We prove a conjecture of Miller and Reiner on the existence of Smith normal form for the -operators for a certain class of -differential posets.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.393
Keywords: differential poset, Smith normal form, canonical forms, invariant factor decomposition
Shah, Syed Waqar Ali 1
CC-BY 4.0
@article{ALCO_2024__7_6_1887_0,
author = {Shah, Syed Waqar Ali},
title = {Smith normal form of matrices associated with differential posets},
journal = {Algebraic Combinatorics},
pages = {1887--1899},
year = {2024},
publisher = {The Combinatorics Consortium},
volume = {7},
number = {6},
doi = {10.5802/alco.393},
zbl = {07966783},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.393/}
}
TY - JOUR AU - Shah, Syed Waqar Ali TI - Smith normal form of matrices associated with differential posets JO - Algebraic Combinatorics PY - 2024 SP - 1887 EP - 1899 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.393/ DO - 10.5802/alco.393 LA - en ID - ALCO_2024__7_6_1887_0 ER -
%0 Journal Article %A Shah, Syed Waqar Ali %T Smith normal form of matrices associated with differential posets %J Algebraic Combinatorics %D 2024 %P 1887-1899 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.393/ %R 10.5802/alco.393 %G en %F ALCO_2024__7_6_1887_0
Shah, Syed Waqar Ali. Smith normal form of matrices associated with differential posets. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1887-1899. doi: 10.5802/alco.393
[1] The Smith normal form of a matrix associated with Young’s lattice, Proc. Amer. Math. Soc., Volume 143 (2015) no. 11, pp. 4695-4703 | DOI | MR | Zbl
[2] Abstract algebra, John Wiley & Sons, Inc., Hoboken, NJ, 2004, xii+932 pages | MR
[3] Differential posets and Smith normal forms, Order, Volume 26 (2009) no. 3, pp. 197-228 | DOI | MR | Zbl
[4] Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, 30, Cambridge University Press, Cambridge, 1997, xiv+499 pages | MR
[5] Differential posets, J. Amer. Math. Soc., Volume 1 (1988) no. 4, pp. 919-961 | DOI | MR | Zbl
[6] Smith normal form in combinatorics, J. Combin. Theory Ser. A, Volume 144 (2016), pp. 476-495 | DOI | MR | Zbl
Cited by Sources: