Loop-augmented Forests and a Variant of Foulkes’s Conjecture
Algebraic Combinatorics, Volume 1 (2018) no. 5, pp. 573-601.

A loop-augmented forest is a labeled rooted forest with loops on some of its roots. By exploiting an interplay between nilpotent partial functions and labeled rooted forests, we investigate the permutation action of the symmetric group on loop-augmented forests. Furthermore, we describe an extension of Foulkes’s conjecture and prove a special case. Among other important outcomes of our analysis are a complete description of the stabilizer subgroup of an idempotent in the semigroup of partial transformations and a generalization of the (Knuth–Sagan) hook length formula.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.20
Classification: 20C30, 05E10, 16W22
Keywords: Labeled rooted forests, symmetric group, plethysm.

Can, Mahir Bilen 1; Remmel, Jeff 2

1 Tulane University Mathematics Department New Orleans, USA
2 UC San Diego Mathematics Department La Jolla, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2018__1_5_573_0,
     author = {Can, Mahir Bilen and Remmel, Jeff},
     title = {Loop-augmented {Forests} and a {Variant} of {Foulkes{\textquoteright}s} {Conjecture}},
     journal = {Algebraic Combinatorics},
     pages = {573--601},
     publisher = {MathOA foundation},
     volume = {1},
     number = {5},
     year = {2018},
     doi = {10.5802/alco.20},
     zbl = {06987759},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.20/}
}
TY  - JOUR
AU  - Can, Mahir Bilen
AU  - Remmel, Jeff
TI  - Loop-augmented Forests and a Variant of Foulkes’s Conjecture
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 573
EP  - 601
VL  - 1
IS  - 5
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.20/
DO  - 10.5802/alco.20
LA  - en
ID  - ALCO_2018__1_5_573_0
ER  - 
%0 Journal Article
%A Can, Mahir Bilen
%A Remmel, Jeff
%T Loop-augmented Forests and a Variant of Foulkes’s Conjecture
%J Algebraic Combinatorics
%D 2018
%P 573-601
%V 1
%N 5
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.20/
%R 10.5802/alco.20
%G en
%F ALCO_2018__1_5_573_0
Can, Mahir Bilen; Remmel, Jeff. Loop-augmented Forests and a Variant of Foulkes’s Conjecture. Algebraic Combinatorics, Volume 1 (2018) no. 5, pp. 573-601. doi : 10.5802/alco.20. https://alco.centre-mersenne.org/articles/10.5802/alco.20/

[1] Can, Mahir Bilen A representation on labeled rooted forests, Commun. Algebra, Volume 46 (2018) no. 10, pp. 4273-4291 | DOI | MR | Zbl

[2] Chen, Yao Min; Garsia, Adriano M.; Remmel, Jeffrey Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 34, American Mathematical Society, 1984, pp. 109-153 | DOI | MR | Zbl

[3] Comtet, Louis Advanced combinatorics. The art of finite and infinite expansions, Reidel Publishing Co., 1974, xi+343 pages | MR | Zbl

[4] Ganyushkin, Olexandr; Mazorchuk, Volodymyr Classical finite transformation semigroups: an introduction, Algebra and Applications, 9, Springer, 2009, xii+314 pages | DOI | MR | Zbl

[5] Littlewood, Dudley E. The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, 1940, viii+292 pages | MR | Zbl

[6] Loehr, Nicholas A.; Remmel, Jeffrey A computational and combinatorial exposé of plethystic calculus, J. Algebr. Comb., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl

[7] Macdonald, Ian Grant Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, 1995, x+475 pages | MR | Zbl

[8] Remmel, Jeffrey; Whitney, Roger Multiplying Schur functions, J. Algorithms, Volume 5 (1984) no. 4, pp. 471-487 | DOI | MR | Zbl

[9] Thrall, Robert M. On symmetrized Kronecker powers and the structure of the free Lie ring, Am. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl

Cited by Sources: