Upper Bounds for Cyclotomic Numbers
Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 39-53.

Let q be a power of a prime p, let k be a nontrivial divisor of q-1 and write e=(q-1)/k. We study upper bounds for cyclotomic numbers (a,b) of order e over the finite field 𝔽 q . A general result of our study is that (a,b)3 for all a,b if p>(14) k/ord k (p) . More conclusive results will be obtained through separate investigation of the five types of cyclotomic numbers: (0,0),(0,a),(a,0),(a,a) and (a,b), where ab and a,b{1,...,e-1}. The main idea we use is to transform equations over 𝔽 q into equations over the field of complex numbers on which we have more information. A major tool for the improvements we obtain over known results is new upper bounds on the norm of cyclotomic integers.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.86
Classification: 11T22, 11C20
Keywords: Finite fields, Cylotomic Fields, Norm Bounds

Do Duc, Tai 1; Leung, Ka Hin 2; Schmidt, Bernhard 1

1 Division of Mathematical Sciences School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Republic of Singapore
2 Department of Mathematics National University of Singapore Kent Ridge, Singapore 119260 Republic of Singapore
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_1_39_0,
     author = {Do Duc, Tai and Leung, Ka Hin and Schmidt, Bernhard},
     title = {Upper {Bounds} for {Cyclotomic} {Numbers}},
     journal = {Algebraic Combinatorics},
     pages = {39--53},
     publisher = {MathOA foundation},
     volume = {3},
     number = {1},
     year = {2020},
     doi = {10.5802/alco.86},
     zbl = {07169932},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.86/}
}
TY  - JOUR
AU  - Do Duc, Tai
AU  - Leung, Ka Hin
AU  - Schmidt, Bernhard
TI  - Upper Bounds for Cyclotomic Numbers
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 39
EP  - 53
VL  - 3
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.86/
DO  - 10.5802/alco.86
LA  - en
ID  - ALCO_2020__3_1_39_0
ER  - 
%0 Journal Article
%A Do Duc, Tai
%A Leung, Ka Hin
%A Schmidt, Bernhard
%T Upper Bounds for Cyclotomic Numbers
%J Algebraic Combinatorics
%D 2020
%P 39-53
%V 3
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.86/
%R 10.5802/alco.86
%G en
%F ALCO_2020__3_1_39_0
Do Duc, Tai; Leung, Ka Hin; Schmidt, Bernhard. Upper Bounds for Cyclotomic Numbers. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 39-53. doi : 10.5802/alco.86. https://alco.centre-mersenne.org/articles/10.5802/alco.86/

[1] Baumert, Leonard D.; Fredricksen, Harold The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp., Volume 21 (1967), pp. 204-219 | DOI | MR | Zbl

[2] Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S. Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998, xii+583 pages (A Wiley-Interscience Publication) | MR | Zbl

[3] Betsumiya, Koichi; Hirasaka, Mitsugu; Komatsu, Takao; Munemasa, Akihiro Upper bounds on cyclotomic numbers, Linear Algebra Appl., Volume 438 (2013) no. 1, pp. 111-120 | DOI | MR | Zbl

[4] Conway, John; Jones, Antony J. Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arith., Volume 30 (1976) no. 3, pp. 229-240 | DOI | MR | Zbl

[5] Davis, Philip J. Circulant matrices, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979, xv+250 pages (A Wiley-Interscience Publication) | MR | Zbl

[6] Evans, Ronald J.; Hill, Jay R. The cyclotomic numbers of order sixteen, Math. Comp., Volume 33 (1979) no. 146, pp. 827-835 | DOI | MR | Zbl

[7] Katre, Shashikant A. Cyclotomic numbers and a conjecture of Snapper, Indian J. Pure Appl. Math., Volume 20 (1989) no. 2, pp. 99-103 | MR | Zbl

[8] Lam, Tsit Yuen; Leung, Ka Hin On vanishing sums of roots of unity, J. Algebra, Volume 224 (2000) no. 1, pp. 91-109 | MR

[9] Lehmer, Emma On cyclotomic numbers of order sixteen, Canadian J. Math., Volume 6 (1954), pp. 449-454 | DOI | MR | Zbl

[10] Lehmer, Emma; Vandiver, Harry S. On the computation of the number of solutions of certain trinomial congruences, J. Assoc. Comput. Mach., Volume 4 (1957) no. 4, pp. 505-510 | DOI | MR

[11] Paley, Raymond E. A. C. On orthogonal matrices, Journal Math. Phys., Volume 12 (1933) no. 1-4, pp. 311-320 | DOI | Zbl

[12] Parnami, J. C.; Agrawal, M. K.; Rajwade, A. R. Jacobi sums and cyclotomic numbers for a finite field, Acta Arith., Volume 41 (1982) no. 1, pp. 1-13 | DOI | MR | Zbl

[13] Schinzel, Andrzej An inequality for determinants with real entries, Colloquium Mathematicum, Volume 38 (1978) no. 2, pp. 319-321 | DOI | MR | Zbl

[14] Storer, Thomas Cyclotomy and difference sets, Lectures in Advanced Mathematics, 2, Markham Publishing Co., Chicago, Ill., 1967, vii+134 pages | MR | Zbl

[15] Vandiver, Harry S. New types of trinomial congruence criteria applying to Fermat’s last theorem, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 248-252 | DOI | MR | Zbl

[16] Vandiver, Harry S. On trinomial equations in a finite field, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 1008-1010 | DOI | MR | Zbl

[17] Vandiver, Harry S. Relation of the theory of certain trinomial equations in a finite field to Fermat’s last theorem, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 770-775 | DOI | MR | Zbl

[18] Vandiver, Harry S. On distribution problems involving the numbers of solutions of certain trinomial congruences, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 1635-1641 | DOI | MR | Zbl

[19] Whiteman, Albert L. The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc., Volume 86 (1957), pp. 401-413 | DOI | MR | Zbl

[20] Whiteman, Albert L. The cyclotomic numbers of order ten, Combinatorial Analysis (Proc. Sympos. Appl. Math.), Volume 10, American Mathematical Society, Providence, R.I., 1960, pp. 95-111 | DOI | MR | Zbl

[21] Whiteman, Albert L. The cyclotomic numbers of order twelve, Acta Arith., Volume 6 (1960), pp. 53-76 | DOI | MR

Cited by Sources: