We show that for any positive integer , there exists a quiver with vertices and edges such that any quiver on vertices is a full subquiver of a quiver mutation equivalent to . We generalize this statement to skew-symmetrizable matrices, and obtain other related results.
Revised:
Accepted:
Published online:
Keywords: Quiver mutation, universal quiver, cluster algebra.
Fomin, Sergey 1; Igusa, Kiyoshi 2; Lee, Kyungyong 3
@article{ALCO_2021__4_4_683_0, author = {Fomin, Sergey and Igusa, Kiyoshi and Lee, Kyungyong}, title = {Universal quivers}, journal = {Algebraic Combinatorics}, pages = {683--702}, publisher = {MathOA foundation}, volume = {4}, number = {4}, year = {2021}, doi = {10.5802/alco.175}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.175/} }
TY - JOUR AU - Fomin, Sergey AU - Igusa, Kiyoshi AU - Lee, Kyungyong TI - Universal quivers JO - Algebraic Combinatorics PY - 2021 SP - 683 EP - 702 VL - 4 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.175/ DO - 10.5802/alco.175 LA - en ID - ALCO_2021__4_4_683_0 ER -
Fomin, Sergey; Igusa, Kiyoshi; Lee, Kyungyong. Universal quivers. Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 683-702. doi : 10.5802/alco.175. https://alco.centre-mersenne.org/articles/10.5802/alco.175/
[1] Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2525-2590 | DOI | Numdam | MR | Zbl
[2] Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compos. Math., Volume 145 (2009) no. 4, pp. 1035-1079 | DOI | MR | Zbl
[3] Cluster mutation via quiver representations, Comment. Math. Helv., Volume 83 (2008) no. 1, pp. 143-177 | DOI | MR | Zbl
[4] Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc., Volume 23 (2010) no. 3, pp. 749-790 | DOI | MR | Zbl
[5] Morsifications and mutations (2020) (https://arxiv.org/abs/1711.10598)
[6] Introduction to cluster algebras, Chapters 1–5 (https://arxiv.org/abs/1608.05735, https://arxiv.org/abs/1707.07190)
[7] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[8] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[9] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[10] Green-to-red sequences for positroids, J. Combin. Theory Ser. A, Volume 159 (2018), pp. 164-182 | DOI | MR | Zbl
[11] Positroid varieties and cluster algebras (https://arxiv.org/abs/1906.03501)
[12] Canonical bases for cluster algebras, J. Amer. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl
[13] Mutation classes of diagrams via infinite graphs, Math. Nachr., Volume 284 (2011) no. 17-18, pp. 2184-2205 | DOI | MR | Zbl
[14] Cluster algebras and quantum affine algebras, Duke Math. J., Volume 154 (2010) no. 2, pp. 265-341 | DOI | MR | Zbl
[15] Quiver mutation and combinatorial DT-invariants (https://arxiv.org/abs/1709.03143)
[16] Quiver mutation in JavaScript and Java (software freely available at https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/)
[17] Cluster algebras, quiver representations and triangulated categories, Triangulated categories (London Math. Soc. Lecture Note Ser.), Volume 375, Cambridge Univ. Press, Cambridge, 2010, pp. 76-160 | DOI | MR | Zbl
[18] On cluster theory and quantum dilogarithm identities, Representations of algebras and related topics (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2011, pp. 85-116 | DOI | Zbl
[19] Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | DOI | MR | Zbl
[20] Lecture notes on cluster algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013, ii+117 pages | MR | Zbl
[21] Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys., Volume 341 (2016) no. 3, pp. 821-884 | DOI | Zbl
[22] The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin., Volume 23 (2016) no. 2, Paper no. Paper 2.47, 23 pages | MR | Zbl
[23] A compendium on the cluster algebra and quiver package in Sage, Sém. Lothar. Combin., Volume 65 (2010/12), Paper no. Art. B65d, 67 pages | MR | Zbl
[24] Donaldson–Thomas theory and cluster algebras, Duke Math. J., Volume 162 (2013) no. 7, pp. 1313-1367 | DOI | MR | Zbl
[25] On tropical dualities in cluster algebras, Algebraic groups and quantum groups (Contemp. Math.), Volume 565, Amer. Math. Soc., 2012, pp. 217-226 | DOI | MR | Zbl
[26] Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math., Volume 227 (2011) no. 1, pp. 1-39 | DOI | MR | Zbl
[27] Total positivity, Grassmannians, and networks (https://arxiv.org/abs/math/0609764)
[28] Turán’s brick factory problem: the status of the conjectures of Zarankiewicz and Hill, Graph theory—favorite conjectures and open problems. 1, Springer, Cham, 2016, pp. 211-230 | Zbl
Cited by Sources: