We investigate the problem of when a chromatic quasisymmetric function (CQF) $X_G(x;q)$ of a graph $G$ is in fact symmetric. We first prove the remarkable fact that if a product of two quasisymmetric functions $f$ and $g$ in countably infinitely many variables is symmetric, then in fact $f$ and $g$ must be symmetric. This allows the problem to be reduced to the case of connected graphs.
We then show that any labeled graph having more than one source or sink has a nonsymmetric CQF. As a corollary, we find that all trees other than a directed path have a nonsymmetric CQF. We also show that a family of graphs we call “mixed mountain graphs” always have symmetric CQF.
Accepted:
Published online:
Keywords: chromatic quasisymmetric function, symmetric functions, quasisymmetric functions, trees, mixed mountain graphs
Gillespie, Maria 1; Pappe, Joseph 1; Salois, Kyle 2
CC-BY 4.0
@article{ALCO_2025__8_5_1169_0,
author = {Gillespie, Maria and Pappe, Joseph and Salois, Kyle},
title = {When is the {Chromatic} {Quasisymmetric} {Function} {Symmetric?}},
journal = {Algebraic Combinatorics},
pages = {1169--1192},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.448},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.448/}
}
TY - JOUR AU - Gillespie, Maria AU - Pappe, Joseph AU - Salois, Kyle TI - When is the Chromatic Quasisymmetric Function Symmetric? JO - Algebraic Combinatorics PY - 2025 SP - 1169 EP - 1192 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.448/ DO - 10.5802/alco.448 LA - en ID - ALCO_2025__8_5_1169_0 ER -
%0 Journal Article %A Gillespie, Maria %A Pappe, Joseph %A Salois, Kyle %T When is the Chromatic Quasisymmetric Function Symmetric? %J Algebraic Combinatorics %D 2025 %P 1169-1192 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.448/ %R 10.5802/alco.448 %G en %F ALCO_2025__8_5_1169_0
Gillespie, Maria; Pappe, Joseph; Salois, Kyle. When is the Chromatic Quasisymmetric Function Symmetric?. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1169-1192. doi: 10.5802/alco.448
[1] Chromatic symmetric functions from the modular law, J. Comb. Theory Ser. A, Volume 180 (2021), Paper no. 105407, 30 pages | Zbl | DOI | MR
[2] LLT polynomials, chromatic quasisymmetric functions and graphs with cycles, Discrete Math., Volume 341 (2018) no. 12, pp. 3453-3482 | Zbl | DOI | MR
[3] Chromatic quasisymmetric functions of the path graph, 2024 (forthcoming, Ann. Comb.) | arXiv | Zbl
[4] The chromatic symmetric function of a graph centred at a vertex, Electron. J. Combin., Volume 31 (2024) no. 4, Paper no. 4.22, 34 pages | Zbl | DOI | MR
[5] Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | Zbl | DOI | MR
[6] Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3, Electron. J. Combin., Volume 29 (2022) no. 2, Paper no. 2.19, 37 pages | Zbl | DOI | MR
[7] On -positivity and -unimodality of chromatic quasi-symmetric functions, SIAM J. Discrete Math., Volume 33 (2019) no. 4, pp. 2286-2315 | Zbl | DOI | MR
[8] Chromatic symmetric functions of Dyck paths and -rook theory, European J. Comb., Volume 107 (2023), Paper no. 103595, 36 pages | Zbl | DOI | MR
[9] Triangular ladders are -positive, 2018 | arXiv | Zbl
[10] Lollipop and lariat symmetric functions, SIAM J. Discrete Math., Volume 32 (2018) no. 2, pp. 1029-1039 | Zbl | DOI | MR
[11] A decomposition theorem for partially ordered sets, Ann. of Math. (2), Volume 51 (1950), pp. 161-166 | Zbl | DOI | MR
[12] A directed graph generalization of chromatic quasisymmetric functions, 2017 | arXiv | Zbl
[13] On enumerators of Smirnov words by descents and cyclic descents, J. Comb., Volume 11 (2020) no. 3, pp. 413-456 | MR | Zbl | DOI
[14] Classes of graphs with -positive chromatic symmetric function, Electr. J. Comb., Volume 26 (2019) no. 3, Paper no. 3.51, 19 pages | DOI | MR | Zbl
[15] Incomparability graphs of -free posets are -positive, Discrete Math., Volume 157 (1996) no. 1-3, pp. 193-197 Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994) | DOI | MR | Zbl
[16] A chromatic symmetric function in noncommuting variables, J. Algebraic Comb., Volume 13 (2001) no. 3, pp. 227-255 | DOI | MR | Zbl
[17] On Macdonald expansions of -chromatic symmetric functions and the Stanley–Stembridge Conjecture, 2025 | arXiv | Zbl
[18] Hopf Algebras in Combinatorics, 2020 | arXiv | Zbl
[19] A modular relation for the chromatic symmetric functions of -free posets, 2013 | arXiv | Zbl
[20] A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, 2016 | arXiv | Zbl
[21] The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture, Algebr. Comb., Volume 2 (2019) no. 6, pp. 1059-1108 | DOI | MR | Numdam | Zbl
[22] Explicit polynomial generators for the ring of quasisymmetric functions over the integers, Acta Appl. Math., Volume 109 (2010) no. 1, pp. 39-44 | DOI | MR | Zbl
[23] A proof of the Stanley–Stembridge conjecture, 2024 | arXiv | Zbl
[24] Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials, Discrete Math., Volume 343 (2020) no. 3, Paper no. 111728, 21 pages | DOI | MR | Zbl
[25] -partition products and fundamental quasi-symmetric function positivity, Adv. in Appl. Math., Volume 40 (2008) no. 3, pp. 271-294 | DOI | MR | Zbl
[26] On the -positivity of -free graphs, Electr. J. Comb., Volume 28 (2021) no. 2, Paper no. 2.40, 14 pages | DOI | MR | Zbl
[27] , 2023 (personal communication)
[28] The Stanley–Stembridge Conjecture for -avoiding unit interval orders: a diagrammatic proof, 2024 | arXiv | Zbl
[29] SageMath, the Sage Mathematics Software System (Ver. 9.3) (2021) https://www.sagemath.org
[30] Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl
[31] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl
[32] , 2024 (personal communication)
[33] On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Comb. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR
[34] A signed -expansion of the chromatic quasisymmetric function, Comb. Theory, Volume 5 (2025) no. 2, Paper no. 11, 36 pages | DOI | MR
[35] The -positivity of two classes of cycle-chord graphs, J. Algebraic Comb., Volume 57 (2023) no. 2, pp. 495-514 | DOI | MR
[36] The -positivity of the chromatic symmetric functions and the inverse Kostka matrix, 2022 | arXiv
Cited by Sources: