We investigate Voronoi diagrams with respect to an asymmetric tropical distance function, in particular for infinite point sets. These Voronoi diagrams turn out to be much better behaved than those arising from the standard tropical distance, which is symmetric. In particular, we show that the asymmetric tropical Voronoi diagrams may be seen as tropicalizations of power diagrams over fields of real Puiseux series. Our results are then applied to rational lattices and Laurent monomial modules.
Revised:
Accepted:
Published online:
Keywords: tropical convexity, polyhedral combinatorics, polyhedral gauge, ordinary and tropical quasi-polyhedron, rational lattice, Delone complex, monomial ideal, Scarf complex
Comăneci, Andrei 1; Joswig, Michael 2
@article{ALCO_2023__6_5_1211_0, author = {Com\u{a}neci, Andrei and Joswig, Michael}, title = {Asymmetric tropical distances and power diagrams}, journal = {Algebraic Combinatorics}, pages = {1211--1233}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.306}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.306/} }
TY - JOUR AU - Comăneci, Andrei AU - Joswig, Michael TI - Asymmetric tropical distances and power diagrams JO - Algebraic Combinatorics PY - 2023 SP - 1211 EP - 1233 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.306/ DO - 10.5802/alco.306 LA - en ID - ALCO_2023__6_5_1211_0 ER -
%0 Journal Article %A Comăneci, Andrei %A Joswig, Michael %T Asymmetric tropical distances and power diagrams %J Algebraic Combinatorics %D 2023 %P 1211-1233 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.306/ %R 10.5802/alco.306 %G en %F ALCO_2023__6_5_1211_0
Comăneci, Andrei; Joswig, Michael. Asymmetric tropical distances and power diagrams. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1211-1233. doi : 10.5802/alco.306. https://alco.centre-mersenne.org/articles/10.5802/alco.306/
[1] Log-barrier interior point methods are not strongly polynomial, SIAM J. Appl. Algebra Geom., Volume 2 (2018) no. 1, pp. 140-178 | DOI | MR | Zbl
[2] What tropical geometry tells us about the complexity of linear programming, SIAM Rev., Volume 63 (2021) no. 1, pp. 123-164 | DOI | MR | Zbl
[3] Riemann-Roch for sub-lattices of the root lattice , Electron. J. Combin., Volume 17 (2010) no. 1, Paper no. 124, 50 pages | MR | Zbl
[4] Power diagrams: properties, algorithms and applications, SIAM J. Comput., Volume 16 (1987) no. 1, pp. 78-96 | DOI | MR
[5] Improved algorithms for discs and balls using power diagrams, J. Algorithms, Volume 9 (1988) no. 2, pp. 151-161 | DOI | MR | Zbl
[6] Voronoi diagrams and Delaunay triangulations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 | DOI | MR
[7] Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, 10, Springer-Verlag, Berlin, 2006 | MR
[8] Cellular resolutions of monomial modules, J. Reine Angew. Math., Volume 502 (1998), pp. 123-140 | DOI | MR | Zbl
[9] Voronoi cells of lattices with respect to arbitrary norms, SIAM J. Appl. Algebra Geom., Volume 2 (2018) no. 2, pp. 314-338 | DOI | MR | Zbl
[10] Voronoi diagrams in higher dimensions under certain polyhedral distance functions, Discrete Comput. Geom., Volume 19 (1998) no. 4, pp. 485-519 | DOI | MR | Zbl
[11] Algorithmic geometry, Cambridge University Press, Cambridge, 1998 (Translated from the 1995 French original by Hervé Brönnimann) | DOI | MR
[12] Duality and separation theorems in idempotent semimodules, Linear Algebra Appl., Volume 379 (2004), pp. 395-422 (Tenth Conference of the International Linear Algebra Society) | DOI | MR | Zbl
[13] Tropical medians by transportation, 2022 (forthcoming, Math. Programming) | arXiv
[14] The cell structures of certain lattices, Miscellanea mathematica, Springer, Berlin, 1991, pp. 71-107 | DOI | MR | Zbl
[15] Tropical bisectors and Voronoi diagrams, Found. Comput. Math., Volume 22 (2022) no. 6, pp. 1923-1960 | DOI | MR | Zbl
[16] Tropical polytopes and cellular resolutions, Experiment. Math., Volume 16 (2007) no. 3, pp. 277-291 | DOI | MR | Zbl
[17] Voronoĭ diagrams and arrangements, Discrete Comput. Geom., Volume 1 (1986) no. 1, pp. 25-44 | DOI | MR | Zbl
[18] Multicriteria optimization, Springer-Verlag, Berlin, 2005 | MR
[19] Regular figures, A Pergamon Press Book, The Macmillan Company, New York, 1964 | MR
[20] Minimal half-spaces and external representation of tropical polyhedra, J. Algebraic Combin., Volume 33 (2011) no. 3, pp. 325-348 | DOI | MR | Zbl
[21] Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften, 336, Springer, Berlin, 2007 | MR
[22] An introduction to the theory of numbers, Oxford University Press, Oxford, 2008 | MR
[23] Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011 | DOI | MR
[24] Voronoĭ diagram in the Laguerre geometry and its applications, SIAM J. Comput., Volume 14 (1985) no. 1, pp. 93-105 | DOI | MR | Zbl
[25] Essentials of tropical combinatorics, Graduate Studies in Mathematics, 219, American Mathematical Society, Providence, RI, 2021 | DOI
[26] Monomial tropical cones for multicriteria optimization, SIAM J. Discrete Math., Volume 34 (2020) no. 2, pp. 1172-1191 | DOI | MR | Zbl
[27] Some characterizations of convex polyhedra, Acta Math., Volume 102 (1959), pp. 79-107 | DOI | MR | Zbl
[28] Global affine differential geometry of hypersurfaces, De Gruyter Expositions in Mathematics, 11, De Gruyter, Berlin, 2015 | DOI | MR
[29] Tropical Fermat-Weber points, SIAM J. Discrete Math., Volume 32 (2018) no. 2, pp. 1229-1245 | DOI | MR | Zbl
[30] Face posets of tropical polyhedra and monomial ideals, 2019 | arXiv
[31] Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015 | DOI | MR
[32] The Laplacian lattice of a graph under a simplicial distance function, European J. Combin., Volume 34 (2013) no. 6, pp. 1051-1070 | DOI | MR | Zbl
[33] Monomials, binomials and Riemann-Roch, J. Algebraic Combin., Volume 37 (2013) no. 4, pp. 737-756 | DOI | MR | Zbl
[34] A field of generalised Puiseux series for tropical geometry, Rend. Semin. Mat. Univ. Politec. Torino, Volume 68 (2010) no. 1, pp. 79-92 | MR | Zbl
[35] The geometry of Minkowski spaces—a survey. II, Expo. Math., Volume 22 (2004) no. 2, pp. 93-144 | DOI | MR
[36] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005 | MR
[37] Voronoizellen diskreter Punktmengen, Ph. D. Thesis, TU Dortmund (2008) | Zbl
Cited by Sources: