The Schur polynomials are essential in understanding the representation theory of the general linear group. They also describe the cohomology ring of the Grassmannians. For a staircase shape and a subpartition, the Stembridge equality states that . This equality provides information about the symmetry of the cohomology ring. The stable Grothendieck polynomials , and the dual stable Grothendieck polynomials , developed by Buch, Lam, and Pylyavskyy, are variants of the Schur polynomials and describe the -theory of the Grassmannians. Using the Hopf algebra structure of the ring of symmetric functions and a generalized Littlewood–Richardson rule, we prove that and , the analogues of the Stembridge equality for the skew stable and skew dual stable Grothendieck polynomials.
Revised:
Accepted:
Published online:
Keywords: Stembridge equality, Grothendieck polynomial, Young tableau, Hopf algebra.
Abney-McPeek, Fiona 1; An, Serena 2; Ng, Jakin S. 2
@article{ALCO_2022__5_2_187_0, author = {Abney-McPeek, Fiona and An, Serena and Ng, Jakin S.}, title = {The {Stembridge} equality for skew stable {Grothendieck} polynomials and skew dual stable {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {187--208}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.199}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.199/} }
TY - JOUR AU - Abney-McPeek, Fiona AU - An, Serena AU - Ng, Jakin S. TI - The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials JO - Algebraic Combinatorics PY - 2022 SP - 187 EP - 208 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.199/ DO - 10.5802/alco.199 LA - en ID - ALCO_2022__5_2_187_0 ER -
%0 Journal Article %A Abney-McPeek, Fiona %A An, Serena %A Ng, Jakin S. %T The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials %J Algebraic Combinatorics %D 2022 %P 187-208 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.199/ %R 10.5802/alco.199 %G en %F ALCO_2022__5_2_187_0
Abney-McPeek, Fiona; An, Serena; Ng, Jakin S. The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 187-208. doi : 10.5802/alco.199. https://alco.centre-mersenne.org/articles/10.5802/alco.199/
[1] Coincidences among skew stable and dual stable Grothendieck polynomials, Involve, Volume 11 (2018) no. 1, pp. 143-167 | DOI | MR | Zbl
[2] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[3] Grothendieck polynomials and the Yang–Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR
[4] A Littlewood–Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 151 (2017), pp. 23-35 | DOI | MR | Zbl
[5] Hopf Algebras in Combinatorics (2020) (https://arxiv.org/abs/1409.8356)
[6] Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not. (2007) no. 24, Paper no. rnm125, 48 pages | DOI
[7] Coincidences among skew Schur functions, Adv. Math., Volume 216 (2007) no. 1, pp. 118-152 | DOI | MR | Zbl
[8] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiv+626 pages (second edition) | MR | Zbl
[9] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
Cited by Sources: