Let be a free module of rank over a commutative ring . We prove that tensor space satisfies Schur–Weyl duality, regarded as a bimodule for the action of the group algebra of the Weyl group of and the partition algebra over . We also prove a similar result for the half partition algebra.
Revised:
Accepted:
Published online:
Keywords: Schur–Weyl duality, partition algebras, symmetric groups, invariant theory.
Bowman, Chris 1; Doty, Stephen 2; Martin, Stuart 3
@article{ALCO_2022__5_2_371_0, author = {Bowman, Chris and Doty, Stephen and Martin, Stuart}, title = {Integral {Schur{\textendash}Weyl} duality for partition algebras}, journal = {Algebraic Combinatorics}, pages = {371--399}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.214}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.214/} }
TY - JOUR AU - Bowman, Chris AU - Doty, Stephen AU - Martin, Stuart TI - Integral Schur–Weyl duality for partition algebras JO - Algebraic Combinatorics PY - 2022 SP - 371 EP - 399 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.214/ DO - 10.5802/alco.214 LA - en ID - ALCO_2022__5_2_371_0 ER -
%0 Journal Article %A Bowman, Chris %A Doty, Stephen %A Martin, Stuart %T Integral Schur–Weyl duality for partition algebras %J Algebraic Combinatorics %D 2022 %P 371-399 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.214/ %R 10.5802/alco.214 %G en %F ALCO_2022__5_2_371_0
Bowman, Chris; Doty, Stephen; Martin, Stuart. Integral Schur–Weyl duality for partition algebras. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 371-399. doi : 10.5802/alco.214. https://alco.centre-mersenne.org/articles/10.5802/alco.214/
[1] Partition algebras and the invariant theory of the symmetric group, Recent trends in algebraic combinatorics (Assoc. Women Math. Ser.), Volume 16, Springer, Cham, 2019, pp. 1-41 | DOI | MR | Zbl
[2] Partition algebras with and the fundamental theorems of invariant theory for the symmetric group , J. Lond. Math. Soc. (2), Volume 99 (2019) no. 1, pp. 194-224 | DOI | MR | Zbl
[3] Schur–Weyl duality over finite fields, Arch. Math. (Basel), Volume 93 (2009) no. 5, pp. 425-435 | DOI | MR | Zbl
[4] An integral second fundamental theorem of invariant theory for partition algebras (2018) preprint (to appear in Represent. Theory), https://arxiv.org/abs/1804.00916
[5] Permanent of the product of doubly stochastic matrices, Proc. Cambridge Philos. Soc., Volume 62 (1966), pp. 643-648 | DOI | MR | Zbl
[6] On the modular representations of the general linear and symmetric groups, Math. Z., Volume 136 (1974), pp. 193-242 | DOI | MR | Zbl
[7] A characteristic free approach to invariant theory, Advances in Math., Volume 21 (1976) no. 3, pp. 330-354 | DOI | MR | Zbl
[8] The rational Schur algebra, Represent. Theory, Volume 12 (2008), pp. 58-82 | DOI | MR | Zbl
[9] Brauer algebras, symplectic Schur algebras and Schur–Weyl duality, Trans. Amer. Math. Soc., Volume 360 (2008) no. 1, pp. 189-213 | DOI | MR | Zbl
[10] Quantized mixed tensor space and Schur-Weyl duality, Algebra Number Theory, Volume 7 (2013) no. 5, pp. 1121-1146 | DOI | MR | Zbl
[11] The quantized walled Brauer algebra and mixed tensor space, Algebr. Represent. Theory, Volume 17 (2014) no. 2, pp. 675-701 | DOI | MR | Zbl
[12] On Schur algebras and related algebras VI: Some remarks on rational and classical Schur algebras, J. Algebra, Volume 405 (2014), pp. 92-121 | DOI | MR | Zbl
[13] Cellularity of endomorphism algebras of Young permutation modules, J. Algebra, Volume 572 (2021), pp. 36-59 | DOI | MR | Zbl
[14] Double centralisers and annihilator ideals of Young permutation modules, J. Algebra, Volume 591 (2022), pp. 249-288 | DOI | MR | Zbl
[15] Schur–Weyl duality for orthogonal groups, Proc. Lond. Math. Soc. (3), Volume 98 (2009) no. 3, pp. 679-713 | DOI | MR | Zbl
[16] Schur–Weyl duality for special orthogonal groups, J. Lie Theory, Volume 27 (2017) no. 1, pp. 251-270 | MR | Zbl
[17] Generalized doubly stochastic and permutation matrices over a ring, Linear Algebra Appl., Volume 30 (1980), pp. 101-107 | DOI | MR | Zbl
[18] Cellular algebras, Invent. Math., Volume 123 (1996) no. 1, pp. 1-34 | DOI | MR | Zbl
[19] Polynomial representations of . With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, and M. Schocker, Lecture Notes in Mathematics, 830, Springer, Berlin, 2007, x+161 pages | DOI | MR | Zbl
[20] Partition algebras, European J. Combin., Volume 26 (2005) no. 6, pp. 869-921 | DOI | MR | Zbl
[21] Essentially doubly stochastic matrices. I. Elements of the theory over arbitrary fields, Linear Algebra Appl., Volume 4 (1971), pp. 255-282 | DOI | MR | Zbl
[22] The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259-267 | MR | Zbl
[23] On the linear algebra of generalized doubly stochastic matrices and their equivalence relations and permutation basis, Japan J. Appl. Math., Volume 3 (1986) no. 2, pp. 357-379 | DOI | MR | Zbl
[24] Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991, xiv+344 pages | DOI | MR | Zbl
[25] Temperley–Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications, Volume 3 (1994) no. 1, pp. 51-82 | DOI | MR | Zbl
[26] The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A, Volume 33 (2000) no. 19, pp. 3669-3695 | DOI | MR | Zbl
Cited by Sources: