We give a bijective proof of Macdonald’s reduced word identity using pipe dreams and Little’s bumping algorithm. This proof extends to a principal specialization due to Fomin and Stanley. Such a proof has been sought for over 20 years. Our bijective tools also allow us to solve a problem posed by Fomin and Kirillov from 1997 using work of Wachs, Lenart, Serrano and Stump. These results extend earlier work by the third author on a Markov process for reduced words of the longest permutation.
Accepted:
Published online:
DOI: 10.5802/alco.23
Billey, Sara C. 1; Holroyd, Alexander E. 2; Young, Benjamin J. 3
@article{ALCO_2019__2_2_217_0, author = {Billey, Sara C. and Holroyd, Alexander E. and Young, Benjamin J.}, title = {A bijective proof of {Macdonald{\textquoteright}s} reduced word formula}, journal = {Algebraic Combinatorics}, pages = {217--248}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.23}, zbl = {1409.05024}, mrnumber = {3934829}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.23/} }
TY - JOUR AU - Billey, Sara C. AU - Holroyd, Alexander E. AU - Young, Benjamin J. TI - A bijective proof of Macdonald’s reduced word formula JO - Algebraic Combinatorics PY - 2019 SP - 217 EP - 248 VL - 2 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.23/ DO - 10.5802/alco.23 LA - en ID - ALCO_2019__2_2_217_0 ER -
%0 Journal Article %A Billey, Sara C. %A Holroyd, Alexander E. %A Young, Benjamin J. %T A bijective proof of Macdonald’s reduced word formula %J Algebraic Combinatorics %D 2019 %P 217-248 %V 2 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.23/ %R 10.5802/alco.23 %G en %F ALCO_2019__2_2_217_0
Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula. Algebraic Combinatorics, Volume 2 (2019) no. 2, pp. 217-248. doi : 10.5802/alco.23. https://alco.centre-mersenne.org/articles/10.5802/alco.23/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] Coxeter-Knuth graphs and a signed Little map for type B reduced words, Electron. J. Comb., Volume 21 (2014) no. 4, Paper no. P4.6, 39 pages | MR | Zbl
[3] Some Combinatorial Properties of Schubert Polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[4] Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture, Spectrum Series, Cambridge University Press, 1999, xv+274 pages | Zbl
[5] A combinatorial property of -Eulerian numbers, Am. Math. Mon., Volume 82 (1975), pp. 51-54 | DOI | MR | Zbl
[6] Sur les décompositions cellulaires des espaces , Algebraic Groups and their generalizations: Classical methods (University Park, PA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 56, Part 1, American Mathematical Society, 1994, pp. 1-23 | Zbl
[7] Balanced tableaux, Adv. Math., Volume 63 (1987) no. 1, pp. 42-99 | DOI | MR | Zbl
[8] On the Netto inversion number of a sequence, Proc. Am. Math. Soc., Volume 19 (1968), pp. 236-240 | DOI | MR | Zbl
[9] Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics (Series in Discrete Mathematics and Theoretical Computer Science) (1994), pp. 183-190 | Zbl
[10] Yang-Baxter Equation, Symmetric Functions, and Schubert Polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl
[11] Reduced words and plane partitions, J. Algebr. Comb., Volume 6 (1997) no. 4, pp. 311-319 | DOI | MR | Zbl
[12] Schubert Polynomials and the NilCoxeter Algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | DOI | Zbl
[13] The Saga of Reduced Factorizations of Elements of the Symmetric Group, Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, 29, Laboratoire de combinatoire et d’informatique mathématique, 2002
[14] Determinants, paths, and plane partitions (1989) (manuscript)
[15] A new look at the permutations of the first natural numbers, Indian J. Pure Appl. Math., Volume 9 (1978) no. 6, pp. 600-631 | MR | Zbl
[16] Statistics on wreath products, perfect matchings, and signed words, Eur. J. Comb., Volume 26 (2005) no. 6, pp. 835-868 | DOI | MR | Zbl
[17] Transition formulas for involution Schubert polynomials (2016) (https://arxiv.org/abs/1609.09625) | Zbl
[18] Relating Edelman-Greene insertion to the Little map, J. Algebr. Comb., Volume 40 (2014) no. 3, pp. 693-710 | DOI | MR | Zbl
[19] The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica, Volume 27 (1961) no. 12, pp. 1209-1225 | DOI | Zbl
[20] Schubert polynomials and symmetric functions; notes for the Lisbon combinatorics summer school 2012, 2012 (http://www.math.cornell.edu/~allenk/schubnotes.pdf)
[21] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl
[22] Schubert geometry of Flag Varieties and Gelfand-Cetlin theory, Ph. D. Thesis, Massachusetts Institute of Technology (2000) | MR
[23] Young-diagrammatic methods for the representation theory of the classical groups of type , J. Algebra, Volume 107 (1987) no. 2, pp. 466-511 | DOI | Zbl
[24] k-Schur Functions and Affine Schubert Calculus, Fields Institute Monographs, 33, The Fields Institute for Research in the Mathematical Sciences, 2014 | MR | Zbl
[25] A Little bijection for affine Stanley symmetric functions, Sémin. Lothar. Comb., Volume 54A (2005), Paper no. B54Ai, 12 pages | MR | Zbl
[26] Transition on Grothendieck polynomials, Proceedings of the Nagoya 2000 International Workshop (Physics and Combinatorics), World Scientific, 2000, pp. 164-179
[27] Polynômes de Schubert, C. R. Acad. Sci., Paris, Sér. I, Volume 294 (1982), pp. 447-450 | Zbl
[28] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 118-144 | DOI | MR | Zbl
[29] Schubert Polynomials and the Littlewood-Richardson Rule, Lett. Math. Phys., Volume 10 (1985), pp. 111-124 | DOI | MR | Zbl
[30] A unified approach to combinatorial formulas for Schubert polynomials, J. Algebr. Comb., Volume 20 (2004) no. 3, pp. 263-299 | DOI | MR | Zbl
[31] Combinatorial aspects of the Lascoux-Schützenberger tree, Adv. Math., Volume 174 (2003) no. 2, pp. 236-253 | DOI | MR | Zbl
[32] Factorization of the Robinson–Schensted–Knuth correspondence, J. Comb. Theory, Ser. A, Volume 110 (2005) no. 1, pp. 147-168 | DOI | MR | Zbl
[33] Notes on Schubert Polynomials, Publications du Laboratoire de combinatoire et d’informatique mathématique, 6, Université du Québec, 1991 | MR
[34] Symmetric Functions, Schubert Polynomials and Degeneracy Loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, 2001 | MR | Zbl
[35] A combinatorial approach to the -symmetry relation in Macdonald polynomials, Electron. J. Comb., Volume 23 (2016) no. 2, Paper no. P2.38, 64 pages | MR | Zbl
[36] A bijective proof of a major index theorem of Garsia and Gessel, Electron. J. Comb., Volume 17 (2010) no. 1, Paper no. 64, 12 pages | MR | Zbl
[37] Chains in the Bruhat order, J. Algebr. Comb., Volume 29 (2009) no. 2, pp. 133-174 | DOI | MR | Zbl
[38] Odd symplectic groups, Invent. Math., Volume 92 (1988) no. 2, pp. 307-332 | DOI | MR | Zbl
[39] New symmetric plane partition identities from invariant theory work of De Concini and Procesi, Eur. J. Comb., Volume 11 (1990) no. 3, pp. 289-300 | DOI | MR | Zbl
[40] Poset edge densities, nearly reduced words, and barely set-valued tableaux (2016) (https://arxiv.org/abs/1603.09589) | Zbl
[41] Generalized triangulations, pipe dreams, and simplicial spheres, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (Discrete Mathematics and Theoretical Computer Science), The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS), 2011, pp. 885-896 | Zbl
[42] Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials, Electron. J. Comb., Volume 19 (2012) no. 1, Paper no. P16, 18 pages | MR | Zbl
[43] An Eulerian partner for inversions, Sémin. Lothar. Comb., Volume 46 (2001), Paper no. B46d, 19 pages | MR | Zbl
[44] On the Number of Reduced Decompositions of Elements of Coxeter Groups, Eur. J. Comb., Volume 5 (1984), pp. 359-372 | DOI | MR | Zbl
[45] Permutations, 2009 (http://www-math.mit.edu/~rstan/papers/perms.pdf)
[46] A weighted enumeration of maximal chains in the Bruhat order, J. Algebr. Comb., Volume 15 (2002) no. 3, pp. 291-301 | DOI | MR | Zbl
[47] Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Comb. Theory, Ser. A, Volume 40 (1985) no. 2, pp. 276-289 | DOI | MR | Zbl
[48] The prism tableau model for Schubert polynomials, J. Comb. Theory, Ser. A, Volume 154 (2018), pp. 551-582 | DOI | MR | Zbl
[49] A Markov growth process for Macdonald’s distribution on reduced words (2014) (https://arxiv.org/abs/1409.7714)
Cited by Sources: