The lattice of flats $\mathcal{L}_M$ of a matroid $M$ is combinatorially well-behaved and, when $M$ is realizable, admits a geometric model in the form of a “Schubert variety of hyperplane arrangement”. In contrast, the lattice of flats of a polymatroid exhibits many combinatorial pathologies and admits no similar geometric model.
We address this situation by defining the lattice $\mathcal{L}_P$ of “combinatorial flats” of a polymatroid $P$. Combinatorially, $\mathcal{L}_P$ exhibits good behavior analogous to that of $\mathcal{L}_M$: it is graded, determines $P$ when $P$ is simple, and is top-heavy. When $P$ is realizable over a field of characteristic 0, we show that $\mathcal{L}_P$ is modeled by “the Schubert variety of a subspace arrangement”.
Our work generalizes a number of results of Ardila–Boocher and Huh–Wang on Schubert varieties of hyperplane arrangements; however, the geometry of Schubert varieties of subspace arrangements is noticeably more complicated than that of Schubert varieties of hyperplane arrangements. Many natural questions remain open.
Revised:
Accepted:
Published online:
Keywords: polymatroid, subspace arrangement, lattice of flats, Schubert variety, vector group, equivariant compactification
Crowley, Colin 1; Simpson, Connor ; Wang, Botong 2
CC-BY 4.0
@article{ALCO_2025__8_5_1285_0,
author = {Crowley, Colin and Simpson, Connor and Wang, Botong},
title = {Combinatorial flats and {Schubert} varieties of subspace arrangements},
journal = {Algebraic Combinatorics},
pages = {1285--1312},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.447},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.447/}
}
TY - JOUR AU - Crowley, Colin AU - Simpson, Connor AU - Wang, Botong TI - Combinatorial flats and Schubert varieties of subspace arrangements JO - Algebraic Combinatorics PY - 2025 SP - 1285 EP - 1312 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.447/ DO - 10.5802/alco.447 LA - en ID - ALCO_2025__8_5_1285_0 ER -
%0 Journal Article %A Crowley, Colin %A Simpson, Connor %A Wang, Botong %T Combinatorial flats and Schubert varieties of subspace arrangements %J Algebraic Combinatorics %D 2025 %P 1285-1312 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.447/ %R 10.5802/alco.447 %G en %F ALCO_2025__8_5_1285_0
Crowley, Colin; Simpson, Connor; Wang, Botong. Combinatorial flats and Schubert varieties of subspace arrangements. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1285-1312. doi: 10.5802/alco.447
[1] Combinatorial flag arrangements, 2024 | arXiv | Zbl
[2] The closure of a linear space in a product of lines, J. Algebraic Combin., Volume 43 (2016) no. 1, pp. 199-235 | DOI | MR | Zbl
[3] On the shape of Bruhat intervals, Ann. of Math. (2), Volume 170 (2009) no. 2, pp. 799-817 | MR | Zbl | DOI
[4] The natural matroid of an integer polymatroid, SIAM J. Discrete Math., Volume 37 (2023) no. 3, pp. 1751-1770 | DOI | MR | Zbl
[5] Singular Hodge theory for combinatorial geometries, 2020 | arXiv | Zbl
[6] A semi-small decomposition of the Chow ring of a matroid, Adv. Math., Volume 409 (2022), Paper no. 108646, 49 pages | DOI | Zbl | MR
[7] Constructions, Theory of matroids (Encyclopedia Math. Appl.), Volume 26, Cambridge Univ. Press, Cambridge (1986), pp. 127-223 | Zbl | DOI | MR
[8] When are multidegrees positive?, Adv. Math., Volume 374 (2020), Paper no. 107382, 34 pages | Zbl | DOI | MR
[9] The Bergman fan of a polymatroid, 2020 | arXiv | Zbl
[10] The slimmest geometric lattices, Trans. Amer. Math. Soc., Volume 196 (1974), pp. 203-215 | Zbl | DOI | MR
[11] Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc., Volume 47 (1975), pp. 504-512 | Zbl | MR | DOI
[12] 3264 and all that—a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016, xiv+616 pages | DOI | MR | Zbl
[13] The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl
[14] Intersection theory of polymatroids, Int. Math. Res. Not. IMRN (2024) no. 5, pp. 4207-4241 | DOI | MR | Zbl
[15] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR
[16] Macaulay2, a software system for research in algebraic geometry, Available at https://macaulay2.com/
[17] Geometry of equivariant compactifications of , Internat. Math. Res. Notices (1999) no. 22, pp. 1211-1230 | DOI | MR | Zbl
[18] Aspects of the theory of hypermatroids, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross) (Lecture Notes in Math.), Volume Vol. 411, Springer, Berlin-New York, 1974, pp. 191-213 | MR | Zbl | DOI
[19] Enumeration of points, lines, planes, etc, Acta Math., Volume 218 (2017) no. 2, pp. 297-317 | Zbl | DOI | MR
[20] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002, xvi+576 pages (Translated from the French by Reinie Erné, Oxford Science Publications) | MR
[21] Flats in matroids and geometric graphs, Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977) (1977), pp. 45-86 | MR | Zbl
[22] Rado’s theorem for polymatroids, Math. Proc. Cambridge Philos. Soc., Volume 78 (1975) no. 2, pp. 263-281 | Zbl | DOI | MR
[23] Semimodular functions, Theory of matroids (Encyclopedia Math. Appl.), Volume 26, Cambridge Univ. Press, Cambridge, 1986, pp. 272-297 | DOI | MR | Zbl
[24] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR | Zbl
[25] The -polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | DOI | MR | Zbl
Cited by Sources: