a related significance in symplectic geometry. Building on box spline deconvolution formulae of Dahmen–Micchelli and De Concini–Procesi–Vergne, we develop new techniques for computing the multiplicities from , answering a question posed by Coquereaux and Zuber. In particular, we derive an explicit algebraic formula for a large class of Littlewood–Richardson coefficients in terms of . We also give analogous results for weight multiplicities, and we show a number of further identities relating the tensor product multiplicities, the volume function and the box spline. To illustrate these ideas, we give new proofs of some known theorems.
Revised:
Accepted:
Published online:
Keywords: Box splines, tensor product multiplicities, Littlewood–Richardson coefficients, Horn’s problem, volume function, Berenstein–Zelevinsky polytopes.
McSwiggen, Colin 1
@article{ALCO_2021__4_3_435_0, author = {McSwiggen, Colin}, title = {Box splines, tensor product multiplicities and the volume function}, journal = {Algebraic Combinatorics}, pages = {435--464}, publisher = {MathOA foundation}, volume = {4}, number = {3}, year = {2021}, doi = {10.5802/alco.164}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.164/} }
TY - JOUR AU - McSwiggen, Colin TI - Box splines, tensor product multiplicities and the volume function JO - Algebraic Combinatorics PY - 2021 SP - 435 EP - 464 VL - 4 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.164/ DO - 10.5802/alco.164 LA - en ID - ALCO_2021__4_3_435_0 ER -
McSwiggen, Colin. Box splines, tensor product multiplicities and the volume function. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 435-464. doi : 10.5802/alco.164. https://alco.centre-mersenne.org/articles/10.5802/alco.164/
[1] Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., Volume 143 (2001) no. 1, pp. 77-128 | DOI | MR | Zbl
[2] A vector partition function for the multiplicities of , J. Algebra, Volume 278 (2004) no. 1, pp. 251-293 | DOI | MR | Zbl
[3] On weight multiplicities of complex simple Lie algebras, Ph. D. Thesis, Universität zu Köln (2008) | Zbl
[4] Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc., Volume 10 (1997) no. 4, pp. 797-833 | DOI | MR | Zbl
[5] Multiplicities, pictographs, and volumes, Supersymmetries and Quantum Symmetries – SQS’19 (2019) (https://arxiv.org/abs/2003.00358)
[6] Revisiting Horn’s problem, J. Stat. Mech. Theory Exp. (2019) no. 9, Paper no. 094018, 22 pages | DOI | MR | Zbl
[7] On Horn’s problem and its volume function, Comm. Math. Phys., Volume 376 (2020) no. 3, pp. 2409-2439 | DOI | MR | Zbl
[8] On sums of tensor and fusion multiplicities, J. Phys. A, Math. Theor., Volume 44 (2011) no. 29, Paper no. 295208, 26 pages | Zbl
[9] From orbital measures to Littlewood–Richardson coefficients and hive polytopes, Ann. Inst. Henri Poincaré D, Volume 5 (2018) no. 3, pp. 339-386 | DOI | MR | Zbl
[10] On the local linear independence of translates of a box spline, Studia Math., Volume 82 (1985) no. 3, pp. 243-263 | DOI | MR | Zbl
[11] On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc., Volume 292 (1985) no. 1, pp. 305-320 | DOI | MR | Zbl
[12] -splines from parallelepipeds, J. Analyse Math., Volume 42 (1982/83), pp. 99-115 | DOI | MR
[13] Box splines and the equivariant index theorem, J. Inst. Math. Jussieu, Volume 12 (2013) no. 3, pp. 503-544 | DOI | MR | Zbl
[14] On the Littlewood–Richardson polynomials, J. Algebra, Volume 255 (2002) no. 2, pp. 247-257 | DOI | MR | Zbl
[15] Sums of adjoint orbits, Linear and Multilinear Algebra, Volume 36 (1993) no. 2, pp. 79-101 | DOI | MR | Zbl
[16] Kirillov’s formula and Guillemin–Sternberg conjecture, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 23-24, pp. 1213-1217 | DOI | MR | Zbl
[17] On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., Volume 69 (1982) no. 2, pp. 259-268 | DOI | MR | Zbl
[18] Mittag–Leffler type sums associated with root systems (2018) (http://arxiv.org/abs/1811.05293)
[19] Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538 | DOI | MR
[20] Differential operators on a semisimple Lie algebra, Amer. J. Math., Volume 79 (1957), pp. 87-120 | DOI | MR | Zbl
[21] The planar approximation. II, J. Math. Phys., Volume 21 (1980) no. 3, pp. 411-421 | DOI | MR
[22] Stretched Littlewood–Richardson and Kostka coefficients, Symmetry in physics (CRM Proc. Lecture Notes), Volume 34, Amer. Math. Soc., Providence, RI, 2004, pp. 99-112 | DOI | MR | Zbl
[23] The hive model and the polynomial nature of stretched Littlewood–Richardson coefficients, Sém. Lothar. Combin., Volume 54A (2005/07), Paper no. Art. B54Ad, 19 pages | MR | Zbl
[24] Lectures on the orbit method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, RI, 2004, xx+408 pages | DOI | MR | Zbl
[25] Private communication, 2019
[26] A formula for the multiplicity of a weight, Trans. Amer. Math. Soc., Volume 93 (1959), pp. 53-73 | DOI | MR | Zbl
[27] Group characters and algebra, Philosophical Transactions of the Royal Society A, Volume 233 (1934), pp. 99-141 | Zbl
[28] A new proof of Harish-Chandra’s integral formula, Comm. Math. Phys., Volume 365 (2019) no. 1, pp. 239-253 | DOI | MR | Zbl
[29] Singular reduction and quantization, Topology, Volume 38 (1999) no. 4, pp. 699-762 | DOI | MR | Zbl
[30] On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients, J. Algebraic Combin., Volume 24 (2006) no. 3, pp. 347-354 | DOI | MR | Zbl
[31] Equivariant index of twisted Dirac operators and semi-classical limits, Lie groups, geometry, and representation theory (Progr. Math.), Volume 326, Birkhäuser/Springer, Cham, 2018, pp. 419-458 | DOI | MR | Zbl
[32] Box splines, Handbook of Computer Aided Geometric Design (Farin, G.; Hoschek, J.; Kim, M.-S., eds.), Elsevier, Amsterdam, 2002, pp. 255-282 | DOI
[33] A polynomiality property for Littlewood–Richardson coefficients, J. Combin. Theory Ser. A, Volume 107 (2004) no. 2, pp. 161-179 | DOI | MR | Zbl
[34] A general Clebsch–Gordan theorem, Bull. Amer. Math. Soc., Volume 67 (1961), pp. 406-407 | DOI | MR | Zbl
[35] On vector partition functions, J. Combin. Theory Ser. A, Volume 72 (1995) no. 2, pp. 302-309 | DOI | MR | Zbl
[36] Residue formulae for vector partitions and Euler–MacLaurin sums, Adv. in Appl. Math., Volume 30 (2003) no. 1-2, pp. 295-342 Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001) | DOI | MR | Zbl
[37] Quantification géométrique et réduction symplectique, Astérisque, Volume 2000/2001 (2002) no. 282, pp. Exp. No. 888, viii, 249-278 (Séminaire Bourbaki) | Numdam | MR | Zbl
[38] Poisson summation formula and box splines (2013) (http://arxiv.org/abs/1302.6599)
[39] Tauberian theorems, Ann. of Math. (2), Volume 33 (1932) no. 1, pp. 1-100 | DOI | MR | Zbl
[40] Horn’s problem and Harish-Chandra’s integrals. Probability density functions, Ann. Inst. Henri Poincaré D, Volume 5 (2018) no. 3, pp. 309-338 | DOI | MR | Zbl
Cited by Sources: