Using the Filmus–Golubev–Lifshitz method [7] to bound the independence number of a hypergraph, we solve some problems concerning multiply intersecting families with biased measures. Among other results we obtain a stability result of a measure version of the Erdős–Ko–Rado theorem for multiply intersecting families.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.222
Keywords: Hoffman’s bound, intersecting family, independence number, boolean function.
Tokushige, Norihide 1
@article{ALCO_2022__5_3_537_0, author = {Tokushige, Norihide}, title = {Application of hypergraph {Hoffman{\textquoteright}s} bound to intersecting families}, journal = {Algebraic Combinatorics}, pages = {537--557}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {3}, year = {2022}, doi = {10.5802/alco.222}, zbl = {07555119}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.222/} }
TY - JOUR AU - Tokushige, Norihide TI - Application of hypergraph Hoffman’s bound to intersecting families JO - Algebraic Combinatorics PY - 2022 SP - 537 EP - 557 VL - 5 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.222/ DO - 10.5802/alco.222 LA - en ID - ALCO_2022__5_3_537_0 ER -
%0 Journal Article %A Tokushige, Norihide %T Application of hypergraph Hoffman’s bound to intersecting families %J Algebraic Combinatorics %D 2022 %P 537-557 %V 5 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.222/ %R 10.5802/alco.222 %G en %F ALCO_2022__5_3_537_0
Tokushige, Norihide. Application of hypergraph Hoffman’s bound to intersecting families. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 537-557. doi : 10.5802/alco.222. https://alco.centre-mersenne.org/articles/10.5802/alco.222/
[1] Contributions to the geometry of Hamming spaces, Discrete Math., Volume 17 (1977) no. 1, pp. 1-22 | DOI | MR | Zbl
[2] The diametric theorem in Hamming spaces—optimal anticodes, Adv. in Appl. Math., Volume 20 (1998) no. 4, pp. 429-449 | DOI | MR | Zbl
[3] Old and new results for the weighted -intersection problem via AK-methods, Numbers, information and complexity (Bielefeld, 1998), Kluwer Acad. Publ., Boston, MA, 2000, pp. 45-74 | MR | Zbl
[4] Cross-intersecting integer sequences (2012) (https://arxiv.org/abs/1212.6955)
[5] A finite set covering theorem, Bull. Austral. Math. Soc., Volume 5 (1971), pp. 197-202 | DOI | MR | Zbl
[6] High dimensional Hoffman bound (2020) (https://yuvalfilmus.cs.technion.ac.il/Talks/Hoffman.pdf)
[7] High dimensional Hoffman bound and applications in extremal combinatorics, Algebr. Comb., Volume 4 (2021) no. 6, pp. 1005-1026 | MR
[8] Probabilities for intersecting systems and random subsets of finite sets, SIAM J. Algebraic Discrete Methods, Volume 7 (1986) no. 1, pp. 73-79 | DOI | MR | Zbl
[9] Weighted multiply intersecting families, Studia Sci. Math. Hungar., Volume 40 (2003) no. 3, pp. 287-291 | DOI | MR | Zbl
[10] Extremal problems for finite sets, Student Mathematical Library, 86, American Mathematical Society, Providence, RI, 2018, viii+224 pages | DOI | MR | Zbl
[11] On the measure of intersecting families, uniqueness and stability, Combinatorica, Volume 28 (2008) no. 5, pp. 503-528 | DOI | MR | Zbl
[12] Boolean functions whose Fourier transform is concentrated on the first two levels, Adv. in Appl. Math., Volume 29 (2002) no. 3, pp. 427-437 | DOI | MR | Zbl
[13] Hoffman’s ratio bound (2021) (https://arxiv.org/abs/2102.05529)
[14] Property testing, PCP, and Juntas, Ph. D. Thesis, Tel Aviv University (2002)
[15] Noise-Resistant Boolean-Functions are Juntas (2004) (https://www.cs.huji.ac.il/w~gkindler/)
[16] A semidefinite programming approach to a cross-intersection problem with measures, Math. Program., Volume 166 (2017) no. 1-2, Ser. A, pp. 113-130 | DOI | MR | Zbl
Cited by Sources: