Type A admissible cells are Kazhdan–Lusztig
Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 55-105.

Admissible W-graphs were defined and combinatorially characterized by Stembridge in []. The theory of admissible W-graphs was motivated by the need to construct W-graphs for Kazhdan–Lusztig cells, which play an important role in the representation theory of Hecke algebras, without computing Kazhdan–Lusztig polynomials. In this paper, we shall show that type A-admissible W-cells are Kazhdan–Lusztig as conjectured by Stembridge in his original paper.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.91
Classification: 05E10, 20C08
Keywords: Coxeter groups, Hecke algebras, $W$-graphs, Kazhdan–Lusztig polynomials, cells

Nguyen, Van Minh 1

1 School of Mathematics and Statistics University of Sydney NSW 2006, Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_1_55_0,
     author = {Nguyen, Van Minh},
     title = {Type $A$ admissible cells are {Kazhdan{\textendash}Lusztig}},
     journal = {Algebraic Combinatorics},
     pages = {55--105},
     publisher = {MathOA foundation},
     volume = {3},
     number = {1},
     year = {2020},
     doi = {10.5802/alco.91},
     zbl = {07169933},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.91/}
}
TY  - JOUR
AU  - Nguyen, Van Minh
TI  - Type $A$ admissible cells are Kazhdan–Lusztig
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 55
EP  - 105
VL  - 3
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.91/
DO  - 10.5802/alco.91
LA  - en
ID  - ALCO_2020__3_1_55_0
ER  - 
%0 Journal Article
%A Nguyen, Van Minh
%T Type $A$ admissible cells are Kazhdan–Lusztig
%J Algebraic Combinatorics
%D 2020
%P 55-105
%V 3
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.91/
%R 10.5802/alco.91
%G en
%F ALCO_2020__3_1_55_0
Nguyen, Van Minh. Type $A$ admissible cells are Kazhdan–Lusztig. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 55-105. doi : 10.5802/alco.91. https://alco.centre-mersenne.org/articles/10.5802/alco.91/

[1] Assaf, Sami H. Dual equivalence graphs I: A new paradigm for Schur positivity, Forum Math. Sigma, Volume 3 (2015), Paper no. e12, 33 pages | MR | Zbl

[2] Brini, Andrea Combinatorics, superalgebras, invariant theory and representation theory, Séminaire Lotharingien de Combinatoire, Volume 55 (2007), Paper no. B55g, 117 pages | MR | Zbl

[3] Castronuovo, Niccoló The dominance order for permutations, Pure Math. Appl. (PU.M.A.), Volume 25 (2015) no. 1, pp. 45-62 | MR | Zbl

[4] Chmutov, Michael Type A molecules are Kazhdan–Lusztig, J. Algebr. Comb., Volume 42 (2015) no. 4, pp. 1059-1076 | DOI | MR | Zbl

[5] Deodhar, Vinay V. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math., Volume 39 (1977) no. 2, pp. 187-198 | DOI | Zbl

[6] Elias, Ben; Williamson, Geordie The Hodge theory of Soergel bimodules, Ann. Math. (2), Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl

[7] Geck, Meinolf Kazhdan–Lusztig cells and the Murphy basis, Proc. Lond. Math. Soc. (3), Volume 93 (2006) no. 3, pp. 635-665 | DOI | MR | Zbl

[8] Geck, Meinolf; Pfeiffer, Götz Characters of finite Coxeter groups and Iwahori–Hecke algebras, Lond. Math. Soc. Monogr., New Ser., Oxford University Press, 2000 no. 21 | Zbl

[9] Kazhdan, David; Lusztig, George Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl

[10] Mathas, Andrew Iwahori–Hecke algebras and Schur algebras of the symmetric group, Univ. Lect. Ser., 15, American Mathematical Society, 1999 | MR | Zbl

[11] Nguyen, Van Minh W-graph ideals II, J. Algebra, Volume 361 (2012) no. 2, pp. 248-263 | DOI | Zbl

[12] Sagan, Bruce E. The symmetric group: representations, combinatorial algorithms, and symmetric functions, Grad. Texts Math., 203, Springer, 2001 | Zbl

[13] Stembridge, John R. Admissible W-graphs, Represent. Theory, Volume 12 (2008) no. 14, pp. 346-368 | DOI | MR | Zbl

[14] Stembridge, John R. More W-graphs and cells: molecular components and cell synthesis (2008) (Atlas of Lie Groups AIM Workshop VI)

[15] Stembridge, John R. A finiteness theorem for W-graphs, Adv. Math., Volume 229 (2012) no. 4, pp. 2405-2414 | DOI | MR | Zbl

Cited by Sources: