We study the local face modules of triangulations of simplices, i.e. the modules over face rings whose Hilbert functions are local -vectors. In particular, we give resolutions of these modules by subcomplexes of Koszul complexes as well as functorial maps between modules induced by inclusions of faces. As applications, we prove a new monotonicity result for local -vectors and new results on the structure of faces in triangulations with vanishing local -vectors.
Revised:
Accepted:
Published online:
Keywords: Koszul resolution, local face module, local $h$-vector, subdivision
Larson, Matt 1; Payne, Sam 2; Stapledon, Alan 3
@article{ALCO_2023__6_4_1057_0, author = {Larson, Matt and Payne, Sam and Stapledon, Alan}, title = {Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors}, journal = {Algebraic Combinatorics}, pages = {1057--1072}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.293}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.293/} }
TY - JOUR AU - Larson, Matt AU - Payne, Sam AU - Stapledon, Alan TI - Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors JO - Algebraic Combinatorics PY - 2023 SP - 1057 EP - 1072 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.293/ DO - 10.5802/alco.293 LA - en ID - ALCO_2023__6_4_1057_0 ER -
%0 Journal Article %A Larson, Matt %A Payne, Sam %A Stapledon, Alan %T Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors %J Algebraic Combinatorics %D 2023 %P 1057-1072 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.293/ %R 10.5802/alco.293 %G en %F ALCO_2023__6_4_1057_0
Larson, Matt; Payne, Sam; Stapledon, Alan. Resolutions of local face modules, functoriality, and vanishing of local $h$-vectors. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 1057-1072. doi : 10.5802/alco.293. https://alco.centre-mersenne.org/articles/10.5802/alco.293/
[1] Cubical subdivisions and local -vectors, Ann. Comb., Volume 16 (2012) no. 3, pp. 421-448 | DOI | MR | Zbl
[2] Flag subdivisions and -vectors, Pacific J. Math., Volume 259 (2012) no. 2, pp. 257-278 | DOI | MR
[3] A survey of subdivisions and local -vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | DOI | Zbl
[4] Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | MR | Zbl
[5] Triangulations of simplices with vanishing local -polynomial, Algebr. Comb., Volume 3 (2020) no. 6, pp. 1417-1430 | DOI | Numdam | MR | Zbl
[6] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl
[7] Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 59, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978, iv+175 pages
[8] Local -vectors of quasi-geometric and barycentric subdivisions, Discrete Comput. Geom., Volume 61 (2019) no. 2, pp. 364-379 | DOI | MR | Zbl
[9] Relative hard Lefschetz theorem for fans, Adv. Math., Volume 347 (2019), pp. 859-903 | DOI | MR | Zbl
[10] Local -polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl
[11] The local motivic monodromy conjecture for simplicial nondegenerate singularities (2022) | arXiv
[12] Monodromy conjecture for nondegenerate surface singularities, Trans. Amer. Math. Soc., Volume 363 (2011) no. 9, pp. 4801-4829 | DOI | MR | Zbl
[13] Cohen-Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl
[14] Subdivisions and local -vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | MR | Zbl
[15] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston Inc., Boston, MA, 1996, x+164 pages
[16] Formulas for monodromy, Res. Math. Sci., Volume 4 (2017), Paper no. 8, 42 pages | DOI | MR | Zbl
Cited by Sources: