On the model of simple braids, defined to be the left divisors of Garside’s elements in the monoid , we investigate simple elements in Thompson’s monoid and in a larger monoid that is a hybrid of and : in both cases, we count how many simple elements left divide the right lcm of the first atoms, and characterize their normal forms in terms of forbidden factors. In the case of , a generalized Pascal triangle appears.
Accepted:
Published online:
DOI: 10.5802/alco.52
Keywords: presented monoid, divisibility relation, simple elements, Thompson’s group, braid group, normal form, Garside element, directed animal
Dehornoy, Patrick 1; Tesson, Emilie 1
@article{ALCO_2019__2_4_683_0, author = {Dehornoy, Patrick and Tesson, Emilie}, title = {Garside combinatorics for {Thompson{\textquoteright}s} monoid $F^+$ and a hybrid with the braid monoid $B_{\infty }^{+}$}, journal = {Algebraic Combinatorics}, pages = {683--709}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.52}, zbl = {1422.05106}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.52/} }
TY - JOUR AU - Dehornoy, Patrick AU - Tesson, Emilie TI - Garside combinatorics for Thompson’s monoid $F^+$ and a hybrid with the braid monoid $B_{\infty }^{+}$ JO - Algebraic Combinatorics PY - 2019 SP - 683 EP - 709 VL - 2 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.52/ DO - 10.5802/alco.52 LA - en ID - ALCO_2019__2_4_683_0 ER -
%0 Journal Article %A Dehornoy, Patrick %A Tesson, Emilie %T Garside combinatorics for Thompson’s monoid $F^+$ and a hybrid with the braid monoid $B_{\infty }^{+}$ %J Algebraic Combinatorics %D 2019 %P 683-709 %V 2 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.52/ %R 10.5802/alco.52 %G en %F ALCO_2019__2_4_683_0
Dehornoy, Patrick; Tesson, Emilie. Garside combinatorics for Thompson’s monoid $F^+$ and a hybrid with the braid monoid $B_{\infty }^{+}$. Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 683-709. doi : 10.5802/alco.52. https://alco.centre-mersenne.org/articles/10.5802/alco.52/
[1] Fragments of the word in the braid group, Mat. Zametki, Volume 36 (1984) no. 1, pp. 25-34 | MR | Zbl
[2] Animaux et arbres guingois, Theoret. Comput. Sci., Volume 117 (1993) no. 1-2, pp. 67-89 Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991) | DOI | MR | Zbl
[3] A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl
[4] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl
[5] On the Zappa–Szép product, Comm. Algebra, Volume 33 (2005) no. 2, pp. 393-424 | DOI | MR | Zbl
[6] The algebra of strand splitting. II. A presentation for the braid group on one strand, Internat. J. Algebra Comput., Volume 16 (2006) no. 1, pp. 203-219 | DOI | MR | Zbl
[7] The algebra of strand splitting. I. A braided version of Thompson’s group , J. Group Theory, Volume 10 (2007) no. 6, pp. 757-788 | DOI | MR | Zbl
[8] Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), Volume 42 (1996) no. 3-4, pp. 215-256 | MR | Zbl
[9] The algebraic theory of semigroups. Vol. I, Mathematical Surveys and Monographs, 7, American Mathematical Society, Providence, R.I., 1961, xv+224 pages | MR | Zbl
[10] Groups with a complemented presentation, J. Pure Appl. Algebra, Volume 116 (1997) no. 1-3, pp. 115-137 (Special volume on the occasion of the 60th birthday of Professor Peter J. Freyd) | DOI | MR | Zbl
[11] The group of parenthesized braids, Adv. Math., Volume 205 (2006) no. 2, pp. 354-409 | DOI | MR | Zbl
[12] The subword reversing method, Internat. J. Algebra Comput., Volume 21 (2011) no. 1-2, pp. 71-118 | DOI | MR | Zbl
[13] Tamari lattices and the symmetric Thompson monoid, Associahedra, Tamari lattices and related structures (Prog. Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 211-250 | DOI | MR | Zbl
[14] A cancellativity criterion for presented monoids (2018) (Semigroup Forum, to appear, https://arxiv.org/abs/1802.04607) | DOI | Zbl
[15] Foundations of Garside theory, EMS Tracts in Mathematics, 22, European Mathematical Society (EMS), Zürich, 2015, xviii+691 pages | DOI | MR | Zbl
[16] Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972) no. 4, pp. 273-302 | DOI | MR | Zbl
[17] Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992, xii+330 pages | MR | Zbl
[18] The braid group and other groups, Quart. J. Math. Oxford Ser. (2), Volume 20 (1969) no. 1, pp. 235-254 | DOI | MR | Zbl
[19] Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., Volume 9 (1988) no. 3, pp. 334-357 | DOI | MR | Zbl
[20] Groups, languages and automata, London Mathematical Society Student Texts, 88, Cambridge University Press, Cambridge, 2017, xi+294 pages | DOI | MR | Zbl
[21] On theories with a combinatorial definition of “equivalence.”, Ann. of Math. (2), Volume 43 (1942), pp. 223-243 | DOI | MR | Zbl
[22] Linear equations in non-commutative fields, Ann. of Math. (2), Volume 32 (1931) no. 3, pp. 463-477 | DOI | MR | Zbl
[23] The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Volume 65 (2018) no. 9, pp. 1062-1074 | MR | Zbl
[24] On factorisable, not simple groups., Acta Sci. Math., Volume 13 (1950), pp. 239-241 | MR | Zbl
[25] Term rewriting systems, Cambridge Tracts in Theoretical Computer Science, 55, Cambridge University Press, Cambridge, 2003, xxii+884 pages | MR
[26] Un hybride du groupe de Thompson et du groupe de tresses , PhD Thesis, Université de Caen (France) (2018) (https://tel.archives-ouvertes.fr/tel-01871101)
[27] Tranformation structure of algebraic logic, PhD Thesis, University of Berkeley (USA) (1979) (ProQuest LLC, Ann Arbor, MI, 345 pages, MR2628711)
[28] Problèmes combinatoires posés par la physique statistique, Séminaire Bourbaki : volume 1983/84, exposés 615-632 (Astérisque), Société mathématique de France, 1985 no. 121-122, pp. 225-246 | Numdam | MR | Zbl
[29] Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, Edizioni Cremonense, Rome, 1942, pp. 119-125 | MR | Zbl
Cited by Sources: