Quiver combinatorics and triangulations of cyclic polytopes
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 639-660.

Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to 2d-dimensional triangulations without interior (d+1)-simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal d-simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.280
Classification: 52B05, 05E10, 52B11
Keywords: Cyclic polytopes, triangulations, quivers, mutation

Williams, Nicholas J. 1

1 Department of Mathematics and Statistics Fylde College Lancaster University Lancaster LA1 4YF United Kingdom
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_639_0,
     author = {Williams, Nicholas J.},
     title = {Quiver combinatorics and triangulations of cyclic polytopes},
     journal = {Algebraic Combinatorics},
     pages = {639--660},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.280},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.280/}
}
TY  - JOUR
AU  - Williams, Nicholas J.
TI  - Quiver combinatorics and triangulations of cyclic polytopes
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 639
EP  - 660
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.280/
DO  - 10.5802/alco.280
LA  - en
ID  - ALCO_2023__6_3_639_0
ER  - 
%0 Journal Article
%A Williams, Nicholas J.
%T Quiver combinatorics and triangulations of cyclic polytopes
%J Algebraic Combinatorics
%D 2023
%P 639-660
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.280/
%R 10.5802/alco.280
%G en
%F ALCO_2023__6_3_639_0
Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 639-660. doi : 10.5802/alco.280. https://alco.centre-mersenne.org/articles/10.5802/alco.280/

[1] Aihara, Takuma; Iyama, Osamu Silting mutation in triangulated categories, J. Lond. Math. Soc. (2), Volume 85 (2012) no. 3, pp. 633-668 | DOI | MR | Zbl

[2] Barvinok, Alexander A course in convexity, Graduate Studies in Mathematics, 54, American Mathematical Society, Providence, RI, 2002, x+366 pages | DOI | MR

[3] Breen, Marilyn Primitive Radon partitions for cyclic polytopes, Israel J. Math., Volume 15 (1973), pp. 156-157 | DOI | MR | Zbl

[4] Buan, Aslak Bakke; Marsh, Robert; Reineke, Markus; Reiten, Idun; Todorov, Gordana Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl

[5] Caldero, P.; Chapoton, F.; Schiffler, R. Quivers with relations arising from clusters (A n case), Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, pp. 1347-1364 | DOI | MR | Zbl

[6] Carroll, Gabriel D.; Speyer, David The cube recurrence, Electron. J. Combin., Volume 11 (2004) no. 1, Paper no. 73, Paper no. Research Paper 73, 31, 31 pages | MR | Zbl

[7] De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco Triangulations, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages (Structures for algorithms and applications) | DOI | MR

[8] Dey, Tamal Krishna On counting triangulations in d dimensions, Comput. Geom., Volume 3 (1993) no. 6, pp. 315-325 | DOI | MR | Zbl

[9] Dyckerhoff, Tobias; Jasso, Gustavo; Lekili, Yankı The symplectic geometry of higher Auslander algebras: symmetric products of disks, Forum Math. Sigma, Volume 9 (2021), p. Paper No. e10, 49 pp | DOI | MR | Zbl

[10] Fock, Vladimir; Goncharov, Alexander Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl

[11] Fock, Vladimir V.; Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 6, pp. 865-930 | DOI | Numdam | MR | Zbl

[12] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[13] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 497-529 (electronic) | DOI | MR | Zbl

[14] Fomin, Sergey; Zelevinsky, Andrei The Laurent phenomenon, Adv. in Appl. Math., Volume 28 (2002) no. 2, pp. 119-144 | DOI | MR | Zbl

[15] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl

[16] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras: notes for the CDM-03 conference, Current developments in mathematics, 2003, Int. Press, Somerville, MA, 2003, pp. 1-34 | MR | Zbl

[17] Fosse, Didrik A combinatorial procedure for tilting mutation, 2021 | arXiv

[18] Gale, David Neighborly and cyclic polytopes, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I. (1963), pp. 225-232 | DOI | MR

[19] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek Cluster algebras and Poisson geometry, Mosc. Math. J., Volume 3 (2003) no. 3, p. 899-934, 1199 | DOI | MR | Zbl

[20] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek Cluster algebras and Weil-Petersson forms, Duke Math. J., Volume 127 (2005) no. 2, pp. 291-311 | DOI | MR | Zbl

[21] Grünbaum, Branko Convex polytopes, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003, xvi+468 pages (Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler) | DOI | MR

[22] Herschend, Martin; Iyama, Osamu; Minamoto, Hiroyuki; Oppermann, Steffen Representation theory of Geigle–Lenzing complete intersections, 2020 | arXiv

[23] Iyama, Osamu Auslander correspondence, Adv. Math., Volume 210 (2007) no. 1, pp. 51-82 | DOI | MR | Zbl

[24] Iyama, Osamu Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math., Volume 210 (2007) no. 1, pp. 22-50 | DOI | MR | Zbl

[25] Iyama, Osamu Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl

[26] Iyama, Osamu; Oppermann, Steffen n-representation-finite algebras and n-APR tilting, Trans. Amer. Math. Soc., Volume 363 (2011) no. 12, pp. 6575-6614 | DOI | MR | Zbl

[27] Kaibel, Volker; Wassmer, Arnold Automorphism Groups of Cyclic Polytopes, 2003

[28] Oh, Suho; Postnikov, Alexander; Speyer, David E. Weak separation and plabic graphs, Proc. Lond. Math. Soc. (3), Volume 110 (2015) no. 3, pp. 721-754 | DOI | MR | Zbl

[29] Oppermann, Steffen Quivers for silting mutation, Adv. Math., Volume 307 (2017), pp. 684-714 | DOI | MR | Zbl

[30] Oppermann, Steffen; Thomas, Hugh Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 6, pp. 1679-1737 | DOI | MR | Zbl

[31] Pressland, Matthew Mutation of frozen Jacobian algebras, J. Algebra, Volume 546 (2020), pp. 236-273 | DOI | MR | Zbl

[32] Rambau, Jörg Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika, Volume 44 (1997) no. 1, pp. 162-194 | DOI | MR | Zbl

[33] Speyer, David E Perfect matchings and the octahedron recurrence, J. Algebraic Combin., Volume 25 (2007) no. 3, pp. 309-348 | DOI | MR | Zbl

[34] Williams, Lauren K. Cluster algebras: an introduction, Bull. Amer. Math. Soc. (N.S.), Volume 51 (2014) no. 1, pp. 1-26 | DOI | MR | Zbl

[35] Williams, Nicholas J. New interpretations of the higher Stasheff–Tamari orders, Adv. Math., Volume 407 (2022), Paper no. 108552 | DOI | MR | Zbl

[36] Ziegler, Günter M. Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, x+370 pages | DOI | MR

Cited by Sources: