Combinatorial flats and Schubert varieties of subspace arrangements
Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1285-1312

The lattice of flats $\mathcal{L}_M$ of a matroid $M$ is combinatorially well-behaved and, when $M$ is realizable, admits a geometric model in the form of a “Schubert variety of hyperplane arrangement”. In contrast, the lattice of flats of a polymatroid exhibits many combinatorial pathologies and admits no similar geometric model.

We address this situation by defining the lattice $\mathcal{L}_P$ of “combinatorial flats” of a polymatroid $P$. Combinatorially, $\mathcal{L}_P$ exhibits good behavior analogous to that of $\mathcal{L}_M$: it is graded, determines $P$ when $P$ is simple, and is top-heavy. When $P$ is realizable over a field of characteristic 0, we show that $\mathcal{L}_P$ is modeled by “the Schubert variety of a subspace arrangement”.

Our work generalizes a number of results of Ardila–Boocher and Huh–Wang on Schubert varieties of hyperplane arrangements; however, the geometry of Schubert varieties of subspace arrangements is noticeably more complicated than that of Schubert varieties of hyperplane arrangements. Many natural questions remain open.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.447
Classification: 05E14, 06B05
Keywords: polymatroid, subspace arrangement, lattice of flats, Schubert variety, vector group, equivariant compactification

Crowley, Colin 1; Simpson, Connor ; Wang, Botong 2

1 Department of Mathematics, University of Oregon, Eugene, OR 97403 and School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
2 School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_5_1285_0,
     author = {Crowley, Colin and Simpson, Connor and Wang, Botong},
     title = {Combinatorial flats and {Schubert} varieties of subspace arrangements},
     journal = {Algebraic Combinatorics},
     pages = {1285--1312},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {5},
     doi = {10.5802/alco.447},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.447/}
}
TY  - JOUR
AU  - Crowley, Colin
AU  - Simpson, Connor
AU  - Wang, Botong
TI  - Combinatorial flats and Schubert varieties of subspace arrangements
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1285
EP  - 1312
VL  - 8
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.447/
DO  - 10.5802/alco.447
LA  - en
ID  - ALCO_2025__8_5_1285_0
ER  - 
%0 Journal Article
%A Crowley, Colin
%A Simpson, Connor
%A Wang, Botong
%T Combinatorial flats and Schubert varieties of subspace arrangements
%J Algebraic Combinatorics
%D 2025
%P 1285-1312
%V 8
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.447/
%R 10.5802/alco.447
%G en
%F ALCO_2025__8_5_1285_0
Crowley, Colin; Simpson, Connor; Wang, Botong. Combinatorial flats and Schubert varieties of subspace arrangements. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1285-1312. doi: 10.5802/alco.447

[1] Amini, Omid; Gierczak, Lucas Combinatorial flag arrangements, 2024 | arXiv | Zbl

[2] Ardila, Federico; Boocher, Adam The closure of a linear space in a product of lines, J. Algebraic Combin., Volume 43 (2016) no. 1, pp. 199-235 | DOI | MR | Zbl

[3] Björner, Anders; Ekedahl, Torsten On the shape of Bruhat intervals, Ann. of Math. (2), Volume 170 (2009) no. 2, pp. 799-817 | MR | Zbl | DOI

[4] Bonin, Joseph E.; Chun, Carolyn; Fife, Tara The natural matroid of an integer polymatroid, SIAM J. Discrete Math., Volume 37 (2023) no. 3, pp. 1751-1770 | DOI | MR | Zbl

[5] Braden, Tom; Huh, June; Matherne, Jacob P.; Proudfoot, Nicholas; Wang, Botong Singular Hodge theory for combinatorial geometries, 2020 | arXiv | Zbl

[6] Braden, Tom; Huh, June; Matherne, Jacob P.; Proudfoot, Nicholas; Wang, Botong A semi-small decomposition of the Chow ring of a matroid, Adv. Math., Volume 409 (2022), Paper no. 108646, 49 pages | DOI | Zbl | MR

[7] Brylawski, Thomas Constructions, Theory of matroids (Encyclopedia Math. Appl.), Volume 26, Cambridge Univ. Press, Cambridge (1986), pp. 127-223 | Zbl | DOI | MR

[8] Castillo, Federico; Cid-Ruiz, Yairon; Li, Binglin; Montaño, Jonathan; Zhang, Naizhen When are multidegrees positive?, Adv. Math., Volume 374 (2020), Paper no. 107382, 34 pages | Zbl | DOI | MR

[9] Crowley, Colin; Huh, June; Larson, Matt; Simpson, Connor; Wang, Botong The Bergman fan of a polymatroid, 2020 | arXiv | Zbl

[10] Dowling, Thomas A.; Wilson, Richard M. The slimmest geometric lattices, Trans. Amer. Math. Soc., Volume 196 (1974), pp. 203-215 | Zbl | DOI | MR

[11] Dowling, Thomas A.; Wilson, Richard M. Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc., Volume 47 (1975), pp. 504-512 | Zbl | MR | DOI

[12] Eisenbud, David; Harris, Joe 3264 and all that—a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016, xiv+616 pages | DOI | MR | Zbl

[13] Elias, Ben; Proudfoot, Nicholas; Wakefield, Max The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl

[14] Eur, Christopher; Larson, Matt Intersection theory of polymatroids, Int. Math. Res. Not. IMRN (2024) no. 5, pp. 4207-4241 | DOI | MR | Zbl

[15] Fulton, William Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR

[16] Grayson, Daniel R.; Stillman, Michael E. Macaulay2, a software system for research in algebraic geometry, Available at https://macaulay2.com/

[17] Hassett, Brendan; Tschinkel, Yuri Geometry of equivariant compactifications of G a n , Internat. Math. Res. Notices (1999) no. 22, pp. 1211-1230 | DOI | MR | Zbl

[18] Helgason, Thorkell Aspects of the theory of hypermatroids, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross) (Lecture Notes in Math.), Volume Vol. 411, Springer, Berlin-New York, 1974, pp. 191-213 | MR | Zbl | DOI

[19] Huh, June; Wang, Botong Enumeration of points, lines, planes, etc, Acta Math., Volume 218 (2017) no. 2, pp. 297-317 | Zbl | DOI | MR

[20] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002, xvi+576 pages (Translated from the French by Reinie Erné, Oxford Science Publications) | MR

[21] Lovász, L. Flats in matroids and geometric graphs, Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977) (1977), pp. 45-86 | MR | Zbl

[22] McDiarmid, Colin J. H. Rado’s theorem for polymatroids, Math. Proc. Cambridge Philos. Soc., Volume 78 (1975) no. 2, pp. 263-281 | Zbl | DOI | MR

[23] Nguyen, Hien Q. Semimodular functions, Theory of matroids (Encyclopedia Math. Appl.), Volume 26, Cambridge Univ. Press, Cambridge, 1986, pp. 272-297 | DOI | MR | Zbl

[24] Oxley, James Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR | Zbl

[25] Proudfoot, Nicholas; Xu, Yuan; Young, Ben The Z-polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | DOI | MR | Zbl

Cited by Sources: