Box splines, tensor product multiplicities and the volume function
Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 435-464.

We study the relationship between the tensor product multiplicities of a compact semisimple Lie algebra 𝔤 and a special function 𝒥 associated to 𝔤, called the volume function. The volume function arises in connection with the randomized Horn’s problem in random matrix theory and has a related significance in symplectic geometry. Building on box spline deconvolution formulae of Dahmen–Micchelli and De Concini–Procesi–Vergne, we develop new techniques for computing the multiplicities from 𝒥, answering a question posed by Coquereaux and Zuber. In particular, we derive an explicit algebraic formula for a large class of Littlewood–Richardson coefficients in terms of 𝒥. We also give analogous results for weight multiplicities, and we show a number of further identities relating the tensor product multiplicities, the volume function and the box spline. To illustrate these ideas, we give new proofs of some known theorems.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.164
Classification: 05E10, 14C17, 53D20
Keywords: Box splines, tensor product multiplicities, Littlewood–Richardson coefficients, Horn’s problem, volume function, Berenstein–Zelevinsky polytopes.

McSwiggen, Colin 1

1 Brown University Division of Applied Mathematics 182 George St. Providence, RI 02906, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_3_435_0,
     author = {McSwiggen, Colin},
     title = {Box splines, tensor product multiplicities and the volume function},
     journal = {Algebraic Combinatorics},
     pages = {435--464},
     publisher = {MathOA foundation},
     volume = {4},
     number = {3},
     year = {2021},
     doi = {10.5802/alco.164},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.164/}
}
TY  - JOUR
AU  - McSwiggen, Colin
TI  - Box splines, tensor product multiplicities and the volume function
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 435
EP  - 464
VL  - 4
IS  - 3
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.164/
DO  - 10.5802/alco.164
LA  - en
ID  - ALCO_2021__4_3_435_0
ER  - 
%0 Journal Article
%A McSwiggen, Colin
%T Box splines, tensor product multiplicities and the volume function
%J Algebraic Combinatorics
%D 2021
%P 435-464
%V 4
%N 3
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.164/
%R 10.5802/alco.164
%G en
%F ALCO_2021__4_3_435_0
McSwiggen, Colin. Box splines, tensor product multiplicities and the volume function. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 435-464. doi : 10.5802/alco.164. https://alco.centre-mersenne.org/articles/10.5802/alco.164/

[1] Berenstein, Arkady D.; Zelevinsky, AndreÄ­ V. Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., Volume 143 (2001) no. 1, pp. 77-128 | DOI | MR | Zbl

[2] Billey, Sara; Guillemin, Victor; Rassart, Etienne A vector partition function for the multiplicities of 𝔰𝔩 k ℂ, J. Algebra, Volume 278 (2004) no. 1, pp. 251-293 | DOI | MR | Zbl

[3] Bliem, Thomas On weight multiplicities of complex simple Lie algebras, Ph. D. Thesis, Universität zu Köln (2008) | Zbl

[4] Brion, Michel; Vergne, Michèle Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc., Volume 10 (1997) no. 4, pp. 797-833 | DOI | MR | Zbl

[5] Coquereaux, Robert Multiplicities, pictographs, and volumes, Supersymmetries and Quantum Symmetries – SQS’19 (2019) (https://arxiv.org/abs/2003.00358)

[6] Coquereaux, Robert; McSwiggen, Colin; Zuber, Jean-Bernard Revisiting Horn’s problem, J. Stat. Mech. Theory Exp. (2019) no. 9, Paper no. 094018, 22 pages | DOI | MR | Zbl

[7] Coquereaux, Robert; McSwiggen, Colin; Zuber, Jean-Bernard On Horn’s problem and its volume function, Comm. Math. Phys., Volume 376 (2020) no. 3, pp. 2409-2439 | DOI | MR | Zbl

[8] Coquereaux, Robert; Zuber, Jean-Bernard On sums of tensor and fusion multiplicities, J. Phys. A, Math. Theor., Volume 44 (2011) no. 29, Paper no. 295208, 26 pages | Zbl

[9] Coquereaux, Robert; Zuber, Jean-Bernard From orbital measures to Littlewood–Richardson coefficients and hive polytopes, Ann. Inst. Henri Poincaré D, Volume 5 (2018) no. 3, pp. 339-386 | DOI | MR | Zbl

[10] Dahmen, Wolfgang; Micchelli, Charles A. On the local linear independence of translates of a box spline, Studia Math., Volume 82 (1985) no. 3, pp. 243-263 | DOI | MR | Zbl

[11] Dahmen, Wolfgang; Micchelli, Charles A. On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc., Volume 292 (1985) no. 1, pp. 305-320 | DOI | MR | Zbl

[12] de Boor, Carl; Höllig, Klaus ℬ-splines from parallelepipeds, J. Analyse Math., Volume 42 (1982/83), pp. 99-115 | DOI | MR

[13] De Concini, Corrado; Procesi, Claudio; Vergne, Michèle Box splines and the equivariant index theorem, J. Inst. Math. Jussieu, Volume 12 (2013) no. 3, pp. 503-544 | DOI | MR | Zbl

[14] Derksen, Harm; Weyman, Jerzy On the Littlewood–Richardson polynomials, J. Algebra, Volume 255 (2002) no. 2, pp. 247-257 | DOI | MR | Zbl

[15] Dooley, Anthony H.; Repka, Joe; Wildberger, Norman Sums of adjoint orbits, Linear and Multilinear Algebra, Volume 36 (1993) no. 2, pp. 79-101 | DOI | MR | Zbl

[16] Duflo, Michel; Vergne, Michèle Kirillov’s formula and Guillemin–Sternberg conjecture, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 23-24, pp. 1213-1217 | DOI | MR | Zbl

[17] Duistermaat, Johannes J.; Heckman, Gerrit J. On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., Volume 69 (1982) no. 2, pp. 259-268 | DOI | MR | Zbl

[18] Etingof, Pavel; Rains, Eric Mittag–Leffler type sums associated with root systems (2018) (http://arxiv.org/abs/1811.05293)

[19] Guillemin, Victor; Sternberg, Shlomo Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538 | DOI | MR

[20] Harish-Chandra Differential operators on a semisimple Lie algebra, Amer. J. Math., Volume 79 (1957), pp. 87-120 | DOI | MR | Zbl

[21] Itzykson, Claude; Zuber, Jean-Bernard The planar approximation. II, J. Math. Phys., Volume 21 (1980) no. 3, pp. 411-421 | DOI | MR

[22] King, Ronald C.; Tollu, Christophe; Toumazet, Frédéric Stretched Littlewood–Richardson and Kostka coefficients, Symmetry in physics (CRM Proc. Lecture Notes), Volume 34, Amer. Math. Soc., Providence, RI, 2004, pp. 99-112 | DOI | MR | Zbl

[23] King, Ronald C.; Tollu, Christophe; Toumazet, Frédéric The hive model and the polynomial nature of stretched Littlewood–Richardson coefficients, Sém. Lothar. Combin., Volume 54A (2005/07), Paper no. Art. B54Ad, 19 pages | MR | Zbl

[24] Kirillov, Alexandre A. Lectures on the orbit method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, RI, 2004, xx+408 pages | DOI | MR | Zbl

[25] Knutson, Allen Private communication, 2019

[26] Kostant, Bertram A formula for the multiplicity of a weight, Trans. Amer. Math. Soc., Volume 93 (1959), pp. 53-73 | DOI | MR | Zbl

[27] Littlewood, Dudley E.; Richardson, Archibald R. Group characters and algebra, Philosophical Transactions of the Royal Society A, Volume 233 (1934), pp. 99-141 | Zbl

[28] McSwiggen, Colin A new proof of Harish-Chandra’s integral formula, Comm. Math. Phys., Volume 365 (2019) no. 1, pp. 239-253 | DOI | MR | Zbl

[29] Meinrenken, Eckhard; Sjamaar, Reyer Singular reduction and quantization, Topology, Volume 38 (1999) no. 4, pp. 699-762 | DOI | MR | Zbl

[30] Narayanan, Hariharan On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients, J. Algebraic Combin., Volume 24 (2006) no. 3, pp. 347-354 | DOI | MR | Zbl

[31] Paradan, Paul-Émile; Vergne, Michèle Equivariant index of twisted Dirac operators and semi-classical limits, Lie groups, geometry, and representation theory (Progr. Math.), Volume 326, Birkhäuser/Springer, Cham, 2018, pp. 419-458 | DOI | MR | Zbl

[32] Prautzsch, Hartmur; Boehm, Wolfgang Box splines, Handbook of Computer Aided Geometric Design (Farin, G.; Hoschek, J.; Kim, M.-S., eds.), Elsevier, Amsterdam, 2002, pp. 255-282 | DOI

[33] Rassart, Etienne A polynomiality property for Littlewood–Richardson coefficients, J. Combin. Theory Ser. A, Volume 107 (2004) no. 2, pp. 161-179 | DOI | MR | Zbl

[34] Steinberg, Robert A general Clebsch–Gordan theorem, Bull. Amer. Math. Soc., Volume 67 (1961), pp. 406-407 | DOI | MR | Zbl

[35] Sturmfels, Bernd On vector partition functions, J. Combin. Theory Ser. A, Volume 72 (1995) no. 2, pp. 302-309 | DOI | MR | Zbl

[36] Szenes, András; Vergne, Michèle Residue formulae for vector partitions and Euler–MacLaurin sums, Adv. in Appl. Math., Volume 30 (2003) no. 1-2, pp. 295-342 Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001) | DOI | MR | Zbl

[37] Vergne, Michèle Quantification géométrique et réduction symplectique, Astérisque, Volume 2000/2001 (2002) no. 282, pp. Exp. No. 888, viii, 249-278 (Séminaire Bourbaki) | Numdam | MR | Zbl

[38] Vergne, Michèle Poisson summation formula and box splines (2013) (http://arxiv.org/abs/1302.6599)

[39] Wiener, Norbert Tauberian theorems, Ann. of Math. (2), Volume 33 (1932) no. 1, pp. 1-100 | DOI | MR | Zbl

[40] Zuber, Jean-Bernard Horn’s problem and Harish-Chandra’s integrals. Probability density functions, Ann. Inst. Henri Poincaré D, Volume 5 (2018) no. 3, pp. 309-338 | DOI | MR | Zbl

Cited by Sources: