We analyze a family of graphs known as banana graphs, with two marked vertices, through the lens of Hurwitz–Brill–Noether theory. As an application, we construct explicit new examples of finite graphs which are Brill–Noether general. These are the first such examples since the analysis of chains of loops by Cools, Draisma, Payne and Robeva. The graphs constructed are chains of loops and “theta graphs,” which are banana graphs of genus $2$. We also demonstrate that almost all banana graphs of genus at least $3$ cannot be used for this purpose, due either to failure of a submodularity condition or to the presence of far too many inversions, in certain permutations associated to divisors called transmission permutations.
Revised:
Accepted:
Published online:
Keywords: chip-firing, Brill–Noether theory, banana graphs, special divisors, tropical geometry
Pflueger, Nathan 1; Solomon, Noah 2
CC-BY 4.0
@article{ALCO_2025__8_5_1415_0,
author = {Pflueger, Nathan and Solomon, Noah},
title = {Twice-marked banana graphs & {Brill{\textendash}Noether} generality},
journal = {Algebraic Combinatorics},
pages = {1415--1457},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.443},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.443/}
}
TY - JOUR AU - Pflueger, Nathan AU - Solomon, Noah TI - Twice-marked banana graphs & Brill–Noether generality JO - Algebraic Combinatorics PY - 2025 SP - 1415 EP - 1457 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.443/ DO - 10.5802/alco.443 LA - en ID - ALCO_2025__8_5_1415_0 ER -
%0 Journal Article %A Pflueger, Nathan %A Solomon, Noah %T Twice-marked banana graphs & Brill–Noether generality %J Algebraic Combinatorics %D 2025 %P 1415-1457 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.443/ %R 10.5802/alco.443 %G en %F ALCO_2025__8_5_1415_0
Pflueger, Nathan; Solomon, Noah. Twice-marked banana graphs & Brill–Noether generality. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1415-1457. doi: 10.5802/alco.443
[1] Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma, Volume 2 (2014), Paper no. e24, 25 pages | DOI | MR | Zbl
[2] A note on Brill-Noether existence for graphs of low genus, Michigan Math. J., Volume 67 (2018) no. 1, pp. 175-198 | DOI | MR | Zbl
[3] Specialization of linear systems from curves to graphs, Algebra & Number Theory, Volume 2 (2008) no. 6, pp. 613-653 | DOI | Zbl | MR
[4] Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl
[5] Components of Brill–Noether loci for curves with fixed gonality, Michigan Math. J., Volume 71 (2022) no. 1, pp. 19-45 | DOI | MR | Zbl
[6] A tropical proof of the Brill–Noether Theorem, Advances in Mathematics, Volume 230 (2012) no. 2, pp. 759-776 | DOI | Zbl | MR
[7] Divisors and sandpiles. An introduction to chip-firing, American Mathematical Society, Providence, RI, 2018, xiv+325 pages | DOI | MR | Zbl
[8] Prym-Brill-Noether loci of special curves, Int. Math. Res. Not. IMRN, Volume 2022 (2022) no. 4, pp. 2688-2728 | DOI | MR | Zbl
[9] Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., Volume 64 (1990), pp. 1613-1616 | DOI | Zbl | MR
[10] On the variety of special linear systems on a general algebraic curve, Duke Math. J., Volume 47 (1980) no. 1, pp. 233-272 | MR | Zbl
[11] Effective divisor classes on metric graphs, Math. Z., Volume 302 (2022) no. 2, pp. 663-685 | DOI | MR | Zbl
[12] Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998, xiv+366 pages | MR | Zbl
[13] The locus of Brill-Noether general graphs is not dense, Port. Math., Volume 73 (2016) no. 3, pp. 177-182 | DOI | MR | Zbl
[14] Chip firing and algebraic curves, Notices Amer. Math. Soc., Volume 68 (2021) no. 11, pp. 1875-1881 | DOI | MR | Zbl
[15] Tropical independence I: Shapes of divisors and a proof of the Gieseker-Petri theorem, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2043-2066 | DOI | MR | Zbl
[16] Tropical independence II: The maximal rank conjecture for quadrics, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1601-1640 | DOI | MR | Zbl
[17] Recent Developments in Brill–Noether Theory (2021) | arXiv | Zbl
[18] Brill-Noether theory for curves of a fixed gonality, Forum Math. Pi, Volume 9 (2021), Paper no. e1, 33 pages | DOI | MR | Zbl
[19] Global Brill-Noether theory over the Hurwitz space, Geom. Topol., Volume 29 (2025) no. 1, pp. 193-257 | DOI | MR | Zbl
[20] A refined Brill-Noether theory over Hurwitz spaces, Invent. Math., Volume 224 (2021) no. 3, pp. 767-790 | DOI | Zbl | MR
[21] The Brill-Noether rank of a tropical curve, J. Algebraic Combin., Volume 40 (2014) no. 3, pp. 841-860 | Zbl | DOI | MR
[22] Skeletons of Prym varieties and Brill-Noether theory, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 785-820 | Zbl | DOI | MR
[23] A note on Brill-Noether theory and rank-determining sets for metric graphs, Int. Math. Res. Not. IMRN, Volume 2012 (2012) no. 23, pp. 5484-5504 | DOI | MR | Zbl
[24] Rank-determining sets of metric graphs, Journal of Combinatorial Theory, Series A, Volume 118 (2011) no. 6, pp. 1775-1793 | Zbl | MR | DOI
[25] Poincaré Series of Divisors on Graphs and Chains of Loops (2022) | arXiv
[26] Brill-Noether varieties of -gonal curves, Adv. Math., Volume 312 (2017), pp. 46-63 | DOI | MR | Zbl
[27] Special divisors on marked chains of cycles, J. Combin. Theory Ser. A, Volume 150 (2017), pp. 182-207 | DOI | MR | Zbl
[28] An extended Demazure product on integer permutations via min-plus matrix multiplication (2022) | arXiv | Zbl
[29] (Hurwitz-)Brill-Noether general marked graphs via the Demazure product (2022) | arXiv
Cited by Sources: