We extend the definition of coarse flag Hilbert–Poincaré series to matroids; these series arise in the context of local Igusa zeta functions associated to hyperplane arrangements. We study these series in the case of oriented matroids by applying geometric and combinatorial tools related to their topes. In this case, we prove that the numerators of these series are coefficient-wise bounded below by the Eulerian polynomial and equality holds if and only if all topes are simplicial. Moreover this yields a sufficient criterion for non-orientability of matroids of arbitrary rank.
Revised:
Accepted:
Published online:
Keywords: Coarse flag polynomial, Eulerian polynomials, Igusa zeta functions, oriented matroids
Kühne, Lukas 1; Maglione, Joshua 1
@article{ALCO_2023__6_3_623_0, author = {K\"uhne, Lukas and Maglione, Joshua}, title = {On the geometry of flag {Hilbert{\textendash}Poincar\'e} series for matroids}, journal = {Algebraic Combinatorics}, pages = {623--638}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.276}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.276/} }
TY - JOUR AU - Kühne, Lukas AU - Maglione, Joshua TI - On the geometry of flag Hilbert–Poincaré series for matroids JO - Algebraic Combinatorics PY - 2023 SP - 623 EP - 638 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.276/ DO - 10.5802/alco.276 LA - en ID - ALCO_2023__6_3_623_0 ER -
%0 Journal Article %A Kühne, Lukas %A Maglione, Joshua %T On the geometry of flag Hilbert–Poincaré series for matroids %J Algebraic Combinatorics %D 2023 %P 623-638 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.276/ %R 10.5802/alco.276 %G en %F ALCO_2023__6_3_623_0
Kühne, Lukas; Maglione, Joshua. On the geometry of flag Hilbert–Poincaré series for matroids. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 623-638. doi : 10.5802/alco.276. https://alco.centre-mersenne.org/articles/10.5802/alco.276/
[1] Valuations and the Hopf Monoid of Generalized Permutahedra, Int. Math. Res. Not. IMRN (2022) | DOI
[2] On the generation of rank 3 simple matroids with an application to Terao’s freeness conjecture, SIAM J. Discrete Math., Volume 35 (2021) no. 2, pp. 1201-1223 | DOI | MR | Zbl
[3] The -index: a survey, Polytopes and discrete geometry (Contemp. Math.), Volume 764, Amer. Math. Soc., Providence, RI, 2021, pp. 1-19 | DOI | MR | Zbl
[4] Oriented matroids, Encyclopedia of Mathematics and its Applications, 46, Cambridge University Press, Cambridge, 1999, xii+548 pages | DOI | MR
[5] -vectors of barycentric subdivisions, Math. Z., Volume 259 (2008) no. 4, pp. 849-865 | DOI | MR | Zbl
[6] On the local zeta functions and the -functions of certain hyperplane arrangements, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 631-648 (With an appendix by Willem Veys) | DOI | MR | Zbl
[7] There exist ordinary points, Discrete Comput. Geom., Volume 9 (1993) no. 2, pp. 187-202 | DOI | MR | Zbl
[8] Combinatorial simpliciality of arrangements of hyperplanes, Beitr. Algebra Geom., Volume 56 (2015) no. 2, pp. 439-458 | DOI | MR | Zbl
[9] Valuative invariants for polymatroids, Adv. Math., Volume 225 (2010) no. 4, pp. 1840-1892 | DOI | MR
[10] The Poincaré-extended ab-index, 2023 | arXiv
[11] Decomposition theorem for the -index of Gorenstein posets, J. Algebraic Combin., Volume 26 (2007) no. 2, pp. 225-251 | DOI | MR | Zbl
[12] The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl
[13] Divisors on matroids and their volumes, J. Combin. Theory Ser. A, Volume 169 (2020), Paper no. 105135, 31 pages | DOI | MR | Zbl
[14] Valuative invariants for large classes of matroids (2022) | arXiv
[15] A theorem on the average number of subfaces in arrangements and oriented matroids, Geom. Dedicata, Volume 47 (1993) no. 2, pp. 129-142 | DOI | MR | Zbl
[16] polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) (DMV Sem.), Volume 29, Birkhäuser, Basel, 2000, pp. 43-73 | DOI | MR | Zbl
[17] The motivic zeta functions of a matroid, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 2, pp. 604-632 | DOI | MR | Zbl
[18] Hyperplane Arrangements in polymake, Mathematical Software – ICMS 2020 (Bigatti, Anna Maria; Carette, Jacques; Davenport, James H.; Joswig, Michael; de Wolff, Timo, eds.), Springer International Publishing, Cham (2020), pp. 232-240 | DOI | Zbl
[19] Flag Hilbert–Poincaré series of hyperplane arrangements and their Igusa zeta functions (2021, to appear in Israel J. Math.) | arXiv
[20] Matroid enumeration for incidence geometry, Discrete Comput. Geom., Volume 47 (2012) no. 1, pp. 17-43 | DOI | MR | Zbl
[21] Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992, xviii+325 pages | DOI | MR
[22] Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015, xviii+456 pages (With a foreword by Richard Stanley) | DOI | MR
[23] Groups, graphs, and hypergraphs: average sizes of kernels of generic matrices with support constraints (2019, to appear in Mem. Amer. Math. Soc.) | arXiv
[24] Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, xii+325 pages (With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original) | DOI | MR
[25] Combinatorial analogs of topological zeta functions, Discrete Math., Volume 342 (2019) no. 9, pp. 2680-2693 | DOI | MR | Zbl
[26] The numbers of faces of a configuration of hyperplanes, Dokl. Akad. Nauk SSSR, Volume 302 (1988) no. 3, pp. 527-530
Cited by Sources: