Let be a power of a prime , let be a nontrivial divisor of and write . We study upper bounds for cyclotomic numbers of order over the finite field . A general result of our study is that for all if . More conclusive results will be obtained through separate investigation of the five types of cyclotomic numbers: and , where and . The main idea we use is to transform equations over into equations over the field of complex numbers on which we have more information. A major tool for the improvements we obtain over known results is new upper bounds on the norm of cyclotomic integers.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.86
Keywords: Finite fields, Cylotomic Fields, Norm Bounds
Do Duc, Tai 1; Leung, Ka Hin 2; Schmidt, Bernhard 1
@article{ALCO_2020__3_1_39_0, author = {Do Duc, Tai and Leung, Ka Hin and Schmidt, Bernhard}, title = {Upper {Bounds} for {Cyclotomic} {Numbers}}, journal = {Algebraic Combinatorics}, pages = {39--53}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.86}, zbl = {07169932}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.86/} }
TY - JOUR AU - Do Duc, Tai AU - Leung, Ka Hin AU - Schmidt, Bernhard TI - Upper Bounds for Cyclotomic Numbers JO - Algebraic Combinatorics PY - 2020 SP - 39 EP - 53 VL - 3 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.86/ DO - 10.5802/alco.86 LA - en ID - ALCO_2020__3_1_39_0 ER -
Do Duc, Tai; Leung, Ka Hin; Schmidt, Bernhard. Upper Bounds for Cyclotomic Numbers. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 39-53. doi : 10.5802/alco.86. https://alco.centre-mersenne.org/articles/10.5802/alco.86/
[1] The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp., Volume 21 (1967), pp. 204-219 | DOI | MR | Zbl
[2] Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998, xii+583 pages (A Wiley-Interscience Publication) | MR | Zbl
[3] Upper bounds on cyclotomic numbers, Linear Algebra Appl., Volume 438 (2013) no. 1, pp. 111-120 | DOI | MR | Zbl
[4] Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arith., Volume 30 (1976) no. 3, pp. 229-240 | DOI | MR | Zbl
[5] Circulant matrices, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979, xv+250 pages (A Wiley-Interscience Publication) | MR | Zbl
[6] The cyclotomic numbers of order sixteen, Math. Comp., Volume 33 (1979) no. 146, pp. 827-835 | DOI | MR | Zbl
[7] Cyclotomic numbers and a conjecture of Snapper, Indian J. Pure Appl. Math., Volume 20 (1989) no. 2, pp. 99-103 | MR | Zbl
[8] On vanishing sums of roots of unity, J. Algebra, Volume 224 (2000) no. 1, pp. 91-109 | MR
[9] On cyclotomic numbers of order sixteen, Canadian J. Math., Volume 6 (1954), pp. 449-454 | DOI | MR | Zbl
[10] On the computation of the number of solutions of certain trinomial congruences, J. Assoc. Comput. Mach., Volume 4 (1957) no. 4, pp. 505-510 | DOI | MR
[11] On orthogonal matrices, Journal Math. Phys., Volume 12 (1933) no. 1-4, pp. 311-320 | DOI | Zbl
[12] Jacobi sums and cyclotomic numbers for a finite field, Acta Arith., Volume 41 (1982) no. 1, pp. 1-13 | DOI | MR | Zbl
[13] An inequality for determinants with real entries, Colloquium Mathematicum, Volume 38 (1978) no. 2, pp. 319-321 | DOI | MR | Zbl
[14] Cyclotomy and difference sets, Lectures in Advanced Mathematics, 2, Markham Publishing Co., Chicago, Ill., 1967, vii+134 pages | MR | Zbl
[15] New types of trinomial congruence criteria applying to Fermat’s last theorem, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 248-252 | DOI | MR | Zbl
[16] On trinomial equations in a finite field, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 1008-1010 | DOI | MR | Zbl
[17] Relation of the theory of certain trinomial equations in a finite field to Fermat’s last theorem, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 770-775 | DOI | MR | Zbl
[18] On distribution problems involving the numbers of solutions of certain trinomial congruences, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 1635-1641 | DOI | MR | Zbl
[19] The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc., Volume 86 (1957), pp. 401-413 | DOI | MR | Zbl
[20] The cyclotomic numbers of order ten, Combinatorial Analysis (Proc. Sympos. Appl. Math.), Volume 10, American Mathematical Society, Providence, R.I., 1960, pp. 95-111 | DOI | MR | Zbl
[21] The cyclotomic numbers of order twelve, Acta Arith., Volume 6 (1960), pp. 53-76 | DOI | MR
Cited by Sources: