We construct a natural idempotent in the descent algebra of a finite Coxeter group. The proof is uniform (independent of the classification). This leads to a simple determination of the spectrum of a natural matrix related to descents. Other applications are discussed.
Revised:
Accepted:
Published online:
Keywords: Coxeter group, reflection representation, permutation representation, descents, descent algebra, idempotents, central limit theorems
Renteln, Paul 1
@article{ALCO_2023__6_5_1177_0, author = {Renteln, Paul}, title = {A natural idempotent in the descent algebra of a finite {Coxeter} group}, journal = {Algebraic Combinatorics}, pages = {1177--1188}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.310}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.310/} }
TY - JOUR AU - Renteln, Paul TI - A natural idempotent in the descent algebra of a finite Coxeter group JO - Algebraic Combinatorics PY - 2023 SP - 1177 EP - 1188 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.310/ DO - 10.5802/alco.310 LA - en ID - ALCO_2023__6_5_1177_0 ER -
%0 Journal Article %A Renteln, Paul %T A natural idempotent in the descent algebra of a finite Coxeter group %J Algebraic Combinatorics %D 2023 %P 1177-1188 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.310/ %R 10.5802/alco.310 %G en %F ALCO_2023__6_5_1177_0
Renteln, Paul. A natural idempotent in the descent algebra of a finite Coxeter group. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1177-1188. doi : 10.5802/alco.310. https://alco.centre-mersenne.org/articles/10.5802/alco.310/
[1] The flag major index and group actions on polynomial rings, European J. Combin., Volume 22 (2001) no. 4, pp. 431-446 | DOI | MR | Zbl
[2] A new proof of a theorem of Solomon, Bull. London Math. Soc., Volume 18 (1986) no. 4, pp. 351-354 | DOI | MR | Zbl
[3] Solomon’s descent algebra revisited, Bull. London Math. Soc., Volume 24 (1992) no. 6, pp. 545-551 | DOI | MR | Zbl
[4] A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin., Volume 1 (1992) no. 1, pp. 23-44 | DOI | MR | Zbl
[5] A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J., Volume 99 (1999) no. 1, pp. 135-174 | DOI | MR | Zbl
[6] Hyperplane arrangement face algebras and their associated Markov chains, Ph. D. Thesis, University of Michigan (1997), vii+151 pages | MR
[7] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR
[8] Combinatorics of permutations, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2012, xiv+458 pages | DOI | MR
[9] Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, xii+300 pages (translated from the 1968 French original by Andrew Pressley) | DOI | MR
[10] Semigroups, rings, and Markov chains, J. Theoret. Probab., Volume 13 (2000) no. 3, pp. 871-938 | DOI | MR | Zbl
[11] A central limit theorem for the two-sided descent statistic on Coxeter groups, Electron. J. Combin., Volume 29 (2022) no. 1, Paper no. 1.1, 25 pages | DOI | MR | Zbl
[12] -Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., Volume 76 (1954), pp. 332-350 | DOI | MR | Zbl
[13] A central limit theorem for a new statistic on permutations, Indian J. Pure Appl. Math., Volume 48 (2017) no. 4, pp. 561-573 | DOI | MR | Zbl
[14] Advanced combinatorics: the art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht, 1974, xi+343 pages | DOI | MR
[15] On the central limit theorem for the two-sided descent statistics in Coxeter groups, Electron. Commun. Probab., Volume 25 (2020), Paper no. 28, 6 pages | DOI | MR | Zbl
[16] On the Netto inversion number of a sequence, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 236-240 | DOI | MR | Zbl
[17] Major index and inversion number of permutations, Math. Nachr., Volume 83 (1978), pp. 143-159 | DOI | MR | Zbl
[18] Permutation statistics and partitions, Adv. in Math., Volume 31 (1979) no. 3, pp. 288-305 | DOI | MR | Zbl
[19] A decomposition of Solomon’s descent algebra, Adv. Math., Volume 77 (1989) no. 2, pp. 189-262 | DOI | MR | Zbl
[20] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR
[21] Counting inversions and descents of random elements in finite Coxeter groups, Math. Comp., Volume 89 (2020) no. 321, pp. 437-464 | DOI | MR | Zbl
[22] Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001, x+379 pages | DOI | MR
[23] Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015, xviii+456 pages | DOI | MR
[24] Diagonalization of matrices of statistics, Ann. Comb., Volume 17 (2013) no. 3, pp. 549-569 | DOI | MR | Zbl
[25] Spectral properties of descent algebra elements, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 127-139 | DOI | MR | Zbl
[26] Diagonalization of fix-Mahonian matrices, 2020 | arXiv
[27] Spectra of symmetrized shuffling operators, Mem. Amer. Math. Soc., Volume 228 (2014) no. 1072, p. vi+109 | MR | Zbl
[28] The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., Volume 311 (2011) no. 8-9, pp. 738-755 | DOI | MR | Zbl
[29] Asymptotics of a locally dependent statistic on finite reflection groups, Electron. J. Combin., Volume 27 (2020) no. 2, Paper no. 2.24, 11 pages | DOI | MR | Zbl
[30] The face semigroup algebra of a hyperplane arrangement, Ph. D. Thesis, Cornell University (2006), viii+109 pages | MR
[31] Hyperplane arrangements and descent algebras, 2006 (unpublished notes)
[32] On the quiver of the descent algebra, J. Algebra, Volume 320 (2008) no. 11, pp. 3866-3894 | DOI | MR | Zbl
[33] A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976) no. 2, pp. 255-264 | DOI | MR | Zbl
[34] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[35] Finite reflection groups, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 493-504 | DOI | MR | Zbl
[36] On the dual complexity and spectra of some combinatorial functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 462 (2017), pp. 112-121 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXVIII) | DOI | MR
[37] A proof of Solomon’s rule, J. Algebra, Volume 206 (1998) no. 2, pp. 693-698 | DOI | MR | Zbl
[38] On the relationship between combinatorial functions and representations of a symmetric group, Funktsional. Anal. i Prilozhen., Volume 51 (2017) no. 1, pp. 28-39 | DOI | MR
Cited by Sources: