For any Kac–Moody group , we prove that the Bruhat order on the semidirect product of the Weyl group and the Tits cone for is strictly compatible with a -valued length function. We conjecture in general and prove for of affine ADE type that the Bruhat order is graded by this length function. We also formulate and discuss conjectures relating the length function to intersections of “double-affine Schubert varieties”.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.37
Keywords: Kac–Moody groups, double-affine Bruhat order
Muthiah, Dinakar 1; Orr, Daniel 2
@article{ALCO_2019__2_2_197_0, author = {Muthiah, Dinakar and Orr, Daniel}, title = {On the double-affine {Bruhat} order: the $\varepsilon =1$ conjecture and classification of covers in {ADE} type}, journal = {Algebraic Combinatorics}, pages = {197--216}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.37}, zbl = {1414.05304}, mrnumber = {3934828}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.37/} }
TY - JOUR AU - Muthiah, Dinakar AU - Orr, Daniel TI - On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type JO - Algebraic Combinatorics PY - 2019 SP - 197 EP - 216 VL - 2 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.37/ DO - 10.5802/alco.37 LA - en ID - ALCO_2019__2_2_197_0 ER -
%0 Journal Article %A Muthiah, Dinakar %A Orr, Daniel %T On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type %J Algebraic Combinatorics %D 2019 %P 197-216 %V 2 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.37/ %R 10.5802/alco.37 %G en %F ALCO_2019__2_2_197_0
Muthiah, Dinakar; Orr, Daniel. On the double-affine Bruhat order: the $\varepsilon =1$ conjecture and classification of covers in ADE type. Algebraic Combinatorics, Volume 2 (2019) no. 2, pp. 197-216. doi : 10.5802/alco.37. https://alco.centre-mersenne.org/articles/10.5802/alco.37/
[1] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005, xiv+363 pages | MR | Zbl
[2] Pursuing the double affine Grassmannian. I. Transversal slices via instantons on -singularities, Duke Math. J., Volume 152 (2010) no. 2, pp. 175-206 | DOI | MR | Zbl
[3] Iwahori-Hecke algebras for -adic loop groups, Invent. Math., Volume 204 (2016) no. 2, pp. 347-442 | DOI | MR | Zbl
[4] Semi-infinite flags. I. Case of global curve , Differential topology, infinite-dimensional Lie algebras, and applications (Advances in the Mathematical Sciences), Volume 194, American Mathematical Society, 1999, pp. 81-112 | DOI | MR | Zbl
[5] Infinite-dimensional Lie algebras, Cambridge University Press, 1990, xxii+400 pages | DOI | MR | Zbl
[6] On Iwahori-Hecke algebras for -adic loop groups: double coset basis and Bruhat order, Am. J. Math., Volume 140 (2018) no. 1, pp. 221-244 | DOI | MR | Zbl
Cited by Sources: