We prove a case of a positivity conjecture of Mihalcea–Singh, concerned with the local Euler obstructions associated to the Schubert stratification of the Lagrangian Grassmannian . Combined with work of Aluffi–Mihalcea–Schürmann–Su, this further implies the positivity of the Mather classes for Schubert varieties in , which Mihalcea–Singh had verified for the other cominuscule spaces of classical Lie type. Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing Kazhdan–Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for the Euler obstructions may vanish for certain pairs with in the Bruhat order. Our combinatorial description allows us to classify all the pairs for which . Restricting to the big opposite cell in , which is naturally identified with the space of symmetric matrices, we recover the formulas for the local Euler obstructions associated with the matrix rank stratification.
Revised:
Accepted:
Published online:
Keywords: Local Euler obstructions, Schubert stratification, Lagrangian Grassmannian, tree labelings.
LeVan, Paul 1; Raicu, Claudiu 1
@article{ALCO_2022__5_2_299_0, author = {LeVan, Paul and Raicu, Claudiu}, title = {Euler obstructions for the {Lagrangian} {Grassmannian}}, journal = {Algebraic Combinatorics}, pages = {299--318}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.211}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.211/} }
TY - JOUR AU - LeVan, Paul AU - Raicu, Claudiu TI - Euler obstructions for the Lagrangian Grassmannian JO - Algebraic Combinatorics PY - 2022 SP - 299 EP - 318 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.211/ DO - 10.5802/alco.211 LA - en ID - ALCO_2022__5_2_299_0 ER -
%0 Journal Article %A LeVan, Paul %A Raicu, Claudiu %T Euler obstructions for the Lagrangian Grassmannian %J Algebraic Combinatorics %D 2022 %P 299-318 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.211/ %R 10.5802/alco.211 %G en %F ALCO_2022__5_2_299_0
LeVan, Paul; Raicu, Claudiu. Euler obstructions for the Lagrangian Grassmannian. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 299-318. doi : 10.5802/alco.211. https://alco.centre-mersenne.org/articles/10.5802/alco.211/
[1] Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells (2017) (https://arxiv.org/abs/1709.08697)
[2] Kazhdan–Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc., Volume 309 (1988) no. 1, pp. 279-294 | DOI | MR | Zbl
[3] Characteristic cycles in Hermitian symmetric spaces, Canad. J. Math., Volume 49 (1997) no. 3, pp. 417-467 | DOI | MR | Zbl
[4] Vanishing cycles on Grassmannians, Duke Math. J., Volume 61 (1990) no. 3, pp. 763-777 | DOI | MR | Zbl
[5] Macaulay 2, a software system for research in algebraic geometry (Available at http://www.math.uiuc.edu/Macaulay2/)
[6] Standard monomial theory. Invariant theoretic approach., Encyclopaedia of Mathematical Sciences, 137, Springer-Verlag, Berlin, 2008, xiv+265 pages | Zbl
[7] Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980) (Astérisque), Volume 87, Soc. Math. France, Paris, 1981, pp. 249-266 | MR | Zbl
[8] Local Euler obstructions for determinantal varieties (2021) (https://arxiv.org/abs/2105.00271)
[9] Chern classes for singular algebraic varieties, Ann. of Math. (2), Volume 100 (1974), pp. 423-432 | DOI | MR | Zbl
[10] Mather classes and conormal spaces of Schubert varieties in cominuscule spaces (https://arxiv.org/abs/2006.04842)
[11] Geometric invariants of recursive group orbit stratification (https://arxiv.org/abs/2009.09362)
Cited by Sources: