Higher Specht polynomials under the diagonal action
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1731-1750.

We introduce higher Specht polynomials - analogs of Specht polynomials in higher degrees - in two sets of variables x1,...,xn and y1,...,yn under the diagonal action of the symmetric group Sn. This generalizes the classical Specht polynomial construction in one set of variables, as well as the higher Specht basis for the coinvariant ring Rn due to Ariki, Terasoma, and Yamada, which has the advantage of respecting the decomposition into irreducibles.

As our main application of the general theory, we provide a higher Specht basis for the hook shape Garsia–Haiman modules. In the process, we obtain a new formula for their doubly graded Frobenius series in terms of new generalized cocharge statistics on tableaux.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.396
Classification: 05E10, 05E05, 05E40, 20C30
Keywords: Diagonal harmonics, diagonal coinvariants, representation theory of the symmetric group, Young tableaux, Young symmetrizers, Garsia-Haiman modules, polynomial rings

Gillespie, Maria 1

1 Colorado State University Department of Mathematics 1874 Campus Delivery Fort Collins, CO 80523 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1731_0,
     author = {Gillespie, Maria},
     title = {Higher {Specht} polynomials under the diagonal action},
     journal = {Algebraic Combinatorics},
     pages = {1731--1750},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.396},
     zbl = {07966776},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.396/}
}
TY  - JOUR
AU  - Gillespie, Maria
TI  - Higher Specht polynomials under the diagonal action
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1731
EP  - 1750
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.396/
DO  - 10.5802/alco.396
LA  - en
ID  - ALCO_2024__7_6_1731_0
ER  - 
%0 Journal Article
%A Gillespie, Maria
%T Higher Specht polynomials under the diagonal action
%J Algebraic Combinatorics
%D 2024
%P 1731-1750
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.396/
%R 10.5802/alco.396
%G en
%F ALCO_2024__7_6_1731_0
Gillespie, Maria. Higher Specht polynomials under the diagonal action. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1731-1750. doi : 10.5802/alco.396. https://alco.centre-mersenne.org/articles/10.5802/alco.396/

[1] Adin, Ron M.; Remmel, Jeffrey B.; Roichman, Yuval The combinatorics of the Garsia-Haiman modules for hook shapes, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 38, 42 pages | DOI | MR | Zbl

[2] Alfano, Joseph A basis for the Y1 subspace of diagonal harmonic polynomials, Discrete Math., Volume 193 (1998) no. 1-3, pp. 17-31 | DOI | MR | Zbl

[3] Allen, Edward E. A conjecture of Procesi and the straightening algorithm of Rota, Proc. Nat. Acad. Sci. U.S.A., Volume 89 (1992) no. 9, pp. 3980-3984 | DOI | MR | Zbl

[4] Allen, Edward E. The descent monomials and a basis for the diagonally symmetric polynomials, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 5-16 | DOI | MR | Zbl

[5] Allen, Edward E. Bitableaux bases for the diagonally invariant polynomial quotient rings, Adv. Math., Volume 130 (1997) no. 2, pp. 242-260 | DOI | MR | Zbl

[6] Ariki, Susumu; Terasoma, Tomohide; Yamada, Hiro-Fumi Higher Specht polynomials, Hiroshima Math. J., Volume 27 (1997) no. 1, pp. 177-188 | MR | Zbl

[7] Carlsson, Erik; Mellit, Anton A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl

[8] Carlsson, Erik; Oblomkov, Alexei Affine Schubert calculus and double coinvariants, 2018 | arXiv

[9] De Concini, Corrado; Procesi, Claudio Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981) no. 2, pp. 203-219 | DOI | MR | Zbl

[10] Fulton, William Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR

[11] Garsia, A. M.; Procesi, C. On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl

[12] Garsia, Adriano; Zabrocki, Mike A basis for the Diagonal Harmonic Alternants, 2022 | arXiv

[13] Gillespie, M.; Rhoades, B. Higher Specht bases for generalizations of the coinvariant ring, Ann. Comb., Volume 25 (2021) no. 1, pp. 51-77 | DOI | MR | Zbl

[14] Haglund, J.; Haiman, M.; Loehr, N.; Remmel, J. B.; Ulyanov, A. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl

[15] Haglund, James; Rhoades, Brendon; Shimozono, Mark Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl

[16] Haiman, Mark Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 941-1006 | DOI | MR | Zbl

[17] Haiman, Mark Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl

[18] Lascoux, Alain; Schützenberger, Marcel-Paul Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR | Zbl

[19] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979, viii+180 pages | MR

[20] Peel, M. H. Specht modules and symmetric groups, J. Algebra, Volume 36 (1975) no. 1, pp. 88-97 | DOI | MR | Zbl

[21] Sagan, Bruce E. The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR

[22] Sage Developers, The SageMath (Version 9.0) (2020) https://www.sagemath.org

[23] Stanley, Richard P. Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl

[24] Stembridge, John R. Some particular entries of the two-parameter Kostka matrix, Proc. Amer. Math. Soc., Volume 121 (1994) no. 2, pp. 367-373 | DOI | MR | Zbl

[25] Tanisaki, Toshiyuki Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl

Cited by 1 document. Sources: NASA ADS