The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 187-208.

The Schur polynomials s λ are essential in understanding the representation theory of the general linear group. They also describe the cohomology ring of the Grassmannians. For ρ=(n,n-1,,1) a staircase shape and μρ a subpartition, the Stembridge equality states that s ρ/μ =s ρ/μ T . This equality provides information about the symmetry of the cohomology ring. The stable Grothendieck polynomials G λ , and the dual stable Grothendieck polynomials g λ , developed by Buch, Lam, and Pylyavskyy, are variants of the Schur polynomials and describe the K-theory of the Grassmannians. Using the Hopf algebra structure of the ring of symmetric functions and a generalized Littlewood–Richardson rule, we prove that G ρ/μ =G ρ/μ T and g ρ/μ =g ρ/μ T , the analogues of the Stembridge equality for the skew stable and skew dual stable Grothendieck polynomials.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.199
Classification: 05E05
Keywords: Stembridge equality, Grothendieck polynomial, Young tableau, Hopf algebra.

Abney-McPeek, Fiona 1; An, Serena 2; Ng, Jakin S. 2

1 Harvard University Cambridge MA USA.
2 Massachusetts Institute of Technology Cambridge MA USA.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_2_187_0,
     author = {Abney-McPeek, Fiona and An, Serena and Ng, Jakin S.},
     title = {The {Stembridge} equality for skew stable {Grothendieck} polynomials and skew dual stable {Grothendieck} polynomials},
     journal = {Algebraic Combinatorics},
     pages = {187--208},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {2},
     year = {2022},
     doi = {10.5802/alco.199},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.199/}
}
TY  - JOUR
AU  - Abney-McPeek, Fiona
AU  - An, Serena
AU  - Ng, Jakin S.
TI  - The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 187
EP  - 208
VL  - 5
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.199/
DO  - 10.5802/alco.199
LA  - en
ID  - ALCO_2022__5_2_187_0
ER  - 
%0 Journal Article
%A Abney-McPeek, Fiona
%A An, Serena
%A Ng, Jakin S.
%T The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
%J Algebraic Combinatorics
%D 2022
%P 187-208
%V 5
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.199/
%R 10.5802/alco.199
%G en
%F ALCO_2022__5_2_187_0
Abney-McPeek, Fiona; An, Serena; Ng, Jakin S. The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 187-208. doi : 10.5802/alco.199. https://alco.centre-mersenne.org/articles/10.5802/alco.199/

[1] Alwaise, Ethan; Chen, Shuli; Clifton, Alexander; Patrias, Rebecca; Prasad, Rohil; Shinners, Madeline; Zheng, Albert Coincidences among skew stable and dual stable Grothendieck polynomials, Involve, Volume 11 (2018) no. 1, pp. 143-167 | DOI | MR | Zbl

[2] Buch, Anders S. A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl

[3] Fomin, Sergey; Kirillov, Anatol N. Grothendieck polynomials and the Yang–Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR

[4] Galashin, Pavel A Littlewood–Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 151 (2017), pp. 23-35 | DOI | MR | Zbl

[5] Grinberg, Darij; Reiner, Victor Hopf Algebras in Combinatorics (2020) (https://arxiv.org/abs/1409.8356)

[6] Lam, Thomas; Pylyavskyy, Pavlo Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not. (2007) no. 24, Paper no. rnm125, 48 pages | DOI

[7] Reiner, Victor; Shaw, Kristin M.; van Willigenburg, Stephanie Coincidences among skew Schur functions, Adv. Math., Volume 216 (2007) no. 1, pp. 118-152 | DOI | MR | Zbl

[8] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiv+626 pages (second edition) | MR | Zbl

[9] Yeliussizov, Damir Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl

Cited by Sources: