Random plane partitions and corner distributions
Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 599-617.

We explore some probabilistic applications arising in connections with K-theoretic symmetric functions. For instance, we determine certain corner distributions of random lozenge tilings and plane partitions. We also introduce some distributions that are naturally related to the corner growth model. Our main tools are dual symmetric Grothendieck polynomials and normalized Schur functions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.171
Classification: 60K35, 60C05, 05E05
Keywords: Random plane partitions, lozenge tilings, dual Grothendieck polynomials.

Yeliussizov, Damir 1

1 Kazakh-British Technical University, Almaty, Kazakhstan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_4_599_0,
     author = {Yeliussizov, Damir},
     title = {Random plane partitions and corner distributions},
     journal = {Algebraic Combinatorics},
     pages = {599--617},
     publisher = {MathOA foundation},
     volume = {4},
     number = {4},
     year = {2021},
     doi = {10.5802/alco.171},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.171/}
}
TY  - JOUR
AU  - Yeliussizov, Damir
TI  - Random plane partitions and corner distributions
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 599
EP  - 617
VL  - 4
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.171/
DO  - 10.5802/alco.171
LA  - en
ID  - ALCO_2021__4_4_599_0
ER  - 
%0 Journal Article
%A Yeliussizov, Damir
%T Random plane partitions and corner distributions
%J Algebraic Combinatorics
%D 2021
%P 599-617
%V 4
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.171/
%R 10.5802/alco.171
%G en
%F ALCO_2021__4_4_599_0
Yeliussizov, Damir. Random plane partitions and corner distributions. Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 599-617. doi : 10.5802/alco.171. https://alco.centre-mersenne.org/articles/10.5802/alco.171/

[1] Amanov, Alimzhan; Yeliussizov, Damir MacMahon’s statistics on higher-dimensional partitions (2020) (https://arxiv.org/abs/2009.00592)

[2] Baryshnikov, Yuliy GUEs and queues, Probab. Theory Related Fields, Volume 119 (2001) no. 2, pp. 256-274 | DOI | MR | Zbl

[3] Borodin, Alexei; Ferrari, Patrik L. Anisotropic growth of random surfaces in 2+1 dimensions, Comm. Math. Phys., Volume 325 (2014) no. 2, pp. 603-684 | DOI | MR | Zbl

[4] Borodin, Alexei; Okounkov, Andrei A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory, Volume 37 (2000) no. 4, pp. 386-396 | DOI | MR | Zbl

[5] Borodin, Alexei; Petrov, Leonid Integrable probability: From representation theory to Macdonald processes, Probab. Surv., Volume 11 (2014), pp. 1-58 | DOI | MR | Zbl

[6] Borodin, Alexei; Petrov, Leonid Nearest neighbor Markov dynamics on Macdonald processes, Adv. Math., Volume 300 (2016), pp. 71-155 | DOI | MR | Zbl

[7] Buch, Anders S. A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl

[8] Buch, Anders S. Combinatorial K-theory, Topics in cohomological studies of algebraic varieties (Trends Math.), Birkhäuser, Basel, 2005, pp. 87-103 | DOI | MR

[9] Cohn, Henry; Kenyon, Richard; Propp, James A variational principle for domino tilings, J. Amer. Math. Soc., Volume 14 (2001) no. 2, pp. 297-346 | DOI | MR | Zbl

[10] Cohn, Henry; Larsen, Michael; Propp, James The Shape of a Typical Boxed Plane Partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl

[11] Glynn, Peter W.; Whitt, Ward Departures from many queues in series, Ann. Appl. Probab., Volume 1 (1991) no. 4, pp. 546-572 | MR | Zbl

[12] Gorin, Vadim; Panova, Greta Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Ann. Probab., Volume 43 (2015) no. 6, pp. 3052-3132 | DOI | MR | Zbl

[13] Ikeda, Takeshi; Naruse, Hiroshi K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl

[14] Johansson, Kurt Shape fluctuations and random matrices, Comm. Math. Phys., Volume 209 (2000) no. 2, pp. 437-476 | DOI | MR | Zbl

[15] Johansson, Kurt Random growth and random matrices, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201 (2001), pp. 445-456 | DOI | MR | Zbl

[16] Johansson, Kurt Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields, Volume 123 (2002) no. 2, pp. 225-280 | DOI | MR | Zbl

[17] Johansson, Kurt; Nordenstam, Eric Eigenvalues of GUE minors, Electron. J. Probab., Volume 11 (2006) no. 50, pp. 1342-1371 | DOI | MR | Zbl

[18] Kenyon, Richard Lectures on dimers, Statistical mechanics (IAS/Park City Math. Ser.), Volume 16 (2009), pp. 191-230 | DOI | MR | Zbl

[19] Lam, Thomas; Pylyavskyy, Pavlo Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not. IMRN (2007) no. 24, Paper no. rnm125, 48 pages | DOI | MR | Zbl

[20] Lenart, Cristian Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl

[21] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford University Press, 1998 | Zbl

[22] Motegi, Kohei; Sakai, Kazumitsu Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, Paper no. 355201, 26 pages | DOI | MR | Zbl

[23] Motegi, Kohei; Scrimshaw, Travis Refined dual Grothendieck polynomials, integrability, and the Schur measure (2020) (https://arxiv.org/abs/2012.15011)

[24] Okounkov, Andrei Infinite wedge and random partitions, Selecta Math. (N.S.), Volume 7 (2001) no. 1, pp. 57-81 | DOI | MR | Zbl

[25] Okounkov, Andrei; Reshetikhin, Nikolai Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl

[26] Petrov, Leonid Asymptotics of random lozenge tilings via Gelʼfand–Tsetlin schemes, Probab. Theory Related Fields, Volume 160 (2014) no. 3-4, pp. 429-487 | DOI | MR | Zbl

[27] Romik, Dan The surprising mathematics of longest increasing subsequences, Institute of Mathematical Statistics Textbooks, 4, Cambridge University Press, New York, 2015, xi+353 pages | MR | Zbl

[28] Seppäläinen, Timo Lecture notes on the corner growth model (2009) (Unpublished notes)

[29] Shimozono, Mark; Zabrocki, Mike Stable Grothendieck symmetric functions and Ω-calculus (2003) (preprint)

[30] Soshnikov, Alexander Determinantal random point fields, Russ. Math. Surv., Volume 55 (2000) no. 5, pp. 923-975 | DOI | MR | Zbl

[31] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR | Zbl

[32] Thomas, Hugh; Yong, Alexander Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. in Appl. Math., Volume 46 (2011) no. 1-4, pp. 610-642 | DOI | MR | Zbl

[33] Tracy, Craig A.; Widom, Harold Level-spacing distributions and the Airy kernel, Comm. Math. Phys., Volume 159 (1994) no. 1, pp. 151-174 | DOI | MR | Zbl

[34] Vakil, Ravi A geometric Littlewood–Richardson rule, Ann. of Math. (2), Volume 164 (2006) no. 2, pp. 371-421 | DOI | MR | Zbl

[35] Yeliussizov, Damir Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl

[36] Yeliussizov, Damir Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Combin. Theory Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl

[37] Yeliussizov, Damir Dual Grothendieck polynomials via last-passage percolation, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 497-503 | DOI | MR | Zbl

[38] Yeliussizov, Damir Positive specializations of symmetric Grothendieck polynomials, Adv. Math., Volume 363 (2020), p. 107000, 35 | DOI | MR | Zbl

[39] Yeliussizov, Damir Enumeration of plane partitions by descents, J. Combin. Theory Ser. A, Volume 178 (2021), Paper no. 105367, 18 pages | DOI | MR | Zbl

Cited by Sources: