We introduce higher Specht polynomials - analogs of Specht polynomials in higher degrees - in two sets of variables and under the diagonal action of the symmetric group . This generalizes the classical Specht polynomial construction in one set of variables, as well as the higher Specht basis for the coinvariant ring due to Ariki, Terasoma, and Yamada, which has the advantage of respecting the decomposition into irreducibles.
As our main application of the general theory, we provide a higher Specht basis for the hook shape Garsia–Haiman modules. In the process, we obtain a new formula for their doubly graded Frobenius series in terms of new generalized cocharge statistics on tableaux.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.396
Mots-clés : Diagonal harmonics, diagonal coinvariants, representation theory of the symmetric group, Young tableaux, Young symmetrizers, Garsia-Haiman modules, polynomial rings
Gillespie, Maria 1
@article{ALCO_2024__7_6_1731_0, author = {Gillespie, Maria}, title = {Higher {Specht} polynomials under the diagonal action}, journal = {Algebraic Combinatorics}, pages = {1731--1750}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.396}, zbl = {07966776}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.396/} }
TY - JOUR AU - Gillespie, Maria TI - Higher Specht polynomials under the diagonal action JO - Algebraic Combinatorics PY - 2024 SP - 1731 EP - 1750 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.396/ DO - 10.5802/alco.396 LA - en ID - ALCO_2024__7_6_1731_0 ER -
Gillespie, Maria. Higher Specht polynomials under the diagonal action. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1731-1750. doi : 10.5802/alco.396. https://alco.centre-mersenne.org/articles/10.5802/alco.396/
[1] The combinatorics of the Garsia-Haiman modules for hook shapes, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 38, 42 pages | DOI | MR | Zbl
[2] A basis for the subspace of diagonal harmonic polynomials, Discrete Math., Volume 193 (1998) no. 1-3, pp. 17-31 | DOI | MR | Zbl
[3] A conjecture of Procesi and the straightening algorithm of Rota, Proc. Nat. Acad. Sci. U.S.A., Volume 89 (1992) no. 9, pp. 3980-3984 | DOI | MR | Zbl
[4] The descent monomials and a basis for the diagonally symmetric polynomials, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 5-16 | DOI | MR | Zbl
[5] Bitableaux bases for the diagonally invariant polynomial quotient rings, Adv. Math., Volume 130 (1997) no. 2, pp. 242-260 | DOI | MR | Zbl
[6] Higher Specht polynomials, Hiroshima Math. J., Volume 27 (1997) no. 1, pp. 177-188 | MR | Zbl
[7] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[8] Affine Schubert calculus and double coinvariants, 2018 | arXiv
[9] Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981) no. 2, pp. 203-219 | DOI | MR | Zbl
[10] Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[11] On certain graded -modules and the -Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl
[12] A basis for the Diagonal Harmonic Alternants, 2022 | arXiv
[13] Higher Specht bases for generalizations of the coinvariant ring, Ann. Comb., Volume 25 (2021) no. 1, pp. 51-77 | DOI | MR | Zbl
[14] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl
[15] Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl
[16] Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 941-1006 | DOI | MR | Zbl
[17] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl
[18] Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR | Zbl
[19] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979, viii+180 pages | MR
[20] Specht modules and symmetric groups, J. Algebra, Volume 36 (1975) no. 1, pp. 88-97 | DOI | MR | Zbl
[21] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[22] SageMath (Version 9.0) (2020) https://www.sagemath.org
[23] Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl
[24] Some particular entries of the two-parameter Kostka matrix, Proc. Amer. Math. Soc., Volume 121 (1994) no. 2, pp. 367-373 | DOI | MR | Zbl
[25] Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl
Cited by Sources: