Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to -dimensional triangulations without interior -simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal -simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.
Revised:
Accepted:
Published online:
Keywords: Cyclic polytopes, triangulations, quivers, mutation
Williams, Nicholas J. 1
@article{ALCO_2023__6_3_639_0, author = {Williams, Nicholas J.}, title = {Quiver combinatorics and triangulations of cyclic polytopes}, journal = {Algebraic Combinatorics}, pages = {639--660}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.280}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.280/} }
TY - JOUR AU - Williams, Nicholas J. TI - Quiver combinatorics and triangulations of cyclic polytopes JO - Algebraic Combinatorics PY - 2023 SP - 639 EP - 660 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.280/ DO - 10.5802/alco.280 LA - en ID - ALCO_2023__6_3_639_0 ER -
%0 Journal Article %A Williams, Nicholas J. %T Quiver combinatorics and triangulations of cyclic polytopes %J Algebraic Combinatorics %D 2023 %P 639-660 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.280/ %R 10.5802/alco.280 %G en %F ALCO_2023__6_3_639_0
Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 639-660. doi : 10.5802/alco.280. https://alco.centre-mersenne.org/articles/10.5802/alco.280/
[1] Silting mutation in triangulated categories, J. Lond. Math. Soc. (2), Volume 85 (2012) no. 3, pp. 633-668 | DOI | MR | Zbl
[2] A course in convexity, Graduate Studies in Mathematics, 54, American Mathematical Society, Providence, RI, 2002, x+366 pages | DOI | MR
[3] Primitive Radon partitions for cyclic polytopes, Israel J. Math., Volume 15 (1973), pp. 156-157 | DOI | MR | Zbl
[4] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl
[5] Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, pp. 1347-1364 | DOI | MR | Zbl
[6] The cube recurrence, Electron. J. Combin., Volume 11 (2004) no. 1, Paper no. 73, Paper no. Research Paper 73, 31, 31 pages | MR | Zbl
[7] Triangulations, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages (Structures for algorithms and applications) | DOI | MR
[8] On counting triangulations in dimensions, Comput. Geom., Volume 3 (1993) no. 6, pp. 315-325 | DOI | MR | Zbl
[9] The symplectic geometry of higher Auslander algebras: symmetric products of disks, Forum Math. Sigma, Volume 9 (2021), p. Paper No. e10, 49 pp | DOI | MR | Zbl
[10] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl
[11] Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 6, pp. 865-930 | DOI | Numdam | MR | Zbl
[12] Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl
[13] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 497-529 (electronic) | DOI | MR | Zbl
[14] The Laurent phenomenon, Adv. in Appl. Math., Volume 28 (2002) no. 2, pp. 119-144 | DOI | MR | Zbl
[15] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[16] Cluster algebras: notes for the CDM-03 conference, Current developments in mathematics, 2003, Int. Press, Somerville, MA, 2003, pp. 1-34 | MR | Zbl
[17] A combinatorial procedure for tilting mutation, 2021 | arXiv
[18] Neighborly and cyclic polytopes, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I. (1963), pp. 225-232 | DOI | MR
[19] Cluster algebras and Poisson geometry, Mosc. Math. J., Volume 3 (2003) no. 3, p. 899-934, 1199 | DOI | MR | Zbl
[20] Cluster algebras and Weil-Petersson forms, Duke Math. J., Volume 127 (2005) no. 2, pp. 291-311 | DOI | MR | Zbl
[21] Convex polytopes, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003, xvi+468 pages (Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler) | DOI | MR
[22] Representation theory of Geigle–Lenzing complete intersections, 2020 | arXiv
[23] Auslander correspondence, Adv. Math., Volume 210 (2007) no. 1, pp. 51-82 | DOI | MR | Zbl
[24] Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math., Volume 210 (2007) no. 1, pp. 22-50 | DOI | MR | Zbl
[25] Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl
[26] -representation-finite algebras and -APR tilting, Trans. Amer. Math. Soc., Volume 363 (2011) no. 12, pp. 6575-6614 | DOI | MR | Zbl
[27] Automorphism Groups of Cyclic Polytopes, 2003
[28] Weak separation and plabic graphs, Proc. Lond. Math. Soc. (3), Volume 110 (2015) no. 3, pp. 721-754 | DOI | MR | Zbl
[29] Quivers for silting mutation, Adv. Math., Volume 307 (2017), pp. 684-714 | DOI | MR | Zbl
[30] Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 6, pp. 1679-1737 | DOI | MR | Zbl
[31] Mutation of frozen Jacobian algebras, J. Algebra, Volume 546 (2020), pp. 236-273 | DOI | MR | Zbl
[32] Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika, Volume 44 (1997) no. 1, pp. 162-194 | DOI | MR | Zbl
[33] Perfect matchings and the octahedron recurrence, J. Algebraic Combin., Volume 25 (2007) no. 3, pp. 309-348 | DOI | MR | Zbl
[34] Cluster algebras: an introduction, Bull. Amer. Math. Soc. (N.S.), Volume 51 (2014) no. 1, pp. 1-26 | DOI | MR | Zbl
[35] New interpretations of the higher Stasheff–Tamari orders, Adv. Math., Volume 407 (2022), Paper no. 108552 | DOI | MR | Zbl
[36] Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, x+370 pages | DOI | MR
Cited by Sources: