Smith normal form of matrices associated with differential posets
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1887-1899.

We prove a conjecture of Miller and Reiner on the existence of Smith normal form for the DU-operators for a certain class of r-differential posets.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.393
Classification: 06A11, 15A21, 05E99
Mots-clés : differential poset, Smith normal form, canonical forms, invariant factor decomposition

Shah, Syed Waqar Ali 1

1 Lahore University of Management Sciences Department of Mathematics Lahore 54792 (Pakistan)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1887_0,
     author = {Shah, Syed Waqar Ali},
     title = {Smith normal form of matrices associated with differential posets},
     journal = {Algebraic Combinatorics},
     pages = {1887--1899},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.393},
     zbl = {07966783},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.393/}
}
TY  - JOUR
AU  - Shah, Syed Waqar Ali
TI  - Smith normal form of matrices associated with differential posets
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1887
EP  - 1899
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.393/
DO  - 10.5802/alco.393
LA  - en
ID  - ALCO_2024__7_6_1887_0
ER  - 
%0 Journal Article
%A Shah, Syed Waqar Ali
%T Smith normal form of matrices associated with differential posets
%J Algebraic Combinatorics
%D 2024
%P 1887-1899
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.393/
%R 10.5802/alco.393
%G en
%F ALCO_2024__7_6_1887_0
Shah, Syed Waqar Ali. Smith normal form of matrices associated with differential posets. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1887-1899. doi : 10.5802/alco.393. https://alco.centre-mersenne.org/articles/10.5802/alco.393/

[1] Cai, T. W.; Stanley, R. P. The Smith normal form of a matrix associated with Young’s lattice, Proc. Amer. Math. Soc., Volume 143 (2015) no. 11, pp. 4695-4703 | DOI | MR | Zbl

[2] Dummit, D. S.; Foote, R. M. Abstract algebra, John Wiley & Sons, Inc., Hoboken, NJ, 2004, xii+932 pages | MR

[3] Miller, A. R.; Reiner, V. Differential posets and Smith normal forms, Order, Volume 26 (2009) no. 3, pp. 197-228 | DOI | MR | Zbl

[4] Pohst, M.; Zassenhaus, H. Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, 30, Cambridge University Press, Cambridge, 1997, xiv+499 pages | MR

[5] Stanley, R. P. Differential posets, J. Amer. Math. Soc., Volume 1 (1988) no. 4, pp. 919-961 | DOI | MR | Zbl

[6] Stanley, Richard P. Smith normal form in combinatorics, J. Combin. Theory Ser. A, Volume 144 (2016), pp. 476-495 | DOI | MR | Zbl

Cited by Sources: