Resolutions of local face modules, functoriality, and vanishing of local h-vectors
Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 1057-1072.

We study the local face modules of triangulations of simplices, i.e. the modules over face rings whose Hilbert functions are local h-vectors. In particular, we give resolutions of these modules by subcomplexes of Koszul complexes as well as functorial maps between modules induced by inclusions of faces. As applications, we prove a new monotonicity result for local h-vectors and new results on the structure of faces in triangulations with vanishing local h-vectors.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.293
Classification: 05E45, 05E40
Keywords: Koszul resolution, local face module, local $h$-vector, subdivision

Larson, Matt 1; Payne, Sam 2; Stapledon, Alan 3

1 Stanford U. Department of Mathematics 450 Jane Stanford Way Stanford CA 94305
2 UT Department of Mathematics 2515 Speedway RLM 8.100 Austin TX 78712
3 Sydney Mathematics Research Institute L4.42 Quadrangle A14 University of Sydney NSW 2006 Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_4_1057_0,
     author = {Larson, Matt and Payne, Sam and Stapledon, Alan},
     title = {Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors},
     journal = {Algebraic Combinatorics},
     pages = {1057--1072},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {4},
     year = {2023},
     doi = {10.5802/alco.293},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.293/}
}
TY  - JOUR
AU  - Larson, Matt
AU  - Payne, Sam
AU  - Stapledon, Alan
TI  - Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1057
EP  - 1072
VL  - 6
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.293/
DO  - 10.5802/alco.293
LA  - en
ID  - ALCO_2023__6_4_1057_0
ER  - 
%0 Journal Article
%A Larson, Matt
%A Payne, Sam
%A Stapledon, Alan
%T Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors
%J Algebraic Combinatorics
%D 2023
%P 1057-1072
%V 6
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.293/
%R 10.5802/alco.293
%G en
%F ALCO_2023__6_4_1057_0
Larson, Matt; Payne, Sam; Stapledon, Alan. Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 1057-1072. doi : 10.5802/alco.293. https://alco.centre-mersenne.org/articles/10.5802/alco.293/

[1] Athanasiadis, C. Cubical subdivisions and local h-vectors, Ann. Comb., Volume 16 (2012) no. 3, pp. 421-448 | DOI | MR | Zbl

[2] Athanasiadis, C. Flag subdivisions and γ-vectors, Pacific J. Math., Volume 259 (2012) no. 2, pp. 257-278 | DOI | MR

[3] Athanasiadis, C. A survey of subdivisions and local h-vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | DOI | Zbl

[4] de Cataldo, M.; Migliorini, L.; Mustaţă, M. Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | MR | Zbl

[5] de Moura, A.; Gunther, E.; Payne, S.; Schuchardt, J.; Stapledon, A. Triangulations of simplices with vanishing local h-polynomial, Algebr. Comb., Volume 3 (2020) no. 6, pp. 1417-1430 | DOI | Numdam | MR | Zbl

[6] Denef, J.; Loeser, F. Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl

[7] Igusa, J.-i. Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 59, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978, iv+175 pages

[8] Juhnke-Kubitzke, M.; Murai, S.; Sieg, R. Local h-vectors of quasi-geometric and barycentric subdivisions, Discrete Comput. Geom., Volume 61 (2019) no. 2, pp. 364-379 | DOI | MR | Zbl

[9] Karu, K. Relative hard Lefschetz theorem for fans, Adv. Math., Volume 347 (2019), pp. 859-903 | DOI | MR | Zbl

[10] Katz, E.; Stapledon, A. Local h-polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl

[11] Larson, M.; Payne, S.; Stapledon, A. The local motivic monodromy conjecture for simplicial nondegenerate singularities (2022) | arXiv

[12] Lemahieu, A.; Van Proeyen, L. Monodromy conjecture for nondegenerate surface singularities, Trans. Amer. Math. Soc., Volume 363 (2011) no. 9, pp. 4801-4829 | DOI | MR | Zbl

[13] Reisner, G. Cohen-Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl

[14] Stanley, R. Subdivisions and local h-vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | MR | Zbl

[15] Stanley, R. Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston Inc., Boston, MA, 1996, x+164 pages

[16] Stapledon, A. Formulas for monodromy, Res. Math. Sci., Volume 4 (2017), Paper no. 8, 42 pages | DOI | MR | Zbl

Cited by Sources: