We introduce higher Specht polynomials - analogs of Specht polynomials in higher degrees - in two sets of variables
As our main application of the general theory, we provide a higher Specht basis for the hook shape Garsia–Haiman modules. In the process, we obtain a new formula for their doubly graded Frobenius series in terms of new generalized cocharge statistics on tableaux.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.396
Keywords: Diagonal harmonics, diagonal coinvariants, representation theory of the symmetric group, Young tableaux, Young symmetrizers, Garsia-Haiman modules, polynomial rings
Gillespie, Maria 1

@article{ALCO_2024__7_6_1731_0, author = {Gillespie, Maria}, title = {Higher {Specht} polynomials under the diagonal action}, journal = {Algebraic Combinatorics}, pages = {1731--1750}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.396}, zbl = {07966776}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.396/} }
TY - JOUR AU - Gillespie, Maria TI - Higher Specht polynomials under the diagonal action JO - Algebraic Combinatorics PY - 2024 SP - 1731 EP - 1750 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.396/ DO - 10.5802/alco.396 LA - en ID - ALCO_2024__7_6_1731_0 ER -
Gillespie, Maria. Higher Specht polynomials under the diagonal action. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1731-1750. doi : 10.5802/alco.396. https://alco.centre-mersenne.org/articles/10.5802/alco.396/
[1] The combinatorics of the Garsia-Haiman modules for hook shapes, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 38, 42 pages | DOI | MR | Zbl
[2] A basis for the
[3] A conjecture of Procesi and the straightening algorithm of Rota, Proc. Nat. Acad. Sci. U.S.A., Volume 89 (1992) no. 9, pp. 3980-3984 | DOI | MR | Zbl
[4] The descent monomials and a basis for the diagonally symmetric polynomials, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 5-16 | DOI | MR | Zbl
[5] Bitableaux bases for the diagonally invariant polynomial quotient rings, Adv. Math., Volume 130 (1997) no. 2, pp. 242-260 | DOI | MR | Zbl
[6] Higher Specht polynomials, Hiroshima Math. J., Volume 27 (1997) no. 1, pp. 177-188 | MR | Zbl
[7] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[8] Affine Schubert calculus and double coinvariants, 2018 | arXiv
[9] Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981) no. 2, pp. 203-219 | DOI | MR | Zbl
[10] Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[11] On certain graded
[12] A basis for the Diagonal Harmonic Alternants, 2022 | arXiv
[13] Higher Specht bases for generalizations of the coinvariant ring, Ann. Comb., Volume 25 (2021) no. 1, pp. 51-77 | DOI | MR | Zbl
[14] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl
[15] Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl
[16] Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 941-1006 | DOI | MR | Zbl
[17] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl
[18] Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR | Zbl
[19] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979, viii+180 pages | MR
[20] Specht modules and symmetric groups, J. Algebra, Volume 36 (1975) no. 1, pp. 88-97 | DOI | MR | Zbl
[21] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[22] SageMath (Version 9.0) (2020) https://www.sagemath.org
[23] Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl
[24] Some particular entries of the two-parameter Kostka matrix, Proc. Amer. Math. Soc., Volume 121 (1994) no. 2, pp. 367-373 | DOI | MR | Zbl
[25] Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl
- Additive and Multiplicative Coinvariant Spaces of Weyl Groups in the Light of Harmonics and Graded Transfer, arXiv (2024) | DOI:10.48550/arxiv.2412.17099 | arXiv:2412.17099
Cited by 1 document. Sources: NASA ADS